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Abstract

Molecular recognition by enzymes is a complicated process involving thermodynamic ener-

gies governing protein-ligand interactions. In order to aid the estimation of inhibitory activity

of compounds targeting an enzyme, several computational methods can be employed to

dissect this intermolecular contact. Herein, we report a structural dynamics investigation of

an epigenetic enzyme HDAC2 in differentiating its binding to various inhibitors within the

sub-sites of its active site. Molecular dynamics (MD) simulation was employed to elucidate

the intermolecular interactions as well as the dynamics behavior of ligand binding. MD tra-

jectories of five distinct HDAC2-inhibitor complexes reveal that compounds lacking ade-

quate contacts with the opening rim of the active site possess high fluctuation along the cap

portion, thus weakening the overall affinity. Key intermolecular interactions determining the

effective binding of inhibitors include hydrogen bonds with Gly154, Asp181, and Tyr308;

hydrophobic interactions between Phe155/Phe210 and the linker region; and a pi-stacking

with Arg39 at the foot pocket. Decomposition of the binding free energy calculated per-resi-

due by MM/PBSA also indicates that the interactions within the internal foot pocket, espe-

cially with residues Met35, Leu144, Gly305, and Gly306, can contribute significantly to the

ligand binding. Additionally, configurational entropy of the binding was estimated and com-

pared to the scale of the binding free energy in order to assess its contribution to the binding

and to differentiate various ligand partners. It was found that the levels of entropic contribu-

tion are comparable among a set of structurally similar carbamide ligands, while it is greatly

different for the set of unrelated ligands, ranging from 2.75 to 16.38 kcal/mol for the five

inhibitors examined. These findings exemplify the importance of assessing molecular

dynamics as well as estimating the entropic contribution in evaluating the ligand binding

mechanism.
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Introduction

Several physiological functions and gene expressions are epigenetically controlled through the

modification of chromatin structures and the alteration of histone acetylation and deacetyla-

tion levels in the nucleosomes [1–3]. Antagonistic enzymes involved in these processes include

histone acetyltransferases (HATs) and histone deacetylases (HDACs). For histone acetylation,

HATs acetylate the ε-NH2 group of histone lysines, thereby neutralizing the charge on the pro-

tein surface, relaxing the chromatin structure, and thus allowing the access of transcription

factors [4–7]. HDACs, on the other hand, deacetylate the histone lysine residues and reconsti-

tute the positive charge, thus compacting the chromatin structure and preventing the gene

expression from occurring [5, 6]. This important role in gene expression makes HDACs criti-

cal targets for drug development, as their dysfunction and inhibition have been associated

with several diseases, including cancer [7–10], neurological, renal, lung, and cardiovascular

diseases [11–16], as well as inflammatory immune disease [17–19].

HDAC enzymes can be subcategorized into four families based upon their structure and

function, denoted as classes I, II, III, and IV HDACs [20]. HDAC2, a member of the class I

HDAC family, is one of the most studied isoforms and it possesses a high enantioselectivity

towards its substrates [21]. Aside from its structural homology and catalytic activity similar to

other isoforms within the class I HDACs, HDAC2 also shares a highly conserved catalytic

domain that comprises a lipophilic tube, a deep catalytic site where its Zn2+ cofactor is located,

and an internal ‘foot pocket’ [7]. The lipophilic tube connecting the opening rim to the cata-

lytic site is formed by Gly154, Phe155, His183, Phe210 and Leu276 [22, 23]. The catalytic site is

surrounded by Asp181, His183, and Asp269, while the internal ‘foot pocket’ is formed by

Tyr29, Met35, Arg39, Phe114, and Leu144 residues [22–24]. This elongated shape of the sub-

strate binding site also provides high specificity to HDAC2 inhibitors, which usually contain a

cap group, a hydrophobic linker portion, and a zinc-binding group (ZBG) [25–27]. In recent

years, various novel HDAC inhibitors with in vitro and in vivo potencies have been reported

for their potential therapeutic effects against chromatin-related diseases [28, 29].

In order to help accelerate the process of inhibitor development, computational methods

are generally employed in order to dissect the molecular recognition by which the target pro-

tein confers activity, thus providing a powerful tool to virtually search for candidate com-

pounds that potentially bind tightly to the binding site. Simulation of molecular motions and

structural information of the binding at atomic details have also helped elucidate the thermo-

dynamic energy terms involved in the intermolecular recognition [30].

Molecular dynamics (MD) simulation and molecular mechanics (MM) calculations have

been used in the designing of HDAC2 inhibitors, especially focusing on the non-bonding

energy contributed by the binding with the composite active site (CAS) [31]. Dewaker, et al.

demonstrated the use of energy decomposition of residues contacting the ligand cap group,

the ZBG, and the foot-pocket residues in the design of new inhibitor compounds potentially

bind more effectively to the active site. However, a comparison between the calculated binding

energy and the actual experimental data, e.g. IC50 values of the ligands, is still necessary in

order to derive a more reliable binding mechanism. Additionally, although MD simulation

and MM calculations could help estimate the enthalpic contribution of the binding, the role of

the entropic contribution and its approximation have remained elusive in many molecular sys-

tems. One of the prime interests here is the configurational entropy which is caused by the var-

iation of conformational states of the protein. Currently, several methods have been devised in

order to calculate entropy. One example is an empirical method that subcategorizes entropic

contribution into two parts: solvation free entropy and configurational free entropy [32, 33].

The quasi-harmonic approximation (QH) is another method introduced by Karplus and
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Kushick in 1981 [34] that estimates the configurational entropy based upon MD simulation by

building a Gaussian distribution of protein conformations [35].

For most applications of MD simulation in biomolecular systems, entropic contributions to

the binding free energy are generally neglected due to their high computational cost or compli-

cated estimation processes. Nonetheless, insight into this particular energetic contribution

could provide deeper understanding of the molecular system of interest since entropy can

have different levels of impact on molecular recognition. For HDACs, the Christianson group

has reported the role of entropy in driving selectivity for inhibitors targeting a class-IIb

HDAC6 vs. a class-I HDAC8 enzyme [36]. Isothermal titration calorimetry experiments

revealed that the binding entropy of HDAC6-specific inhibitors was more favorable for

HDAC6 than for HDAC8 [36]. This difference in entropic contribution was believed to stem

from differences in configurational entropy and/or desolvation entropy, particularly through

the interactions with the aromatic cleft of the binding site [36].

In this study, we aimed to investigate a range of binding mechanisms and molecular

dynamics properties involved in the ligand binding of HDAC2 in order to appraise the influ-

ential factors contributing to the inhibitory activity of various ligands. MD simulations of com-

plexes formed between HDAC2 and several known inhibitors were performed and analyzed

for the modes of binding in the sub-sites of its active site cleft. Molecular mechanics Poisson-

Boltzmann Surface Area (MM/PBSA) calculations were also employed to estimate the ener-

getic contributions to the inhibitor binding as well as to investigate the level of influential

interaction of each important amino acid residue. Additionally, we quantified the entropic

contribution to the overall binding energy, and made comparisons among the structurally

diverse and similar ligands. The data from this study provide new insight into the significance

of dynamics behavior and an entropic contribution in delineating inhibitor binding mecha-

nisms. This approach could become a powerful tool in selecting and optimizing novel ligand

candidates for HDACs.

Material and methods

Protein-ligand complex preparation

Crystal structures of human HDAC2 in complex with various inhibitors were retrieved from

the Protein Data Bank [37, 38], which include complexes with either N-(2-aminophenyl)ben-

zamide [22] (LLX, PDB ID: 3MAX, 2.05 Å resolution), octanedioic acid hydroxyamide pheny-

lamide [39] (SAHA or vorinostat, PDB ID: 4LXZ, 1.85 Å resolution), 4-(acetylamino)-N-

[2-amino-5-(thiophen-2-yl)phenyl]benzamide [39] (20Y, PDB ID: 4LY1, 1.57 Å resolution),

N-(4-amino-4’-fluoro[1,1’-biphenyl]-3-yl)oxane-4-carboxamide [40] (IWX or BRD4884, PDB

ID: 5IWG, 1.66 Å resolution), or (3-exo)-N-(4-amino-4’-fluoro[1,1’-biphenyl]-3-yl)-8-oxabi-

cyclo[3.2.1]octane-3-carboxamide [40] (6EZ or BRD7232, PDB ID: 5IX0, 1.72 Å resolution).

The five crystal structure complexes were prepared as input coordinate files for the molecular

dynamics simulations using a combination software involving antechamber and LEaP pro-

grams. Atomic partial charges of inhibitors were obtained by fitting the electrostatic potentials

(ESP), derived using Gaussian09 (G09), with HF/6-31G� as the basis set [41]. The protonation

configurations of the titratable histidine residues were predicted by the APBS-PDB2PQR

server [42]. The webserver was employed to predict the proper protonation states for each

titratable residue, which results in relevant output files pqr, stdout.txt, and stderr.txt. Espe-

cially, the protonation states of HIS to be HID or HIE of protein were displayed in the pqr out-

put file, while the calculated pKa values were shown in the log output file. Notably, the mass

and charge of the metal ion (Zn2+) were assigned via a parameter file frcmod.ions234lm_126_-

tip3p (for divalent ions for the TIP3P water model), which yielded the mass and charge of Zn2
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+ of 65.4 and 2.0, respectively. The results are summarized in S1 Table of S1 File. For the fol-

lowing molecular mechanics (MM) minimizations and MD simulations, AMBER14SB force

field [43, 44] and the general AMBER force field [45] (gaff) were employed to establish the

potential of proteins and inhibitors, respectively. Water molecules were randomly replaced by

chloride ions in order to neutralize the charge of the system. Finally, the entire system was sol-

vated in a cubic periodic box of the TIP3P explicit solvent model [46], keeping the distances

between the edges of the water box and the closest atom of the solutes at least 10 Å. To avoid

any edge effects, periodic boundary conditions were applied during the entire MD simulations.

All HDAC2-inhibitor complex systems were converted via a ParmED script to be compatible

with the Gromacs format.

Molecular dynamics simulations

For each molecular system, energy minimization and MD simulations were performed using

Gromacs 6.4.3 package [47]. For the HDAC2-inhibitor complexes, the protein-ligand model-

ing was performed using the LEaP from AmberTools20 [48]. Subsequently, for the force fields

employed, leaprc.protein.ff14SB [38], leaprc.water.tip3p, and leaprc.gaff were sourced for pro-

tein, water, and ligand, respectively, which would load a frcmod.ions234lm_126_tip3p file that

has a parameter set for Zn2+ ion for the TIP3P water model. This command also loaded an

AMBER-format parameter set file and placed it in the variable ‘frcmod.ionsjc_tip3p’ that con-

sists of monovalent ion parameters and a TIP3P water model. The force field parameter for

Zn2+ ion adopted in our simulations were designed by Li and Merz [49] and employed accord-

ing to the Amber 2020 protocol. The AMBER topology files were converted to Gromacs topol-

ogy files via ParmED script. Each system was subjected to an energy minimization without

restriction, which entailed a 5000-step steepest descent minimization. For the equilibration

process, a position restraint was applied to the protein and the bound inhibitor both for NVT

and NPT ensembles. Particle Mesh Ewald [49] algorithm [50, 51] was employed to handle the

long-range electrostatic interactions. The cutoff distance for the van der Waals energy interac-

tions was set at 14 Å and the LINCS algorithm for bond constraints was used [52]. The systems

were gradually heated in the NVT ensemble from 0 to 300 K for over 100 ps. Subsequently, an

isothermal isobaric ensemble (NPT) with periodic boundary conditions was performed for

100 ps. Finally, 100-ns MD simulations were carried out to extend the MD production for

each system in an isothermal isobaric ensemble (NPT) [53] using periodic boundary condi-

tions. The SHAKE method [54] was applied to constrain all covalent bonds involving hydro-

gen atoms. Each simulation was coupled to a 300 K thermal bath at 1.0 bar by applying

Berendsen the thermostat and the Parrinello-Rahman barostat, respectively. The temperature

and pressure coupling parameters were separately treated for more accuracy. During the sam-

pling process, the coordinates were saved every 0.1 ps and the conformations generated from

the simulations were used for further MD trajectory analyses. MD trajectories and structures

of each system were visualized using Visual Molecular Dynamics [55] software [55] and

Accelrys Discovery Studio Visualizer 4.0 (Accelrys Software Inc.). SigmaPlot 12.5 (Systat Soft-

ware, San Jose, CA) was used for generating all plots of the various parameters.

Coordination number of the Zn2+ cofactor ion was calculated according to the concept of

quantifying atomic interactions surrounding the central metal atom [56, 57] using the follow-

ing equation:

n ¼
Z R2

R1

4pr2rgðrÞdr ð1Þ

, where n is the number of specific atoms in a peak of radius distribution function (RDF), r is

PLOS ONE MD simulations and configurational entropy of HDAC2-ligand complexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273265 August 18, 2022 4 / 27

https://doi.org/10.1371/journal.pone.0273265


the distance from the atom to the target metal atom, R1 is the starting position (at 0 nm), R2 is

the position of the first shell (with a cutoff distance of 0.27 nm), ρ is the number density of the

atom in the main phase, and g(r) is the RDFs from the atom to the target atom.

Additionally, coordination of the Zn2+ metal cofactor was visualized from the MD simula-

tions using the Accelrys Discovery Studio Visualizer. Briefly, from the MD trajectories of all

complexes, eleven snapshots representing every 10 ns were extracted from the runs and super-

imposed to visualize the coordination number of the cofactor ion. Atomic distances between

the Zn2+ cofactor of HDAC2 and a nearby heavy atom of amino acid residues or ligands were

also measured.

Principal component analysis

Trajectories of the MD simulations were utilized to identify the concerted motions of HDA-

C2-ligand complexes. For the estimation of configurational entropy change in each protein-

ligand complex, calculations were based upon the MD trajectories of the apo-protein, individ-

ual ligands, as well as the protein-ligand complexes. The last snapshots (80–100 ns) of MD tra-

jectories of apo-proteins, ligands, or protein-ligand complexes were acquired. First, for

constructing the covariance matrix, translational and rotational movements of the HDAC2

protein were removed. To do this, a command g_trjconv, a utility within the Gromacs suite,

was employed. This command contains a command -fit rot+trans as an additional function to

systematically remove rotation and translation motions by aligning the Cα atoms of structures

within a single MD run to those Cα atoms of the initial structure. Of note, for the entropy cal-

culation, the initial structure was the structure at 80 ns (as the range of calculation was 80–100

ns). However, for the density plot visualization, the initial structure was the structure at 10 ns

(as the range for this observation was 10–100 ns).

The covariance matrix was calculated using Cartesian coordinates of the Cα atoms of the

protein. This method was also applied for the inhibitor ligands using all of their atoms. Princi-

pal component analysis (PCA) was employed for estimating the direction of molecular

motions based upon the covariance matrix of the atomic fluctuations. Diagonalization of this

matrix yields a set of eigenvectors and eigenvalues that describe collective modes of fluctua-

tions of the molecules. Eigenvectors represent the direction of the motions, whereas the corre-

sponding eigenvalues represent the amplitudes of those directions along the multidimensional

space [58]. Displacement of atoms along each eigenvector represents concerted motions of the

protein along each direction. Gromacs utilities, including ‘g_covar’ and ‘g_anaeig’, were used

to solve some functionally relevant motions. Particularly, the ‘g_covar’ tool was used to per-

form the diagonalization of the computation elements from the covariance matrix of positional

fluctuations found within the Cα carbon atoms of the protein molecules. The ‘g_anaeig’ tool

was used to analyze the free energy landscape for the projections along the two eigenvectors,

and the entropy term was then estimated by the quasi-harmonic approximation (QH) method.

Differences between the entropies calculated in the bound and unbound forms of the protein

and ligands were used to calculate the configurational entropy change.

Molecular mechanics calculations

For HDAC2-inhibitors complexes, 1,000 snapshots taken from the last 10 ns trajectories were

obtained for calculating the binding free energy using the molecular mechanics Poisson-Boltz-

mann Surface Area method (g_mmpbsa) [59], as well as the APBS software suite [42], which is

implemented in the Gromacs package. The binding free energy was calculated using Eq (2).

DGbinding ¼ DGcomplex � ðDGprotein þ DGligandÞ ð2Þ
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DGbinding ¼ DEMM þ DGsolvation � TDS ð3Þ

DEMM ¼ DEbonded þ DEvdW þ DEelec ð4Þ

DGsolvation ¼ DGpolar þ DGnonpolar ð5Þ

DGnonpolar ¼ g� SASAþ b ð6Þ

, where ΔGbinding is an estimate of the binding free energy between the HDAC protein and the

ligand. Each free energy term in Eq (2) is a sum of the gas phase molecular mechanical energy

(ΔEMM), the solvation free energy (ΔGsolvation) and the entropic term (−TΔS). In Eq (4), ΔEMM

can be divided into contributions from the bonded term (ΔEbonded), which includes bond,

angle, and dihedral terms, and two non-bonded terms, which are the van der Waals energy

(ΔEvdW) and the electrostatic energy (ΔEelec) in the gas phase. The solvation free energy (ΔGsol-

vation) was estimated according to Eq (5) using continuum solvent methods and it can be

divided into two parts: the polar contribution (ΔGpolar) and the nonpolar contribution (ΔGnon-

polar). The electrostatic solvation energy was determined using the finite difference PB model.

The dielectric constants used for the interior [59] and the exterior (water) were 1 and 80,

respectively. Atomic radii and charges were the same as those used in the MD simulations.

The nonpolar contribution (ΔGnonpolar) to the solvation free energy was calculated from the

solvent-accessible surface area [59], which is expressed in Eq (6). The standard numerical val-

ues of γ is 0.00542 kcal/(mol�Å2), and β is 0.92 kcal/mol for the Poisson-Boltzmann method.

The probe radius of the solvent was set to 1.4 Å.

Results and discussions

Molecular dynamics simulations of the HDAC2-inhibitors complexes

In order to gain a better perspective on the ligand binding of HDAC2 as well as the corre-

sponding changes in their dynamics behavior, MD simulations were performed on the crystal

structures of complexes involving HDAC2 and five known inhibitors. These selected ligands,

which include LLX, SAHA, 20Y, IWX, or 6EZ, possess distinct structural scaffolds, and their

reported inhibitory activities (IC50) also range from 1.7 nM to 1,200 nM. Initially, coordinates

from the crystal structures were used as input for our 100-ns MD simulations, after which the

resulting dynamics parameters, as well as the three-dimensional spatial snapshots, were

acquired and analyzed. In this particular study we focused on the structural motions observed

within the active site cleft of HDAC2 and its neighboring areas, that could shed light onto the

mechanisms by which the selected ligands convey various levels of inhibitory activity. Signifi-

cant changes in dynamics and energetic contributions of these residues when interacting with

the ligands could also imply their important roles in conferring selectivity for suitable ligands.

Fig 1 depicts an overview of how the five ligands were nested within the active site pocket.

HDAC2 contains a lipophilic tube that links the opening surface to the catalytic triad (His145,

His146, and Tyr308), and the adjacent Zn2+ cofactor binding region (Asp181, His183, and

Asp269). Deep inside the cleft also lies an internal cavity or a ‘foot pocket’, which is formed by

Tyr29, Met35, Arg39, Phe114, and Leu144, which could convey additional specificity to the

ligand binding. As observed from the overlaid crystal structures, ligands that contain thin and

elongated shapes could thus be threaded into the pocket and can extend their binding interac-

tions, surpassing the cofactor binding area to this deeper site. The foot pocket of the active site
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cleft generally contains multiple water molecules, which are commonly found within crystal

structures of complexes with smaller-sized ligands [22]. Additionally, the opening rim of the

active site cleft could also provide additional interactions to augment the ligand affinity and

specificity. SAHA is a good example of ligands that take advantage of this binding mechanism

since its aniline group partially acts as a ‘knob’ plugging the opening region. From these differ-

ent regions of binding, it is plausible that any ligand that employs all areas of intermolecular

interactions would create a stable complex, exhibiting a more stable dynamics pattern, and

potentially contributing to stronger inhibitory activity.

To delineate the binding mechanism in a more comprehensive manner, MD simulations

were employed to analyze changes in motions observed within the HDAC protein upon ligand

binding. Fig 2 shows the dynamics parameters collected from our 100-ns MD simulations of

the protein-ligand complexes. Simulation equilibria were evaluated by comparing the root-

mean-square deviation (RMSD) of the backbone atoms relative to the initial coordinates

Fig 1. Structural overview of HDAC2 and its active site location. (Left) Electrostatic surface representation of HDAC2 showing the binding location of its

inhibitors. (Right) Overlaid structures of inhibitor ligands when bound to the active site. The inhibitor molecules are illustrated in stick representations

showing stabilized conformations of LLX (red), SAHA [60], 20Y (orange), IWX (blue), and 6EZ (purple) ligands, which are structurally overlaid using heavy

atom coordinates. Zinc ion is shown as a gray ball.

https://doi.org/10.1371/journal.pone.0273265.g001
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Fig 2. (A) Root-mean-square deviations (RMSD) and (B) root-mean-square fluctuations (RMSF) of backbone atoms on HDAC2

when bound or unbound by inhibitors. Unbound HDAC2 (black) is compared with its complex forms with LLX (red), SAHA [60],

20Y (orange), IWX (blue), and 6EZ (purple). Topology diagram of HDAC2 is also illustrated atop of the RMSF chart to indicate

range of secondary structures along the residue sequence.

https://doi.org/10.1371/journal.pone.0273265.g002
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(Fig 2A). Additionally, the MD simulations of the unbound HDAC2 and all complexes were

repeated to observe the ranges of fluctuation comparing between the runs and throughout the

100-ns simulation period in order to justify if the simulation time used was sufficient. It was

found that the RMSD levels fluctuated within a range of 1 Å (S1 Fig in S1 File). An extended

MD run of HDAC2-20Y complex also showed similar range of fluctuation (S2 Fig in S1 File).

Overlay of snapshots of the complex structures obtained at 100 ns and at 200 ns of the MD

simulation shows similar conformations, with an RMSD between the heavy atoms of the two

structures of 0.8187 Å (S3 Fig in S1 File). Thus, we selected 100 ns as the simulation time for

this study. It is apparent that the RMSDs of all the ligand complexes fluctuate in slightly differ-

ent ranges. The highest fluctuations were observed for the complexes of HDAC2-6EZ (purple)

and HDAC2-20Y (orange), especially during the first 60 ns of simulation. On the other hand,

the HDAC2-IWX complex (blue) fluctuates the least during the entire simulation. Neverthe-

less, all molecular systems reached a relatively steady period after 80 ns, indicating that the

100-ns simulation duration is sufficient for a comparative study. However, the information

from the RMSD data might not be adequate to describe localized motions of the protein struc-

tures. Therefore, root-mean-square fluctuations (RMSF) data were also collected and com-

pared among all complexes as well as with the free enzyme.

Residual structural fluctuations of the bound ligands

Fig 2B shows spatial fluctuations of the backbone heavy atoms of all residues along the protein

sequence, comparing the free protein with the protein-ligand complexes. As anticipated, the

regions with most fluctuation are located among the loops connecting secondary structure

motifs within the protein, particularly at the α13/α14 loop that exhibits the highest fluctuation.

However, when focusing only on the active-site residues (His145, His146, Asp181, His183,

Asp269, and Tyr308) or the internal cavity residues (Tyr29, Met35, Arg39, Phe114, Leu144,

Gly305, and Gly306), fluctuations among these regions do not significantly differ, and no obvi-

ous trend could thus be derived from the different ligand complexes.

Since the observed spatial changes within the protein structure did not yield any complete

differentiation among the ligands, we then asked whether there could be any differences

observable within the ligand molecules, possibly over various stages of time. To this end, snap-

shots of all ligand structures taken from the different time points of simulation, including 0,

20, 40, 60, 80, and 100 ns, were overlaid and compared for their molecular motions. As illus-

trated in Fig 3, all five ligands have different levels of movement relative to the active-site loca-

tion. When mapped onto the estimated position of ligand binding, it is apparent that LLX,

20Y, IWX, and 6EZ insert themselves deep inside the pocket and reach the internal cavity.

SAHA, on the other hand, extends to only the cofactor binding region but uses its aniline moi-

ety as a cap group in order to interact with the opening surface. This pattern of cap binding at

the opening region can also be seen, though to a lesser extent, in the binding of 20Y, 6EZ, and

LLX, but not in the case of IWX. However, it is apparent that the cap portion of the ligands

may not have sufficient intermolecular interaction to restrict the overhang structures as they

fluctuate highly in the region protruding from the active-site canal.

Intermolecular interactions restraining the ligand binding

Key binding interactions between the active site residues and the ligands are also summarized

in Fig 4. Although many hydrophobic interactions collectively contribute to binding affinity, a

few hydrogen bonds are prominently found within the active site, particularly near the cata-

lytic triad and the cofactor binding center. These include the backbone carbonyl of Gly154 and

the side-chain carboxyl of Asp181, which is also a part of the Zn2+-binding residues (Asp181,
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His183, and Asp269), and the side-chain hydroxyl of Tyr308. Additionally, histidine residues

located near the catalytic triad, His145 and His146, can form hydrogen bonds with the ligands,

particularly at the hydroxyl or the amine moieties of the ligand structures. These interactions

near the Zn2+ cofactor could further anchor the inhibitors to remain within the active site (S4

Fig in S1 File). For the ligands with high inhibitory potencies (LLX, 20Y, and IWX, exhibiting

IC50 values of 27, 56.3, and 62 nM, respectively) (S3 and S5 Tables in S1 File), two or three of

these hydrogen bonds are observable within the complexes. On the other hand, ligands with

lower levels of potency (SAHA and 6EZ, exhibiting IC50 values of 251 and 168 nM, respec-

tively) form only one hydrogen bond. The correlation between the number of hydrogen bonds

formed and the inhibitor potency level coincides with several studies [61–64] suggesting the

role of hydrogen bonds as one of the key indicators for a successful inhibitor. Of note, the

reported IC50 values for HDAC2 inhibitors can be varied based upon different studies. There-

fore, an extensive literature review of IC50 values was conducted and summarized in S5

Table of S1 File. Values selected for use in our calculation are the results from the most similar

methods of determination. Additionally, we did not convert the IC50 values into Ki due to the

lack of the information of substrate concentration and Km, which were not explicitly stated in

most studies reported.

Notably, a moderate level of hydrophobic interactions at the opening surface of the active

site cleft are also identified, namely with aromatic rings of Phe155 and Phe210. These two resi-

dues interact with the linker portion of the ligand structures and can provide particular pi-pi

stabilization for the ligands that contain aromatic moieties in this region such as LLX and 20Y,

both of which exhibit higher levels of potency. At the deeper side at the foot pocket, Arg39 pro-

vides an additional cation-pi intermolecular interaction further anchoring the ligands reaching

this site. All the ligands, except SAHA, contain an aromatic moiety at this particular location.

The role of Arg39 contributing to the ligand affinity observed here agrees well with previous

studies [29, 65, 66]. For the Zn2+metal chelation, key residues Asp181, His183, and Asp269

predominantly act as chelators for the Zn2+ cofactor. In the absence of ligand, a water molecule

fulfills the coordination of Zn2+. For ligand binding, however, this water molecule is replaced

by a carbonyl oxygen atom from the ligand inhibitor participating in the chelation (S4 Fig in

S1 File) and the coordination number of Zn2+ remained the same. Atomic distance ranges of

metal chelation are summarized in S5 Fig and S2 Table of S1 File. For the calculation of coordi-

nation number of the Zn2+ cofactor ion, the number of specific atoms in a peak of radius dis-

tribution function (RDF) was computed according to Eq (1) via a command g_rdf, a utility

function implemented in the GROMACS package. The initial calculation resulted in distribu-

tions of atomic partners around the ion, as illustrated in S6 Fig of S1 File. It was observed that

the distance trends of the first peaks, which indicate the first hydration shell, were similar

among the complexes and centered around 0.2 nm. To distinguish between the first and the

second hydration shells, a cutoff distance was placed at 0.27 nm. Since the coordination of the

ion is mainly contributed by the first shell, coordination numbers can be calculated from the

integral function. The integration yielded an overall running coordination number for the Zn2

+ ion as a result of interactions with its atomic partners lining the catalytic site of HDAC2 (S7

Fig in S1 File). From the entire 100-ns MD simulations, the calculated coordination numbers

of the Zn2+ were 6.00, 5.86, 5.29, 5.13, and 5.01 for the complexes between HDAC2 and LLX,

Fig 3. Structural overlays of ligand conformations observed at different time points during the 100-ns MD runs.

Relative positioning of the bound ligand structures along the active site canal is also indicated with dashed lines.

Ligand positions are aligned using the coordinates of the Zn2+ cofactors, shown as gray spheres, as a reference point.

ZBG denotes the ligand’s zinc-binding group.

https://doi.org/10.1371/journal.pone.0273265.g003
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SAHA, 20Y, IWX, and 6EZ, respectively. Of note, these coordination numbers were deter-

mined using the same set of the R1 and R2 values for Eq (1).

Notably, the atomic partners coordinating the Zn2+ ion are different between the event of

substrate catalysis of HDAC2 and the event of inhibitor binding. HDACs employ a promoted-

water mechanism for catalysis, in which the active site metal ion (Zn2+) and a histidine general

base activate a metal-bound water molecule for the nucleophilic attack of the native substrate

[67]. For the inhibitor binding, however, HDAC inhibitors often exploit the chelation interac-

tions with the catalytic Zn2+ ion, thus replacing this water molecule from the active site. For

example, hydroxamate and benzamide derivatives ionize to form exceedingly stable 5- and

6-membered rings that efficiently chelate the Zn2+ [68].

Taken together, it can be summarized that the key intermolecular interactions may include:

1) hydrogen bonds with His145, His146, Gly154, Asp181, and Tyr308; 2) hydrophobic interac-

tions between Phe155/Phe210 and the linker region; 3) a pi-stacking with the side chain of

Arg39 at the foot pocket and 4) metal chelation contributions from the ligand and the Zn2

+-binding residues (Asp181, His183, and Asp269). Different combinations of these key inter-

actions could provide a spectrum of ligand affinities and thus inhibitory activities. They could

also be perceived as determining factors to predict the inhibitory potency of a ligand. For

example, 6EZ that interacts with both the foot pocket and the linker regions, but forms only

one hydrogen bond with the active site, exhibits only a moderate level of potency (IC50 = 168

nM) when compared to other ligands that have robust interactions with the foot pocket. On

the other hand, LLX that forms three hydrogen bonds with D181 and G154 and interacts with

both the foot pocket and the linker regions, exhibits a higher level of inhibitory potency (IC50

= 27 nM).

Binding energetic contribution by the active-site residues

In order to pinpoint energetic contributions from each amino acid residue to the ligand bind-

ing in a more quantitative manner, we employed molecular mechanics Poisson-Boltzmann

Surface Area (MM/PBSA) calculations to estimate the binding free energy per-residue. Fig 5A

shows a decomposition plot of binding free energy contributed from individual binding resi-

dues of HDAC2 when bound by the five inhibitor ligands. It is apparent that most of the bind-

ing residues show favorable contribution energies (negative values) to the ligand binding as

anticipated. However, a few charge-bearing residues within the active site give rise to unfavor-

able (positive values) contribution energies. These include the Zn2+-binding residues Asp181,

His183, and Asp269, as well as the neighboring residues Asp160 and Arg39. Due to the fact

that, these residues normally form a charge relay network with the cofactor in the absence of

any ligand, it is possible that binding to a ligand that disrupts or interferes with this charge net-

work could result in unfavorable energetic contributions. Interestingly, when looking at the

trends of contribution energies from the two main Zn2+-binding residues Asp181 and Asp269

(Fig 5B), the least unfavorable values are found for the binding of LLX and IWX ligands, both

of which are highly potent inhibitors with IC50 values of 27 nM and 62 nM, respectively. Of

note, decomposition of non-bonding energies, namely electrostatic energy and van der Waals

Fig 4. Binding interactions between inhibitor ligands and the interacting amino acid residues lining the active site

of HDAC2. (Left) three-dimensional representations of the ligands when nested inside the active site canal. Inhibitor

ligands LLX (red), SAHA [60], 20Y (orange), IWX (blue), and 6EZ (purple) are shown in stick representations. Zn2+

cofactors are shown as gray spheres. Positions of the ligands along the active site are compared for their structural

regions of internal-cavity binding, Zn2+ binding, linkers, and cap groups. (Right) two-dimensional diagrams

summarizing the protein-ligand binding interactions. Hydrogen bonding networks and cofactor coordination are

highlighted in black dashed lines, whereas hydrophobic interactions are indicated with purple dashed lines.

https://doi.org/10.1371/journal.pone.0273265.g004
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interaction, have been shown to correlate with the total binding energy of HDAC2 ligand

binding [31], although without a consideration of entropic term. Our observation of the corre-

lation between the energy decomposition and the actual potency thus confirms the role of per-

residue energy as determinant factors for predicting the actual inhibitory activity as previously

described [69–71].

Additionally, Fig 5B summarizes the contribution energies of amino acid residues found at

sub-sites along the active-site cleft ranging from the internal foot pocket, catalytic residues

(His145, His146, and Tyr308) and the Zn2+-binding group, the linker-binding, and the cap-

binding regions. It is apparent that, in addition to the catalytic residues, several residues within

the foot pocket, as well as the linker- and cap-binding sites, also contribute significantly to the

ligand binding. Trends of contribution energies for each ligand correlate well with the binding

mechanism outlined in the previous section describing intermolecular interactions. For exam-

ple, binding of SAHA that primarily uses its aniline moiety to plug into the opening surface,

but lacks the foot-pocket binding group, gives rise to the contribution energies that predomi-

nate in the linker- and cap-binding residues but less so in the internal cavity. On the other

hand, binding of a potent ligand 20Y (IC50 = 56.3 nM) shows strong contribution energies in

all regions. This coincides with the intermolecular interactions identified by a spatial visualiza-

tion from the MD analysis (vide supra). Taken together, the results from this experiment sug-

gest that the contribution energy per residue may be used in combination with the

intermolecular analysis in order to explain a ligand binding mechanism and ultimately forecast

its inhibitory potency. However, evaluation of additional thermodynamic parameters may also

be required in order to construct a quantitative model to predict the inhibitory activity of a

ligand family.

Estimation of the entropic term

In order to extract additional information from the simulations, namely the entropic term of

protein-ligand complex formation, the directions of molecular motions and fluctuations were

first analyzed. The “essential dynamics method” was employed to examine conformational

changes observed within the HDAC2 protein when bound by ligands of interest. PCA was per-

formed via Gromacs inbuilt tool ‘g_covar’ in order to determine the concerted molecular

motions, that resulted in a covariance matrix of backbone Cα atoms within the HDAC2-ligand

complexes. Fig 6 shows two-dimensional projections of trajectory motions of the HDAC2 pro-

teins when bound by the five ligands. Positive and negative limits of each dimension represent,

respectively, correlated and anti-correlated motions of the backbone atoms in the same and

opposite directions relative to the average positions. Subsequently, the covariance matrix was

diagonalized to obtain the eigenvectors and eigenvalues, where the eigenvector with the high-

est eigenvalue is assigned as the first principal component, and the one with the second highest

eigenvalue is considered the second principal component. The amplitude of eigenvectors

along the spatial dimensions thus represents the conformational changes observed within the

protein and the ligands.

The results show that conformational changes observed within the HDAC2 protein when

bound by different ligands are similar in their amplitudes along the multidimensional spaces.

However, HDAC2 when bound by 6EZ has slightly larger changes when compared to the

Fig 5. Decomposition of binding free energy per-residue of HDAC2 when bound by various inhibitors. (A) Contribution energies of all

residues on HDAC2 are indicated when bound by either LLX (red), SAHA [60], 20Y (orange), IWX (blue), or 6EZ (purple) ligands. Topology

diagram of HDAC2 is also depicted atop of the chart indicating the range of secondary structures along the residue sequence. Consensus of key

residues that have significant contribution to the binding energy are identified by residue number and are specifically illustrated in more detail in

a bar graph (B). Regions of the ligands those the key residues interact with are also indicated.

https://doi.org/10.1371/journal.pone.0273265.g005
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others. On the other hand, when considering only ligand motions, SAHA was found to move

around the most as the amplitudes on both directions are apparently larger than those found

in other inhibitors. These observations could suggest that both HDAC2-6EZ and HDAC2-

SAHA complexes may be less energetically stable. Interestingly, inhibitory activities of these

two ligands are also the poorest among the five ligands, with IC50 values of 168 nM for 6EZ,

and 251 nM for SAHA.

To further analyze the conformational results in a more quantitative manner, an entropic

term was also derived and compared. To this end, an inbuilt Gromacs function ‘g_anaeig’ was

employed to analyze the energy landscape for the two eigenvector projections and a quasi-har-

monic approximation method was applied to derive the entropic term for each protein-ligand

binding. The -TΔS term was determined and displayed in the right column of Fig 6. It is appar-

ent that the entropic term of all ligand complexes examined are rather different, with the high-

est being that of the HDAC2-SAHA complex. The vast difference in this term among the

complexes piqued our curiosity: if the value of entropic term was added to the ΔGbinding equa-

tion (Eq 2), would improve the prediction of ligand binding and inhibitory activity?

Comparison of the entropic contributions estimated among the different

and similar ligand derivatives

To help assess the level of energetic contribution from the entropic term to the overall binding

free energy, additional energetic parameters were then collected. Aside from the binding free

energy per-residue, the aforementioned MM/PBSA calculation also yielded other additional

energetic terms that can be beneficial to our in-depth analysis. Table 1 summarizes the ener-

getic parameters calculated from the MM/PBSA and the quasi-harmonic approximation of all

HDAC2-inhbitor complexes. These parameters include ΔEvdW, ΔEelec, ΔGpolar, ΔGnon-polar,

ΔGPBSA, and -TΔS, all of which amounted to the ΔGtotal (ΔGbinding). The related equations of

each term are described in the Material and Methods section above. Fig 7A also compares the

ΔGtotal and the TΔS terms for all HDAC2-ligand complexes in a bar graph. When considering

the sizes of both energetic terms determined in each complex, it is apparent that the entropic

term contributes greatly to the total free energy of binding and including this term into the cal-

culation could also change the trend of the ΔGtotal.

Fig 6. Two-dimensional projections of trajectory motions of the HDAC2 protein (left panels) and the bound ligands (right panels) in

multidimensional space over the first two (PC1 and PC2) principal eigenvectors. Calculated -TΔS values in kcal/mol of HDAC2-ligand

complexes are shown on the right.

https://doi.org/10.1371/journal.pone.0273265.g006

Table 1. Binding free energy of complexes between HDAC2 and known HDAC2 inhibitors based on 100-ns MD simulations and MM-PBSA calculations. The

entropic contributions were calculated using the quasi-harmonic (QH) approximation. All values are presented in kcal/mol.

Energy HDAC2-inhibitor complexes

LLX SAHA 20Y IWX 6EZ

ΔEvdW -33.30 -26.27 -38.34 -39.34 -42.82

ΔEelec -112.99 -103.15 -117.77 -101.20 -101.46

ΔGpolar 80.06 58.62 84.07 80.91 79.20

ΔGnon-polar -3.86 -3.37 -4.37 -3.98 -4.36

ΔGPBSA -70.08 -74.16 -76.42 -63.62 -69.44

-TΔS 5.84 16.32 10.96 2.75 6.74

ΔGtotal -64.24 -57.84 -65.46 -60.87 -62.70

https://doi.org/10.1371/journal.pone.0273265.t001
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From the observation that the entropic term is rather important in a comparison of diverse

ligands, we also wondered whether this pattern could also be seen among a set of structurally

similar ligands. To this end, we performed the same set of experiments on seven additional

carbamide derivative inhibitors of HDAC2 (chemical structures and energetic parameters

shown in S4 Table of S1 File). These include molecular docking, MD simulations, MM/PBSA

calculations, as well as the approximations of the entropic term. Table 2 summarizes the ener-

getic parameters contributing to the total binding free energy of the complexes of carbamide

scaffolds. Interestingly, the entropic terms found within the protein complexes for this struc-

turally similar inhibitor molecules do not appear to be significantly different (Fig 7B). When

accounting for both ΔGtotal and TΔS terms of this set of ligands, it is obvious that addition of

the entropic term does not change the trend of overall free energy of binding. Therefore, it is

possible that, for deriving a trend among structurally similar ligands, including the entropic

term may not be very critical. This possibility is being investigated in our laboratory with a

larger sample size, and will be reported elsewhere.

Fig 7. Binding free energies of either known inhibitors (A) or carbamide derivative inhibitors (B) comparing the scale of the entropic term contribution.

https://doi.org/10.1371/journal.pone.0273265.g007

Table 2. Binding free energy of complexes between HDAC2 and seven carbamate derivative inhibitors based on 100-ns MD simulations and MM-PBSA calcula-

tions. The entropic contributions were calculated using the quasi-harmonic (QH) approximation. All values are presented in kcal/mol.

Energy Carbamate derivative compounds

1 2 3 4 5 6 7

ΔEvdW -35.80 -34.62 -34.78 -33.53 -23.39 -21.77 -25.85

ΔEelec -95.61 -88.20 -86.39 -90.26 -98.22 -97.43 -95.54

ΔGpolar 73.21 66.92 66.96 70.51 90.89 104.25 108.19

ΔGnon-polar -3.8 -3.45 -3.54 -3.72 -3.03 -2.62 -2.98

ΔGPBSA -62.00 -59.34 -57.75 -53.46 -33.75 -17.57 -16.17

-TΔS 5.88 6.57 7.08 7.60 5.64 6.07 5.75

ΔGtotal -56.12 -52.77 -50.67 -45.86 -28.11 -11.49 -10.42

https://doi.org/10.1371/journal.pone.0273265.t002
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Potential impact of the entropic term towards the inhibitory activity

prediction

To further analyze the effect of entropic contribution, we then hypothesized that including the

entropic term to calculate the ΔGbinding may alter a correlation plot between the binding free

energy and the actual activity of the ligands. To test this hypothesis, we created a plot between

the actual pIC50 values of HDAC2 inhibitors and their calculated binding free energy, with

(ΔGtotal) or without the entropic term (ΔGPBSA) (Fig 8). Fig 8A and 8B compare the trends,

respectively, before and after adding the values of -TΔS term. Although the data were analyzed

with only these five different ligands, a trend can be observed when the entropic term was

applied to the estimation of binding free energy. However, when considering the other set of

structurally similar carbamide ligands before (Fig 8C) and after (Fig 8D) applying the entropic

term, the correlation trends were not significantly different. It is also known in the literature

that entropic contribution could be neglected when comparing a set of chemically related

ligands, but not so for the unrelated ligands [72]. This agrees well with our previous observa-

tion that, for comparing derivative ligands, estimations of entropic terms may not be critical.

Additionally, it is noteworthy that the trend between experimental and computational data

found within the similar ligands are already highly correlated. This could also imply a possibil-

ity that a prediction model created by energetic parameter calculation is more effective among

Fig 8. Correlation plots between experimental pIC50 values of HDAC2 inhibitors and the binding free energies of their complexes with HDAC2

calculated from MM-PBSA and additional entropic term estimations. Actual pIC50 potencies of known HDAC2 inhibitor ligands (A and B) or a set of

carbamide derivatives (C and D) are plotted against the binding free energies of their complexes calculated from MM/PBSA alone (ΔGPBSA) (A and C) or

calculated as total binding free energies by the addition of entropic term estimations (ΔGtotal) (B and D).

https://doi.org/10.1371/journal.pone.0273265.g008
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similar ligands, but not so for diverse ligands. A larger pool of sample is needed, preferably

from the same set of experiment, to fully examine this effect in the future.

Noticeably, the order of binding energies calculated from the ligand set changed slightly

upon introducing the entropic term. Without the entropy, ΔGPBSA energies ranks from low to

high as 20Y< SHH< LLX< 6EZ< IWX, and with the entropy, the order of ΔGtotal energies

became 20Y< LLX< 6EZ< IWX< SHH. The change in the ranking of SHH was largely due

to the consideration of entropic term, thus signifying the importance of the entropy calculation.

However, as the experimental IC50 values range from low to high as LLX< 20Y< IWX< 6EZ

< SHH, the calculated ranking does not correlate well with the experimental data. Additionally,

the correlation remains relatively poor even when the entropic term was considered. This could

suggest missing factors contributing to the accurate binding energy calculation.

Intriguingly, the correlation from the closely related ligands is relatively high even before the

entropy was taken into account (Fig 8C and 8D), while the one from unrelated ligands remains

poor. A potential explanation may include the fact that, for the unrelated ligands, MD simulations

were performed based upon different crystal structures of HDAC2-ligand complexes, as we

wanted to employ the most reliable structures available. This essentially differs from the MD sim-

ulations of related ligands as a single protein structure was used as a reference structure, and the

ligands were docked into the same active site to generate initial structures for the MD simulations.

Discrepancies in the protein structural coordinates among the crystal structure could contribute

to the difference in the resulted MD trajectories and thus the calculation of entropic terms. This

hypothesis will be tested further in our laboratory with a larger pool of related and unrelated

ligands. A potential caveat may include the selection of a single crystal structure to be used as ini-

tial coordinates that could represent the entire population of legitimate crystal structures.

Another avenue for investigating the factors contributing to the total binding energy calcu-

lation is to consider solvation entropy in addition to the configurational entropy. Several stud-

ies have highlighted the role of solvation entropy in protein-ligand complex formation, namely

the water molecules around the binding pockets [73–76]. However, a recent study also suggests

that configurational entropy dominates over solvation entropy in the overall entropic contri-

bution to ligand binding [77].

As aforementioned, the IC50 values reported from different laboratories, though some were

from the same isozyme and using similar methods of determination, could varied greatly and

thus resulted in uncorrelated trends (S8 Fig in S1 File). Future experiments could also benefit

from using Ki values instead of IC50 as it is an absolute value that would not vary between

experiments. However, for our study, Ki values could not be properly calculated using a theo-

retical conversion equation as the information of substrate concentration and the Km values

were not explicitly reported in most experiments we reviewed. Therefore, we used a set of

reported IC50 values those determined by the most similar method of determination.

Undoubtedly, for the purpose of prediction model construction in the future, a large number

of Ki values, or IC50 values determined from the same experiment, should give rise to a more

accurate prediction of inhibitory potency.

Employing molecular modeling to predict binding free energies currently helps accelerate

drug development by lowering the time and effort required to generate a new set of candidate

compounds. To date, there are several successful computational tools to calculate binding free

energies in protein-ligand interactions. One of the state-of-the-art strategies is alchemical free

energy methods [78–85] that showed a lot of promise in terms of facilitating the computation

of binding free energies. Accurate relative free energies could identify whether ligand alter-

ations have boosted affinity and selectivity, especially in lead optimization efforts. Generally,

due to their higher rigor in evaluating interactions with explicit solvent and configurational

entropy, alchemical approaches are recommended in later stages of drug optimization when

PLOS ONE MD simulations and configurational entropy of HDAC2-ligand complexes

PLOS ONE | https://doi.org/10.1371/journal.pone.0273265 August 18, 2022 20 / 27

https://doi.org/10.1371/journal.pone.0273265


fewer simulations of a restricted range of candidates are required [86]. On the other hand,

MM/PBSA is recommended for the initial phases of virtual screening when dealing with a

large number of chemical candidates. Although MM/PBSA provides less accurate results when

compared with the alchemical methods, the technique requires less computational demand

while providing higher accuracy than molecular docking, thus rendering it suitable for a pre-

liminary estimation of binding free energies [87].

The modular nature of MM/PBSA and MM/GBSA, as well as the fact that these techniques

do not require a training set in the calculations, make them appealing practices that have been

successfully implemented to replicate and interpret experimental findings, as well as to

improve virtual screening and docking results [87]. Nonetheless, the techniques contain sev-

eral problematic approximations for estimating binding free energies, such as the lack of con-

figurational entropy and data on the amount and free energy of water molecules in the

binding site. Therefore, in our study, we further employed an estimation of the entropic term

via the essential dynamics method in order to examine the concerted molecular motions,

which can be translated to configuration entropy. Although this is not merely a method to

obtain accurate values of both ΔGtotal and TΔS terms, this simple technique could provide a

trend of entropic contribution to the binding of a protein with structurally diverse or similar

ligands, which could be beneficial to the initial screening of drug candidates. This is particu-

larly critical for targeting proteins with multiple isoforms like the HDAC enzyme family

because entropic contribution has been shown to be a selectivity driver for inhibitor binding

[36]. It was found that the binding of several cycloalkenyl hydroxamates selective to HDAC6

exhibited significant entropic gain, whereas the binding of these compounds to HDAC8

showed substantial entropic loss, suggesting that entropy is a crucial contributor to the binding

selectivity [36]. Hence, it is essential to consider the entropic term in the approximation of

binding free energies even in an early stage of the compound screening.

Conclusion

This study aimed to investigate the binding mechanism that the HDAC2 enzyme employs in

differentiating various types of inhibitor ligands. MD simulation data provided a spatial visual-

ization of how different ligands can interact with the sub-sites of the active site cleft. The level

of energetic contribution per amino acid residues were estimated using MM/PBSA calcula-

tions, which resulted in a quantitative view of the binding behavior. It was found that the inter-

actions within the internal foot pocket can contribute significantly to the ligand binding.

Residues lining the opening rim of the active site also provide additional interactions to restrict

the movement of ligand molecules. Protruding regions of the ligands lacking these contacts

could cause a high fluctuation along the cap portion and thus weaken the overall ligand affin-

ity. To further quantify this dynamics aspect, the entropic term was estimated and compared

with the scale of ΔGbinding. It was found that the values of -TΔS term correlate with the level of

disorder found within the ligand complexes. Furthermore, accounting for the entropic term in

the estimation of ΔGtotal could provide additional insight into its contribution to the binding

energy. In particular, we found that the -TΔS term may be necessary for a comparison of bind-

ing energy among a set of diverse ligands as the levels of their entropic contribution could

greatly differ. However, for structurally similar ligands, this term appears within a comparable

range and would unlikely change the ranking trend. This study has demonstrated the signifi-

cance of molecular dynamics and an estimation of entropic contribution in describing inhibi-

tor binding mechanism. Further development of the model to predict ligand affinities and

inhibitory activity could thus be pursued in order to help guiding an optimization of ligand

candidates to be developed in future drug discovery campaigns.
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Supporting information

S1 File. S1 Fig. Root-mean-square deviations (RMSD) of backbone atoms on HDAC2 when

bound or unbound with inhibitors, comparing between two independent MD repeats.

Unbound HDAC2 (A) or HDAC2 in complex with LLX (B), SAHA (C), 20Y (D), IWX (E),

and 6EZ (F) are separately illustrated. S2 Fig. Root-mean-square deviations (RMSD) of back-

bone atoms on HDAC2 when bound with 20Y ligand, comparing the ranges of fluctuation

during the original 100-ns MD run, as used in this study, and the extended 200-ns MD run. S3

Fig. Overlay of snapshot structures of HDAC2 when bound with 20Y ligand obtained at 100 ns

and at 200 ns of the MD simulation. RMSD between the heavy atoms of the two structure is

0.8187 Å. S4 Fig. Binding interactions between inhibitor ligands and the active site of HDAC2,

highlighting metal chelation with the Zn2+ cofactors. Inhibitor ligands LLX (A), SAHA (B),

20Y (C), IWX (D), and 6EZ (E) are shown in stick representations. Zn2+ cofactors are shown

as purple spheres. S5 Fig. The distribution of distances between the Zn2+ cofactor of HDAC2

and a nearby heavy atom of amino acid residues or ligands. S6 Fig. Radius distribution func-

tion (RDF), detected during the 100-ns simulations, for the Zn2+ ion as a result of interactions

with its atomic partners within the catalytic site of HDAC2, which include Asp181-OD1

(blue), Asp181-OD2 [88], His183-ND1 (orange), Asp269-OD1 [60], Asp269-OD2 (brown),

and the bound inhibitors (blue and red). S7 Fig. Running coordination number, detected dur-

ing the 100-ns simulations, for the Zn2+ ion as a result of interactions with its atomic partners

within the catalytic site of HDAC2, which include Asp181-OD1 (blue), Asp181-OD2 [88],

His183-ND1 (orange), Asp269-OD1 [60], Asp269-OD2 (brown), and the bound inhibitors

(blue and red). S8 Fig. Correlation plots between experimental pIC50 values of HDAC2 inhibi-

tors, collected from previous studies indicated in S5 Table, and the binding free energies of their

complexes with HDAC2 calculated from MM-PBSA and additional entropic term estimations.

Actual pIC50 potencies of known HDAC2 inhibitor ligands are plotted against the binding free

energies of their complexes calculated from MM/PBSA alone (ΔGPBSA)(A) or calculated as total

binding free energies by the addition of entropic term estimations (ΔGtotal)(B). Grey dots repre-

sent the pIC50 values reported in the various studies, while black dots represent the average

value for each inhibitor. S1 Table Protonation states of histidine residue of HDAC2 in pH 7.0 as

calculated from the PropKa server (https://www.ddl.unimi.it/vegaol/propka.htm). A histidine

can adopt three protonation states: HIP (+1 charged, both δ- and ε-nitrogens protonated), HID

(neutral, δ-nitrogen protonated), and HIE (neutral, ε-nitrogen protonated). S2 Table Atomic

distances between the Zn2+ cofactor of HDAC2 and a nearby heavy atom of amino acid residues

or ligands. Values are shown as average distance ± standard deviation. S3 Table Comparison

between biochemical activity (IC50) and in silico information of known HDAC2 inhibitors. S4

Table Comparison between biochemical activity (IC50)a and in silico information of HDAC2

carbamide derivative inhibitors. S5 Table Comparison of reported IC50 values of HDAC inhibi-

tors and the experimental methods used in the determination of inhibitory potency. Values

labeled with an asterisk are the values selected for the use in our calculation, which are results

from the most similar methods of determination.
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