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Abstract
Background: Breast cancer subtypes identified in genomic studies have different underlying genetic defects.
Mutations in the tumor suppressor p53 occur more frequently in estrogen receptor (ER) negative, basal-like and
HER2-amplified tumors than in luminal, ER positive tumors. Thus, because p53 mutation status is tightly linked to
other characteristics of prognostic importance, it is difficult to identify p53's independent prognostic effects. The
relation between p53 status and subtype can be better studied by combining data from primary tumors with data
from isogenic cell line pairs (with and without p53 function).

Methods: The p53-dependent gene expression signatures of four cell lines (MCF-7, ZR-75-1, and two
immortalized human mammary epithelial cell lines) were identified by comparing p53-RNAi transduced cell lines
to their parent cell lines. Cell lines were treated with vehicle only or doxorubicin to identify p53 responses in
both non-induced and induced states. The cell line signatures were compared with p53-mutation associated genes
in breast tumors.

Results: Each cell line displayed distinct patterns of p53-dependent gene expression, but cell type specific (basal
vs. luminal) commonalities were evident. Further, a common gene expression signature associated with p53 loss
across all four cell lines was identified. This signature showed overlap with the signature of p53 loss/mutation
status in primary breast tumors. Moreover, the common cell-line tumor signature excluded genes that were
breast cancer subtype-associated, but not downstream of p53. To validate the biological relevance of the common
signature, we demonstrated that this gene set predicted relapse-free, disease-specific, and overall survival in
independent test data.

Conclusion: In the presence of breast cancer heterogeneity, experimental and biologically-based methods for
assessing gene expression in relation to p53 status provide prognostic and biologically-relevant gene lists. Our
biologically-based refinements excluded genes that were associated with subtype but not downstream of p53
signaling, and identified a signature for p53 loss that is shared across breast cancer subtypes.
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Background
The tumor suppressor p53 is mutated in 30% of breast
cancers [1], but rates of p53 mutation vary depending
upon the subtype of breast cancer. For example, p53
mutations are found more frequently in aggressive estro-
gen receptor (ER)-negative breast cancers [1], and have
been shown to correlate with breast cancer subtype in
gene expression studies [2] and in a population-based
study [3]. Genetic abnormalities such as amplified HER2/
ERBB2 [1] and aneuploidy [4] are also frequently associ-
ated with p53 mutation status. These correlations suggest
intrinsic heterogeneity of p53 signaling across breast can-
cer subtypes.

Gene expression studies can help to characterize breast
cancer heterogeneity. Previous in vitro studies of gene
expression have demonstrated that cell line models of
luminal breast cancers show a strong stress response fol-
lowing chemotherapeutic treatment, with notable
changes in p53-regulated genes such as p21 (Cip1). The
same magnitude of p53-regulated responses was not
observed for cell line models of basal-like breast cancer
[5]. Inherent differences in p53 signaling and function
according to cell type of origin could account for the asso-
ciation between rates of p53 mutation and breast cancer
subtype. In this study, we engineered isogenic cell line
pairs with and without p53 function using RNA interfer-
ence (RNAi) and examined the stress responses of parent
and RNAi-transduced cell lines. Our aim was to assess
how variation in cell line backgrounds alters the effects of
p53 loss. We also aimed to identify a common response
to p53 loss that is shared by most breast cancers. Thus, we
compared the lists of p53-responsive genes in vitro to gene
lists derived from in vivo breast tumor data to identify a set
of common p53 responsive genes. The biological rele-
vance of this common p53 signature was assessed by
using this gene list to predict outcomes on independent
test data sets of breast cancer patients.

Methods
Cells and culture conditions
Two hTERT immortalized Human Mammary Epithelial
(HME) cell lines (ME16C and HME-CC) and two estab-
lished breast cancer cell lines (MCF-7 and ZR-75-1) were
cultured as described previously [5]. A mitochondrial dye
conversion (MTT) assay was used to measure cell line
responses to 36 h of treatment with 0 – 10 µM doxoru-
bicin hydrochloride (DOX) [5].

Short hairpin RNAs (RNAi) against p53 were constructed
using a 19-mer sequence (GACTCCAGTGGTAATCTAC)
described previously [6], but using the pSU-
PER.RETRO.puro vector with stuffer (Oligo Engine, Seat-
tle, WA). A version of this vector containing two
mismatches within the 19-mer sequence (GACTCCGGTT-

GTAATCTAC) was also prepared as a mismatch control.
HEK-293T cells were transfected with 10 micrograms each
of pSUPER.RETRO.puro vector, pVpack-GP (Stratagene),
and pVpack-Ampho (Stratagene) using Lipofectamine
Reagent and PLUS Reagent (Invitrogen). Supernatants
containing replication-incompetent retrovirus were col-
lected 48 hours after transfection and applied to all four
cell lines. Stable populations of cell lines expressing p53-
RNAi or mismatch-RNAi were selected for two weeks in 1
µg per mL puromycin.

Western blots
Cells were treated for 24 h with 1 µM DOX, and cell free
extracts, protein quantitation, and denaturation were as
described previously [5]. Forty µg of protein were electro-
phoresed on a 4–20% Tris-HCl Criterion precast gel (Bio-
Rad) and transferred to a Hybond-P membrane
(Amersham Biosciences) by electroblotting. The blots
were probed with antibodies against p53 (Santa Cruz;
D01) and β-actin (Abcam, AC-15) and then with anti-
mouse IgG horseradish peroxidase linked whole antibody
from sheep (Amersham). Enhanced chemiluminescence
was used for detection (SuperSignal West Pico Chemilu-
minescent Substrate, Pierce).

Microarray experiments
Cell lines were grown, treated for 12, 24, or 36 h with
DOX at the IC50 concentration, and harvested using a
previously described protocol [5]. Feeding control (sham)
and reference mRNA samples were prepared as described
previously [5]. Cy3- and Cy5-labeled cDNAs were synthe-
sized from control or treated cell line mRNA, respectively,
according to a direct labeling protocol (Agilent Technolo-
gies), and were hybridized to Human 1A oligonucleotide
arrays (Agilent Technologies). All microarray raw data
tables have been deposited in the Gene Expression Omni-
bus under the accession number of GSE3178 (submitter
C. Perou).

Identification of p53-dependent DOX-response signature 
from microarray data
For all comparisons, in vitro and in vivo as described
below, genes that were significantly different in expres-
sion were identified using a 2-class, unpaired Significance
Analysis of Microarrays (SAM) [7]; for the SAM analysis,
the data were first filtered to exclude genes that did not
have mean signal intensity greater than twice the median
background value for both the red and green channel in at
least 70% of the experiments. The SAM delta values were
adjusted to obtain the largest gene list that gave a false dis-
covery rate of less than 5%. Using the SAM-derived gene
lists, average linkage hierarchical cluster analysis was con-
ducted using Pearson correlation in the Cluster program
and the data were visualized in Treeview [8,9]. EASE, the
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Expression Analysis Systematic Explorer was used to iden-
tify enriched biological themes in gene lists [10].

Each cell line was examined for p53 response in both
untreated and DOX-treated states. To identify the gene
expression effects of p53 loss in DOX-treated cells (p53-
induced state), parent cell lines treated with DOX (n = 3
for each cell line) were compared to RNAi-transductants
treated with DOX (n = 3 for each cell line). To identify the
gene expression effects of p53 loss in the absence of DOX
treatment, sham-treated parent cell lines (wildtype p53)
were compared to sham-treated RNAi-transductants (n =
3 for both treatment groups in each cell line). However, to
derive a list of genes that were differentially expressed in
both in vitro and the in vivo data sets, the common p53
response across all four cell lines was the most relevant.
Thus, we also performed an analysis comparing all RNAi-
transduced cell line experiments (n = 24) to all parent cell
line experiments (n = 24). The resulting list represented
the common response to p53 loss across cell lines.

To identify the gene expression signature associated with
p53 in vivo, we used primary breast tumor data [2,11,12]
that is publicly available from the Stanford Microarray
Database and the Gene Expression Omnibus. DOX-
treated patients for which p53 status had been determined
by sequence analysis [2] were included in our analysis
(102 tumor samples, including 8 normal-like breast sam-
ples, one unclassified tumor, and 37 before and after
pairs, representing 69 patients in total). All tumor sub-
types described in Sorlie et al. [2] [classified using intrinsic
analysis [12]] were included, except true normal breast
and normal-like breast tumor samples. This sample set
also included tumors collected before and after treatment
with doxorubicin. The gene expression patterns of the p53
mutant samples (n = 43) were compared to those of the
p53 wildtype samples (n = 52).

Identification of p53 functional status in independent test 
data sets
A final 52 gene list was derived by identifying those genes
that were differentially expressed in response to p53 loss
in both the in vitro and in vivo data sets. These genes were
matched to publicly available array data [13,14], using
unique Unigene identifiers. Of the 52 genes, 48 and 50
were present on the Chang et al. data set and Miller et al.
data sets, respectively. Microarray platform/source sys-
tematic biases between the training and the test sets were
corrected using Distance Weighted Discrimination
(DWD) [15]. To classify tumors in the independent test
sets (Chang et al. or Miller et al.) as p53-functional or not,
two centroids were created using the Sorlie et al. training
set. The centroids were based on average gene expression
in tumors in Figure 5A (mutant enriched) vs. that of
tumors in Figure 5B (wildtype enriched). Each Chang et al.

or Miller et al. tumor was classified according to the near-
est centroid as determined by Spearman correlation.

Other statistical analyses
Survival analyses were conducted using Sorlie et al. tumor
data (excluding duplicate samples from the same person,
resulting in a total of 66 patients representing 31 disease-
specific and 26 overall survival events for survival analy-
ses), Change et al. tumor data [337 patients: 295 patients
from [13] and 42 tumors published in an earlier paper
[16] from the same group, representing 126 disease spe-
cific and 79 overall survival events] and Miller et al. [14]
data (236 patients, 52 disease specific events). For analy-
ses of the Miller et al. dataset, patients that had survived at
least ten years were censored to be consistent with previ-
ous analyses [14]. Kaplan Meier analyses were conducted
using WinStat for Microsoft Excel.

Because the large data set of Chang et al. also included
data on other prognostic variables, Cox proportional haz-
ards modeling was conducted (SAS version 9.1). The
reduced model that included ER status (positive vs. nega-
tive), tumor size (≤ 2 cm vs. > 2 cm), lymph node status
(indicator coding with three categories: 0, 1–3, > 3 posi-
tive nodes or metastatic), age (in decades), grade (indica-
tor coding with three categories: 1, 2, 3), and treatment
(yes if treatment with chemo and/or hormonal therapy,
no if no adjuvant therapy) was compared to a full model
that also included a binary variable indicating p53 classi-
fication (based on gene-expression).

To determine if p53 status differed according to tumor
subtype, a Fisher-Freeman-Halton (FFH) exact test was
conducted using SAS version 9.1 (Cary, NC). Analyses of
sequence-based mutation characteristics (e.g. missense/
in-frame vs. nonsense and frameshift, missense DNA
binding vs. non-DNA binding) in association with gene
expression classification were also conducted using FFH
exact tests.

Results
Gene expression and phenotypic analysis of cell lines 
expressing p53 RNAi
To study the effects of p53 loss in vitro, an RNAi construct
specific for p53 [6] was stably expressed in MCF-7, ZR-75-
1, ME16C and HME-CC cells. All four cell lines had
wildtype p53 sequence and expressed functional p53
(showed p53 induction in response to treatment with
DOX, Figure 1) prior to transduction with the p53-RNAi
retroviral construct. Expression of p53-RNAi substantially
knocked down p53 protein levels in both treated and
untreated cells (Figure 1).

The phenotypic effects of p53 knock-down varied by cell
line (Figure 2). MCF-7 cells became more resistant to
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DOX, while ZR-75-1, ME16C and HME-CC cells dis-
played no change in DOX sensitivity. Consistent with the
different responses in the DOX sensitivity assay, gene
expression signatures significantly associated with p53
loss (in 2-class SAM analyses) were different for each cell
line and cell type (gene lists are given in Additional File 1).
As shown in Figure 3, MCF-7 and ZR-75-1 cells showed a
stronger p53-dependent signature following treatment
with DOX. The immortalized HMECs, conversely, showed
stronger p53-dependent signatures in the absence of DOX
(i.e. parents vs. RNAi, both untreated). Analysis of SAM-
derived gene lists using gene ontology software (EASE)
showed enrichment for categories of genes with known
relevance to p53 function. For example, among the DOX-

treated samples (DOX-treated parent vs. DOX-treated
RNAi-expressing), three cell lines (HME-CC, MCF-7 and
ZR-75-1) increased genes involved in mitosis after trans-
duction with p53-RNAi. ME16C did not induce categories
of mitosis genes, but did suppress negative regulators of
cell proliferation. Significant down-regulation of apop-
totic genes was only seen in ZR-75-1 cells.

The p53-response observed among DOX-treated cell lines
differed from the p53-response in sham-treated cell lines.
For example, the luminal-like cell lines (MCF-7 and ZR-
75-1) that had the largest transcriptional response to
DOX, showed a modest response to p53 loss in sham-
treated samples (sham-treated parent versus sham-treated

p53 protein expression is knocked down by RNAi expressionFigure 1
p53 protein expression is knocked down by RNAi expression. The expression of p53 was examined by Western blot 
analysis of extracts from MCF-7, ZR-75-1, HME-CC, and ME16C cell line parents and the same cell lines stably transduced with 
p53-targeted RNAi vector or p53 mismatch (MM) RNAi vector. Treatment with doxorubicin (24 h, 1µM) induced p53 expres-
sion in all cell lines and transductants, but induced levels were markedly lower in the p53-RNAi cells.
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RNAi-expressing). Sham-treated MCF-7 cells showed no
significant changes and ZR-75-1 cells showed few changes
in response to p53 loss. EASE analysis of the ZR-75-1
changes did not identify categories with clear relevance to
p53 signaling. Only one down-regulated gene ontology
category (extracellular region) was identified. Induced
gene categories were transition metal homeostasis genes
and genes with unknown roles in biological processes.
However, among the basal-like cell line models, ME16C
significantly down-regulated anti-apoptosis genes and
HME-CC significantly up-regulated mitosis/proliferation
genes. The strong mitotic signature of sham-treated HME-
CC cells showed overlap with the strong mitotic signature
observed in DOX-treated HME-CCs. Thus, p53 loss had
different effects across cell type and cell line.

Common patterns of expression shared by most of the
four lines were identified using a 2-class SAM (DOX- and

sham-treated combined from all parental lines vs. all p53-
RNAi expressing lines) to analyze all four cell lines simul-
taneously. In addition to identifying a common response,
this analysis had a larger sample size and thus, had better
power to detect a broader range of p53-regulated genes.
There were 696 genes which responded significantly to
p53 loss in the cell lines (1). Included in this list were
many known direct p53 targets including MDM2, p21
(Cip1), GADD45A, and ribonucleotide reductase M2. All
of these genes had lower expression in p53-RNAi lines,
consistent with expectation. In total, 357 of the 696 signif-
icantly altered genes had lower expression in p53-RNAi
lines; EASE analysis indicated that apoptosis genes, cell
death genes, and regulators of programmed cell death
were significantly over-represented. Conversely, there
were 339 genes (of 696 significantly altered genes) that
were more highly expressed in RNAi lines, including genes

Chemosensitivity is altered in the MCF-7 cell line following transduction with p53-RNAiFigure 2
Chemosensitivity is altered in the MCF-7 cell line following transduction with p53-RNAi. ME16C, HME-CC, and 
ZR-75-1 cell lines had similar chemosensitivity curves for wildtype (x), p53-targeted RNAi expressing cells (solid square) and 
p53 mismatch RNAi expressing cells (open square). Only the p53-RNAi MCF-7 cells showed significant chemoresistance.
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involved in mitosis, cell cycle control, and regulation of
DNA repair.

Gene expression signatures of primary tumors with wild-
type and mutant p53
Gene expression data for primary breast tumors with
known p53 mutation status is publicly available [2,12].
Using this data, we found that the expression of 747 genes
was significantly correlated with p53 status (Figure 4A).
The hierarchical cluster of these genes across the primary
tumors contained two branches (Figure 4B), one enriched
for wild-type tumors (left branch, 45 of 53 wildtype sam-
ples) and one enriched for mutant tumors (right branch,
34 of 42 mutant samples). A proliferation cluster/signa-
ture was differentially expressed across the two branches
of the dendrogram (Figure 4C). This cluster had higher
expression in p53 mutants, and included the cell cycle
associated genes cyclin A2, CDC28 subunit 1B, CDC2,
cyclin-dependent kinase inhibitor 3, polo-like kinase, and

topoisomerase IIA. EASE analysis confirmed that genes
involved in mitosis and cell cycle progression were signif-
icantly over-represented in the set of genes that had higher
expression in p53 mutant tumors.

A cluster (Figure 4D) enriched for genes associated with
the luminal/ER+ tumor subtypes (N-acetyltransferase 1,
estrogen receptor 1, putative G-protein-coupled receptor,
trefoil factor 3, GATA binding protein 3, and X-box bind-
ing protein 1) was also present in this gene set [2,11,12].
This cluster was more highly expressed in wildtype
tumors, likely due to a larger representation of luminal
tumors in this branch. In fact, when the intrinsic subtype
of each of the patients in Figure 4 was determined by clus-
tering all 95 tumor samples using the intrinsic list of Sorlie
et al. [12], a statistically significant association between
p53 status and tumor subtype was observed (p = 0.002),
with 31% of luminal tumors and 80% of basal-like
tumors having mutant p53. Because the frequencies of

Number of genes with significantly different expression following p53 loss (by RNAi) in sham-treated (black) or doxorubicin-treated (gray) cellsFigure 3
Number of genes with significantly different expression following p53 loss (by RNAi) in sham-treated (black) or 
doxorubicin-treated (gray) cells. Sham-treated cells represented feeding controls, treated with fresh media and harvested 
at the same time points as the doxorubicin treated cells. Positive y-axis indicates number of genes up-regulated and negative y-
axis indicates number of genes down-regulated by p53 knockdown. Luminal cell lines had the largest transcriptional response 
to p53 loss following induction, while HMEC cell lines had a stronger signature for p53 loss in the uninduced state.
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Gene expression pattern of tumor samples for 747 genes correlated with p53 status in tumorsFigure 4
Gene expression pattern of tumor samples for 747 genes correlated with p53 status in tumors. The fold change 
relative to the median expression value across all tumors is shown. Colored bars in A illustrate the location of clusters C and 
D. The dendrogram in B shows that experiments were divided into two primary branches, one enriched for mutant (red) and 
one enriched for wildtype (green) tumors. Tumor sample names are red for mutants and green for wildtypes based on 
sequence analysis. Clusters enriched for proliferation and cell cycle genes (C) and for luminal/estrogen responsive tumor mark-
ers (D) are shown.

N-acetyltransferase 1 R91802
N-acetyltransferase 1 T67128
N-acylsphingosine amidohydrolase 1 AA664155
estrogen receptor 1 AA164585
hypothetical protein DKFZp434L142 N95180
methylcrotonoyl-Coenzyme A carboxylase 2 beta N31952
hydroxysteroid 17-beta dehydrogenase 4 AA487914
putative G protein-coupled receptor H50224
trefoil factor 3 intestinal N74131
fms-related tyrosine kinase 1 AA058828
GATA binding protein 3 R31441
GATA binding protein 3 H72474
X-box binding protein 1 W90128
T74639
estrogen receptor 1 AA291702
nuclear receptor binding protein W79308
hypothetical protein LOC255743 AA029948
RAB GTPase binding effector protein 1 AA428477
T55728
AA504327
hypothetical protein FLJ21062 AA028171
chromosome 14 open reading frame 45 AA460298
KIAA0876 protein AA431721
hypothetical protein FLJ10980 N45467
signal peptide, CUB domain, EGF-like 2 W74079
hypothetical protein FLJ14001 N63001
MKL/myocardin-like 2AA151572

B
C

70
8B

-B
E

B
C

70
8A

-A
F

B
C

70
6B

-A
F

B
C

70
6A

-B
E

B
C

-H
B

C
4-

T
1

B
C

40
5B

-A
F

B
C

40
5A

-B
E

B
C

10
4B

-A
F

B
C

10
4A

-B
E

B
C

30
8B

-B
E

B
C

11
6A

-B
E

B
C

12
1B

-B
E

B
C

12
57

-M
E

T
B

C
10

8B
-A

F
B

C
50

3B
-B

E
B

C
10

6B
-B

E
B

C
10

6A
-A

F
B

C
10

8A
-B

E
B

C
12

4B
-A

F
B

C
12

4A
-B

E
B

C
31

-0
B

C
11

8B
-B

E
B

C
11

8A
-A

F
B

C
20

1B
-B

E
B

C
24

B
C

12
5B

-A
F

B
C

12
5A

-B
E

B
C

4-
LN

4
B

C
38

B
C

70
4B

-A
F

B
C

70
2B

-B
E

B
C

70
2A

-A
F

B
C

60
8B

-B
E

B
C

60
8A

-A
F

B
C

40
B

C
21

0B
-A

F
B

C
61

0A
-B

E
B

C
80

7A
-B

E
B

C
71

0B
-A

F
B

C
71

0A
-B

E
B

C
-H

B
C

3
B

C
-H

B
C

2
B

C
71

1B
-B

E
B

C
71

1A
-A

F
B

C
11

2B
-B

E
B

C
11

2A
-A

F
B

C
21

3B
-B

E
B

C
11

4A
-B

E
B

C
11

0B
-B

E
B

C
11

0A
-A

F
B

C
11

7A
-B

E
B

C
80

8A
-B

E
B

C
80

8A
-A

F
B

C
11

1A
-B

E
B

C
30

3B
-B

E
B

C
30

3A
-A

F
B

C
16

B
C

10
7B

-B
E

B
C

10
7A

-A
F

B
C

11
5A

-A
F

B
C

20
6B

-A
F

B
C

20
6A

-B
E

B
C

11
1B

-B
E

B
C

30
9A

-B
E

B
C

70
9B

-B
E

B
C

12
3B

-B
E

B
C

12
3A

-A
F

B
C

2
B

C
14

B
C

79
0

B
C

11
9B

-A
F

B
C

11
9A

-B
E

B
C

-H
B

C
5

B
C

60
6B

-A
F

B
C

20
5B

-A
F

B
C

23
B

C
20

8B
-A

F
B

C
20

8A
-B

E
B

C
40

4B
-B

E
B

C
40

4A
-A

F
B

C
80

5B
-A

F
B

C
80

5A
-B

E
B

C
21

4B
-B

E
B

C
21

4A
-A

F
B

C
11

5B
-B

E
B

C
30

5B
-A

F
B

C
30

5A
-B

E
B

C
12

0B
-A

F
B

C
12

0A
-B

E
B

C
71

3A
-B

E
B

C
60

5B
-B

E
B

C
12

1A
-A

F
B

C
-A

B
C

35
-0

B
C

17

elongin C W81684
eukaryotic translation initiation factor 2 R93621
prothymosin, alpha gene sequence 28 AA442991
triosephosphate isomerase 1 AA663983
nuclear transport factor 2 N75595
chromosome 10 open reading frame 7 AA448289
small nuclear ribonucleoprotein polypeptide C AA253448
HSPC163 protein AA053139
HSPC163 protein H98963
CNAP1 AA668256
high mobility group AT-hook 1 AA448261
phosphofructokinase, platelet AA608558
BTG family, member 3 N52496
gamma-glutamyl hydrolase AA455800
neuregulin 1 R72075
MCM4 AA485983
barren homolog Drosophila N54344
AA026682
v-myb2 AA456878
polymyositis/scleroderma autoantigen 1 AA458994
forkhead box M1 AA129552
CDC28 protein kinase regulatory subunit 1B AA459292
T54121
E2F transcription factor 1 H61303
cyclin-dependent kinase inhibitor 3 AA284072
ubiquitin-conjugating enzyme E2C AA430504
mitogen-activated protein kinase 13 AA157499
trophinin associated protein tastin H94949
karyopherin alpha 2 RAG cohort 1 AA676460
ubiquitin carrier protein AA464019
pituitary tumor-transforming 1 AA430032
CDC28 protein kinase regulatory subunit 2 AA292964
CDC28 protein kinase regulatory subunit 2 AA010065
CDC20 cell division cycle 20 homolog AA598776
chromosome 10 open reading frame 3 AA131908
cell division cycle 2, G1 to S and G2 to M AA598974
cyclin A2 AA608568
kinesin family member 23 AA452513
centromere protein F, 350/400ka mitosin AA701455
polo-like kinase Drosophila AA629262
thyroid hormone receptor interactor 13 AA630784
MAD2 mitotic arrest deficient-like 1 yeast AA481076
serine/threonine kinase 6 R11407
topoisomerase DNA II alpha 170kDa AA504348
replication factor C activator 1 4, 37kDa H54751
hematological and neurological expressed 1 AA459865
small nuclear ribonucleoprotein D1 polypeptide H16255
tubulin, alpha 1 testis specific AA180742
AA010188
PRO2000 protein H58234
kinesin family member C1 N69491

A

B

C

D

1:1 >1.5>1.5>3

relative to control expression

>3



BMC Cancer 2006, 6:276 http://www.biomedcentral.com/1471-2407/6/276
p53 status varied significantly by subtype, the list of p53-
associated genes defined by SAM includes genes that were
associated with subtype. Some of these genes may have no
causal association with p53 defects, and thus, refinement
of this list using our in vitro data was performed.

Combined in vitro and in vivo analysis to identify p53-
regulated genes
The in vitro experiments that we conducted contained iso-
genic pairs of cell lines that were representative of both
luminal and basal-like tumors. The in vivo experiments
represented tumors derived from 69 different individuals,
also representing both luminal and basal-like tumors. By
comparing the p53-associated gene lists from the tumors
to the cell lines, we refined our gene list and obtained a list
of genes that were common to both data sets, representing
a stereotypic p53 signature that held across diverse genetic
backgrounds. There were 52 genes that were identified in
common between the in vivo (747 genes) and in vitro (696
genes) lists. This 52-gene list retained GATA binding pro-
tein 3 and many of the proliferation cluster genes in Fig-
ure 4C (ATPase Family AAA domain containing 2,
gamma-glutamyl hydrolase, MYBL2, CDC28 subunit 1B,

CDC2, cyclin A1). However, this list excluded ER and
many of the luminal tumor-associated genes shown in
Figure 4D. This list still contains a few p53-regulated
genes that are also ER associated (such as GATA3), how-
ever their presence on this list cannot be viewed as an arti-
fact of their association with ER status.

Patterns of expression for these 52 genes are shown across
the primary tumor data in Figure 5. Again, two dendro-
gram branches were evident: one enriched for p53
mutants (Figure 5A) and the other enriched for p53-
wildtypes (Figure 5B). Figure 5 also shows two main clus-
ters of genes, one of which (Figure 5C) was enriched for
genes that are known to be p53-regulated including p21
(Cip1), BTG2, and damage-specific DNA binding protein
2. EASE analysis confirmed that this cluster, which had
lower expression in mutant tumors, contained DNA dam-
age response genes and negative regulators of cell prolifer-
ation. The second gene cluster (Figure 5D) was more
highly expressed in mutant tumors, and EASE analysis
confirmed that this cluster of genes was enriched for mito-
sis and proliferation genes.

Cluster analysis of the tumor samples using 52 genes correlated with p53 status in tumors and cell linesFigure 5
Cluster analysis of the tumor samples using 52 genes correlated with p53 status in tumors and cell lines. The 
fold change relative to the median expression value across all tumors is shown. The red dendrogram branch (A) is enriched for 
p53 mutant tumors (sample names labeled red) while the green dendrogram branch (B) is enriched for p53 wild-type tumors 
(sample names labeled green). The dendrogram showing the gene clusters is shown in C and D.
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Survival analyses using the 52-gene p53 signature
Kaplan-Meier survival analysis yielded highly significant
survival differences between groups from Figure 5A
(mutant-like) and 5B (wildtype-like) using the Sorlie et al.
data. As shown in Figure 6, the 52-gene expression signa-
ture (p = 0.001) significantly predicted overall survival
(OS), while true mutation status on this set of samples
was not significant (p = 0.06). The expression signature (p
= 2.2 × 10-5) and true mutation status (p = 0.001) also sig-
nificantly predicted relapse-free survival (RFS). To further
evaluate the prognostic value of this 52-gene signature, we
performed survival analyses using two independent breast
tumor data sets [published by Chang et al. (2005) and
Miller et al. (2005)]. Kaplan-Meier analysis showed that
this signature significantly predicted OS (Figure 5C, p =
7.2 × 10-10) and RFS (p = 2.6 × 10-7) for the Chang et al.
dataset, and disease-specific survival (p = 0.007, RFS and
OS data unavailable) for the Miller et al. dataset. We also
performed multivariate analysis, using the Chang et al.
dataset. Controlling for standard clinical predictors (ER,
grade, node status, size, age, and treatment), Cox propor-
tional hazards ratios were estimated for both OS (RH,
95% CI: 2.4, 1.3 – 4.4) and RFS (RH, 95% CI: 1.9, 1.2 –
3.0). Thus, independent of standard clinical predictors the
p53 expression classifier significantly predicted both OS
(p = 0.006) and RFS (p = 0.006).

In our training data set (Sorlie et al.), the gene expression
classifier had 82% agreement with sequence-based muta-
tion status. True mutation status data was not available for
the Chang et al. data set, but our classifier had 82% agree-
ment with sequence-based mutation status in the Miller et
al. data set. We were able to examine the location and type
of mutations and compare them to classifier results using
the Miller et al. data. Of the 29 mutants incorrectly classi-
fied as wildtype, 25 (86%) were either missense muta-
tions or in-frame insertions/deletions. This differs
significantly (p = 0.02) from the percentage of mutations
that were missense or in-frame among correctly classified
mutants (58%). Among the missense tumors, mutations
in DNA binding domains of the p53 protein were also sig-
nificantly more frequent (p = 0.01) in tumors classified as
mutant (87%) than wildtype (45%).

Discussion
Identification of a p53-responsive signature in breast can-
cer is confounded by associations with important tumor
characteristics like ER status. The common p53 expression
signature shared by cell lines and tumors in this study
addressed this confounding by conducting cell lines
experiments with ER positive and ER negative cell lines,
and using experimental data to refine the gene lists
derived from observational studies in patients. The result-
ing 52 gene, p53-associated list contained two biologi-
cally relevant gene clusters corresponding to

downregulated and upregulated genes. This finding is
consistent with the previous literature showing that p53
transactivates genes such as p21 and GADD45 and tran-
srepresses genes such as topoisomerase IIA and CDC2.
Inactivation of p53 affects both transactivation and tran-
srepression to alter cell growth. Inactivation of p53 is also
likely to cause downstream, indirect effects. As more
research is conducted to identify pathway signatures
[17,18], evidence is growing that most, if not all, pathway
signatures include both direct and indirect targets. How-
ever, these signatures still appear to show pathway-spe-
cific activity and represent valuable assays for pathway
activity [19]. So, while we cannot conclude that these are
exclusively direct targets of p53, genes in our signature do
represent a common response to p53 loss in the breast.

This common p53-response list is biologically relevant, as
shown by its ability to predict survival in patients across
multiple true test data sets. Some of the genes in the com-
mon expression profile have been previously identified in
other signatures of prognostic relevance (e.g. prolifera-
tion-associated genes) and are likely to be regulated by
multiple oncogenic pathways. Our aim was not to identify
a new prognostic signature that improves on previously
published signatures. Rather, we aimed to demonstrate
that events that are downstream of functional p53 loss are
clearly associated with prognostic outcome, and are there-
fore biologically relevant. The predictive accuracy of p53-
dependent gene expression profiles [14] supports a role
for p53 in breast cancer prognosis. Previous estimates of
the relative hazard (RH) associated with p53 loss range
from 1 (no effect) to 23 [20]. Our data suggests that this
variability may relate to limitations of the methods for
characterizing p53 status. p53 mutation status is most
commonly characterized by direct DNA sequencing or by
immunohistochemistry (IHC). Sequencing analysis can-
not distinguish sequence variants with and without func-
tional consequences. A meta-analysis of p53 mutation
databases has demonstrated methodological biases asso-
ciated with sequence-based mutation status [21]. IHC
analysis treats accumulation of p53 protein as indicative
of mutation; thus, IHC is biased toward identification of
missense mutants and completely misses mutations that
cause loss of p53 protein. With either IHC or sequence
analysis, a narrow emphasis on p53 mutations can miss
functional impairments in the p53 pathway (e.g. MDM2
amplification). These challenges could account for widely
divergent estimates of p53's role in prognosis.

Our data analysis also showed that there was good agree-
ment between mutation status and expression profiles.
Using our 52 gene list, there was >80% agreement
between p53 mutation status and p53 expression class in
both the Sorlie et al. and Miller et al. datasets. This high
level of agreement across data sets attests to the fact that
Page 9 of 13
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Kaplan-Meier survival curves for patients with p53 wildtype (solid line) or mutant (dashed line) tumors using gene expression-based p53 functional category or mutation statusFigure 6
Kaplan-Meier survival curves for patients with p53 wildtype (solid line) or mutant (dashed line) tumors using 
gene expression-based p53 functional category or mutation status. Overall survival analysis comparing the two gene-
expression based dendrogram groups (tumors in Figure 5A vs. tumors in Figure 5B) yielded a highly significant difference in sur-
vival, which compares favorably with mutation status. Both analyses used 66 tumor samples and included 26 events. Survival 
analysis on a separate data set (Chang et al., 2005) including 337 tumors and 79 events (C) also yielded highly significant differ-
ences based on gene expression classification.
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the signature is indicative of p53 across a wide range of
cell backgrounds. If the signature were merely correlated
with proliferation, ER status, or another tumor character-
istic, then poor concordance with p53 mutational status
would be expected in cross validation. The samples where
gene expression and mutation status disagree may repre-
sent true differences in the functional p53 pathway. For
example, the tumor BC606 was p53 wildtype by sequence
but clustered with p53 mutants using the 52 gene classi-
fier. This tumor overexpressed MDM2 mRNA (data not
shown), a key negative regulator of p53. Among the false
negatives (sequence mutant but wildtype expression sig-
nature), our analysis of the Miller et al. data showed that
misclassified mutants had higher proportions of mutation
types that are likely to be less deleterious (missense muta-
tions and in-frame insertion/deletions).

In addition to identifying a stereotyped signature associ-
ated with p53 loss, these results demonstrate that the rel-
ative importance of p53-regulated functions such as cell
cycle control, DNA repair, and apoptosis are subject to sig-
nificant inter-individual variation. Each cell line displayed
a unique p53 response signature. However, similarities
according to cell type were also evident. Both of the
HMEC-derived cell lines showed a greater response to p53
loss in the untreated state, while the MCF-7 and ZR-75-1
lines showed a stronger p53-regulated signature following
DOX treatment. These results extend previous observa-
tions [5] suggesting a difference in p53 signaling pathways
between luminal and basal-like breast cancers. These
inherent differences in p53 signaling could lead to differ-
ent selection pressure for p53 loss in each cell type. Such
differences could also explain the divergent rates of p53
mutation by subtype that have been reported here and in
a population-based study [3].

Our data reconfirmed the complex relation between
chemosensitivity and p53 status [22]. Previous reports
have demonstrated either heightened chemosensitivity of
p53 mutants [23,24] or heightened chemoresistance [25].
This paradox is reflected in our study where the four cell
lines we studied varied widely in their DOX sensitivity fol-
lowing p53-knockdown. Because p53 regulates many dif-
ferent pathways, including DNA repair, apoptosis, and
cell proliferation, and the balance of these various path-
ways determines chemosensitivity, it is not surprising to
find that both individuals and cell lines have responses to
chemotherapy that are difficult to predict. DOX also has
many p53-independent toxicity mechanisms, so a diver-
gence in sensitivity across lines may also reflect differences
in how DOX toxicity is manifest across lines. These analy-
ses have demonstrated that breast cell lines have individ-
ual, distinct responses to p53 loss. The genetic
background of a given cell line, including cell type of ori-
gin, plays a prominent role in mediating p53 signaling.

A strength of our study was the use of cell line experiments
to control a range of variables that influence p53-
response. The in vitro setting allowed for control of expres-
sion of p53 protein, breast cancer subtype, and p53-
inducing events [26-29]. However, the in vitro approach is
limited in that a small number of cell lines can be reason-
ably examined, representing only a handful of tumors. By
combining the in vitro expression data with data from
human tumors assayed before and after DOX treatment,
we examined a much wider range of individual responses
to p53 loss than cell line experiments could reasonably
examine, and performed a controlled experiment that
cannot be accomplished in humans. Previous studies have
characterized p53-responses in breast cancer using gene
expression data from tumors and statistical models to try
to control the effects of breast cancer heterogeneity. For
example, in Miller et al. [14], proliferation and ER status
were treated as statistical confounders of the p53-gene
expression relation (based on p53 status and outcome
both having crude associations with grade and ER status).
Thus, the final p53-mutant like gene expression profile
presented by Miller et al. [14] was derived using a statisti-
cal model that adjusted for these variables. Such adjust-
ment assumes that grade and ER status are causally
upstream of p53 status. If grade and ER status are down-
stream of p53 status, this approach will introduce a bias
toward exclusion of grade and ER-associated genes, even
though those genes are influenced by p53 loss. In short,
the validity of statistical adjustment depends upon having
the correct model for the relation between breast cancer
subtype, ER status, proliferation and p53 biology. In the
presence of heterogeneity, experimental and biologically-
based methods for assessing gene expression in relation to
p53 status are preferable to statistical methods.

Many of the genes associated with p53 loss in this analysis
were of prior interest in breast cancer. For example,
GATA3 is involved in growth control and maintenance of
the differentiated state in breast epithelial cells and has
been hypothesized to play a role in tumorigenesis of ER-
positive breast tumors [30]. p21 (Cip1), CDC2, and
CDC25C are genes involved in p53-mediated regulation
of cell cycle arrest [31]. Pituitary tumor-transforming 1 is
a recently identified oncogene with p53-dependent and
p53-independent functions [32]. Thus, as might be
expected, many of the direct and indirect targets of p53
identified here are known p53- and cancer-associated
genes. Further investigation of the specific p53 targets that
are regulated in common across breast cancers and inves-
tigation of those that are differentially regulated across
breast cancer subtypes will add to our understanding of
the biology of breast cancer and breast cancer subtypes.
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Conclusion
In the presence of breast cancer heterogeneity, controlled
experiments in vitro combined with in vivo analyses,
allowed for refinement of a p53-associated gene set. The
refined 52-gene list excluded genes that were associated
with breast cancer subtype and not downstream of p53.
This work identified a signature for p53 loss that is shared
across breast cancer subtypes and that provided prognos-
tic information and a biologically-relevant gene set.
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