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Abstract: Mitochondrial biogenesis is a complex process. It requires the contribution of both
the nuclear and the mitochondrial genomes and therefore cross talk between the nucleus and
mitochondria. Cellular energy demand can vary by great length and it is now well known that
one way to adjust adenosine triphosphate (ATP) synthesis to energy demand is through modulation
of mitochondrial content in eukaryotes. The knowledge of actors and signals regulating mitochondrial
biogenesis is thus of high importance. Here, we review the regulation of mitochondrial biogenesis
both in yeast and in mammalian cells through mitochondrial reactive oxygen species.
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1. Introduction

1.1. Mitochondrial Oxidative Phosphorylation

In eukaryotic cells, energy conversion processes are mandatory for both cell biomass generation
and cellular maintenance. Adenosine triphosphate (ATP) is the cellular energy currency, and
mitochondria play a crucial role in ATP synthesis thanks to the oxidative phosphorylation system
(OXPHOS) located in the mitochondrial inner membrane. The oxidative part of this energy conversion
process takes place in the four enzymatic complexes of the mitochondrial respiratory chain and
leads to substrates—nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide
(FADH2)—oxidation. Activity of the respiratory chain is based on the transfer of two electrons from
above-mentioned substrates to their final acceptor, the dioxygen. These redox reactions are coupled to
proton extrusion at the level of complexes I, III, and IV in mammalian cells (Figure 1A); thus, thanks to
the inner mitochondrial membrane being quite impermeable, a proton gradient is generated across
this membrane. The yeast Saccharomyces cerevisiae mitochondria do not harbor a proton-pumping
complex I but rather a number of dehydrogenases (Figure 1B) in the inner mitochondrial membrane [1].
The phosphorylating part of this process involves the ATPsynthase, the adenine nucleotide translocator
(ANT), and the phosphate carrier. The proton gradient generated by the mitochondrial respiratory
chain activity is used by the ATPsynthase for ATP synthesis from ADP and Pi and by a number of
mitochondrial carriers.
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Figure 1. The oxidative phosphorylation system (OXPHOS) system in mammalian cells (A) and in 

yeast (B) (modified from Rigoulet et al. 2010 [2]). Numbers represent respiratory chain complexes. I: 

proton-pumping nicotinamide adenine dinucleotide (NADH) dehydrogenase, II: Succinate 

dehydrogenase; III: Cytochrome c reductase; IV: Cytochrome c oxidase. Adenine nucleotide 

translocator (ANT) and Phosphate inorganic carrier are mitochondrial carriers. Gut2p is the glycerol-

3-phosphate dehydrogenase in yeast. Dld1p is the lactate dehydrogenase in yeast. 

1.2. Mitochondrial ROS Production 

The main superoxide (O2.−) producer in the cell is the mitochondrial respiratory chain. This 

production leads to hydrogen peroxide (H2O2) and hydroxyl radical (.HO) formation. Superoxide 

formation occurs when a unique electron is accepted by the ground state oxygen. Consequently, any 

electron transfer that involves a unique electron is susceptible of superoxide generation. This is 

particularly true in membranes, where oxygen solubility is high. The respiratory chain complexes I 

and III have long been studied for their contribution to mitochondrial reactive oxygen species (ROS) 

production [3–8]. In complex III, superoxide formation is due to the Q cycle [9], and ROS production 

can take place both in the mitochondrial matrix and in the intermembrane space. Besides the 

contribution of these complexes to mitochondrial ROS production, mitochondrial dehydrogenases 

are involved in ROS formation as well. For example, α-ketoglutarate dehydrogenase catalyses the 

oxidation of α-ketoglutarate in succinyl-coA with the generation of NADH. Single electron transfer 

occurs within this enzyme, and its activity can thus be associated with ROS production in the Krebs 

Figure 1. The oxidative phosphorylation system (OXPHOS) system in mammalian cells (A) and
in yeast (B) (modified from Rigoulet et al. 2010 [2]). Numbers represent respiratory chain
complexes. I: proton-pumping nicotinamide adenine dinucleotide (NADH) dehydrogenase, II:
Succinate dehydrogenase; III: Cytochrome c reductase; IV: Cytochrome c oxidase. Adenine nucleotide
translocator (ANT) and Phosphate inorganic carrier are mitochondrial carriers. Gut2p is the
glycerol-3-phosphate dehydrogenase in yeast. Dld1p is the lactate dehydrogenase in yeast.

1.2. Mitochondrial ROS Production

The main superoxide (O2·−) producer in the cell is the mitochondrial respiratory chain.
This production leads to hydrogen peroxide (H2O2) and hydroxyl radical (·HO) formation. Superoxide
formation occurs when a unique electron is accepted by the ground state oxygen. Consequently,
any electron transfer that involves a unique electron is susceptible of superoxide generation. This is
particularly true in membranes, where oxygen solubility is high. The respiratory chain complexes I
and III have long been studied for their contribution to mitochondrial reactive oxygen species (ROS)
production [3–8]. In complex III, superoxide formation is due to the Q cycle [9], and ROS production can
take place both in the mitochondrial matrix and in the intermembrane space. Besides the contribution
of these complexes to mitochondrial ROS production, mitochondrial dehydrogenases are involved
in ROS formation as well. For example, α-ketoglutarate dehydrogenase catalyses the oxidation of
α-ketoglutarate in succinyl-coA with the generation of NADH. Single electron transfer occurs within
this enzyme, and its activity can thus be associated with ROS production in the Krebs cycle [10]. For the
same reason, the mitochondrial glycerol-3-phosphate dehydrogenase (G3PDH) produces ROS [11,12].
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As stated above, the yeast Saccharomyces cerevisiae harbors two NADH-dehydrogenases, which are sites
of ROS production as well.

In this review, we will address the relationships between mitochondrial ROS production and
the regulation of mitochondrial biogenesis (i.e., the biogenesis of the whole compartment and more
particularly of the OXPHOS system) both in yeast and in mammalian cells.

2. Mitochondrial Compartment Biogenesis

Mitochondrial biogenesis is a complex process. Indeed, mitochondria are organelles that harbor
their own genome (mtDNA). In mammalian cells, mtDNA is a circular molecule, which encodes
for 13 mRNAs, 22 tRNAs, and 2 rRNAs. All 13 mRNAs of mtDNA encode 11 subunits of the ETC
complexes I (7), III (1) and IV (3), and 2 subunits of ATP synthase (complex V). However, mitochondria
are genetically semiautonomous and strongly rely on the nuclear genome for their biological function.
Thus, mitochondrial biogenesis necessitates the coordinated expression of both mitochondrial and
nuclear genomes.

In the yeast Saccharomyces cerevisiae (Figure 2), mitochondrial biogenesis is regulated at the
transcriptional level, by nuclear proteins. The main actor of this process is a transcription complex
composed of four proteins that belong to the same family: heme activator proteins (Hap) 2, 3, 4,
and 5 [13–17]. Hap2p, Hap3p, and Hap5p form a complex that is bound to nuclear DNA, and
Hap4p is the co-activator of this complex, a functional homolog of peroxisome proliferator-activated
receptor γ (PPARγ) coactivator-1 (PGC-1α, see below). Hence, activity of the overall complex is mostly
dependent on Hap4p. The HAP complex regulates the expression of genes encoding several proteins
such as proteins of the Krebs cycle or proteins of the OXPHOS system [18]. Mitochondrial genes
expression depends on the RNA polymerase Rpo41 and its accessory transcription factor Mtf1 [19].
mRNA translation is regulated by specific translation factors such as Pet111 for COX2, Pet309 or
Mss51 for COX1, and Atp22 for ATP6/8 [20]. These factors regulate protein synthesis, assembly, and
function [21,22]. The homologue of the well-known mammalian transcription factor, the mitochondrial
transcription factor A (TFAM), does not interact with the transcriptional machinery but seems to be
implicated in mtDNA replication [23].
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Figure 2. The heme activator proteins (HAP) complex. The master regulator of mitochondrial
biogenesis in the yeast Saccharomyces cerevisiae. The four subunits constituting the complex are
represented here, HAP2 (H2), HAP3 (H3), and HAP5 (H5) are the DNA-binding subunits and HAP4 is
the activating subunit. Modified from [24].
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In mammalian cells (Figure 3), the main actors of mitochondrial biogenesis are the Nuclear
Respiratory Factors (NRF), in particular NRF1 [25,26]. The NRF transcription factors are known
to be involved in the transcription of several mitochondrial genes in particular genes encoding
subunits of the mitochondrial respiratory chain complexes. Moreover, mitochondrial biogenesis is
also regulated by the transcriptional family of peroxisome proliferator-activated receptor γ (PPARγ)
coactivator-1 (PGC-1). This family is composed of PGC-1α, PGC-1-related coactivators (PRC), and
PGC-1β. These proteins can interact with other transcription factors involved in the expression of
mitochondrial proteins. Moreover, PGC-1 transcription factors activators interact with transcription
factors such as NRF1 and 2 and regulate the expression of these proteins. These nuclear transcription
factors regulate the transcription of the majority of mitochondrial proteins, including proteins that are
required for the transcription of the mitochondrial genome such as TFAM (or mtTFA). The mtDNA
encodes 13 components of OXPHOS system complexes: ND1, ND2, ND3, ND4, ND4L, ND5, ND6
(subunits of complex I); CYTb (subunit of complex III); COX1, COX2, COX3 (subunits of complex IV);
ATP6, ATP8 (subunits of ATPsynthase) [27]; as well as 22 tRNA and 2rRNA [28].
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Figure 3. Transcriptional regulation of mitochondrial biogenesis. The expression of mitochondrial
genes encoded by the nuclear genome is regulated by transcriptional factors such as NRF1 and its
coactivator PGC1α. TFAM is implicated in the expression of the genes encoded by the mtDNA.

3. ROS-Induced Downregulation of Mitochondrial Biogenesis in Yeast

3.1. cAMP Signaling and Mitochondrial Biogenesis

In the yeast Saccharomyces cerevisiae, the cyclic adenosine monophosphate (cAMP) signaling
pathway can be activated by two distinct mechanisms. The first one is an extracellular glucose
dependent system based on G-protein-coupled glucose receptor (Gpr1) activity. This G-protein-coupled
receptor (GPCR) system activates adenylate cyclase, i.e., the enzyme that catalyses cAMP synthesis,
which leads to an increase in intracellular cAMP [29]. The second one depends on the activity of the
small RAS proteins regardless of the carbon source present in the medium [29]. These proteins belong
to the small guanosine triphosphatases (GTPases) family, therefore their activity depends on GTP/GDP
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exchange. Yeast exhibits two Ras isoforms: Ras1 and Ras2, highly homologous to mammalian RAS.
The adenylate cyclase is activated by RAS-GTP. Yeast protein kinase A (PKA) is a hetero-tetramer
composed of two regulatory subunits and two catalytic subunits. The catalytic subunits are encoded
by three genes: Tpk1, Tpk2, and Tpk3 [30], and the regulatory subunit is encoded by the Bcy1 (bypass
of cAMP requirement) gene [31] (Figure 4).
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Figure 4. The Ras-cAMP/PKA Pathway in yeast and mammalian cells. In yeast, adenylate cyclase
can be activated by two systems: Grp1 or the RAS pathway. In mammalian cells, adenylate cyclase
activity is controlled by GPCR. cAMP synthesized by the adenylate cyclase binds to PKA regulatory
subunits leading to the activation of the PKA catalytic subunit thanks to its dissociation from its
regulatory subunits.

Previous work from our laboratory has shown a tight link between the activity of this signaling
pathway and the cellular content in mitochondria [24,32–35]. It should be stressed here that throughout
this review, mitochondrial content will refer to the cellular amount of mitochondrial cytochromes, a
robust parameter that allows cellular quantitation of mitochondrial respiratory chain amount [36].
Whenever such a quantitation is not doable, more often than not by restriction on available “material”,
cellular mitochondrial content is assessed by citrate synthase activity measurement, a well-recognized
method for such a quantitation [37–39]. The relationship between the activity of this signaling pathway
and the cellular content in mitochondria is such that mutants exhibiting an increase in this pathways’
activity have an increased amount of mitochondria, whereas mutants exhibiting a decrease in this
pathways’ activity have a decreased amount of mitochondria. Indeed, Dejean et al. showed that
a disruption of the small GTPases or their inhibitors, IRA1 and IRA2 (Inhibitory Regulator of the
RAS-cAMP pathway 1 and 2), triggers a reduction in cellular mitochondrial content, whereas an
over-activation of these GTPases increases this content [40]. Moreover, in an OL556 strain, which
is mutated in the cdc25 gene and the rca1 allele of the PDE2 gene [41,42], allowing modulation of
cAMP intracellular concentration by addition in the extracellular medium, the increase in intracellular
cAMP concentration increases both the growth and respiration rate, in non-fermentable medium [43].
In such a medium, growth is directly dependent on ATP production by the OXPHOS [36]. Thus, an
increase in both growth and respiratory rate points to an increase in mitochondrial OXPHOS activity.
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Moreover, we have shown that an increase in intracellular cAMP concentration induces an increase
in both mitochondrial enzyme activities and mitochondrial cytochromes. This raised the question
of the origin of the increase (or decrease) in cellular mitochondrial content upon cAMP signaling.
Stationary state mitochondrial content is the result of two processes: its biogenesis and its degradation.
Since no mitophagy (degradation) could be assessed, we assessed the regulation of mitochondrial
biogenesis (activity of the HAP complex) when cAMP intracellular concentration was modulated
(OL556 strain, see above). Exogenous cAMP addition to this strain increases HAP complex activity
and thus mitochondrial biogenesis. cAMP triggers an enhancement of Hap4p stability, the regulator of
the HAP complex [32]. Consequently, an increase in the cAMP pathway activity positively regulates
mitochondrial biogenesis.

3.2. cAMP Signaling and Oxidative Stress

As stipulated above, previous work from our laboratory has shown a tight link between the
activity of the cAMP signaling pathway and the cellular content in mitochondria. This was done
through modulation of the activity of this pathway upstream of the PKA. Yeast has three A kinase
catalytic subunits, which have greater than 75% identity and are encoded by the TPK (TPK1, TPK2,
and TPK3) genes [30]. Although they are redundant for viability and functions such as glycogen
storage regulation, the three A kinases are not redundant for other functions [44–47]. In the absence
of the yeast protein kinase Tpk3p, there is a significant decrease in cellular mitochondrial content,
when cells are grown in non-fermentable medium whereas deletion of either Tpk1 or Tpk2 has no
consequences on mitochondrial activity/amount [47]. This points to a specific function of Tpk3p
in the regulation of cellular mitochondrial content. Further studies allowed us to show that the
downregulation of mitochondrial content in the absence of Tpk3p is due to an oxidative stress that
originates at the mitochondrial level [47]. Moreover, reconstitution of cAMP-induced signaling on
isolated mitochondria allowed us to show that Tpk3p-induced phosphorylation was involved in
the regulation of mitochondrial ROS production i.e., in the absence of Tpk3p, mitochondrial ROS
were increased [33]. Thus, an alteration of the cAMP pathway through Tpk3 deletion induces a
mitochondrial oxidative stress. It should be stressed that in this model, the priming event is the
increase in mitochondrial ROS due to a defect in Tpk3p-induced phosphorylation at the level of
mitochondrial respiratory chain. This increase then leads to a decrease in mitochondrial biogenesis.

3.3. Oxidative Stress and Mitochondrial Biogenesis Regulation

In order to decipher the molecular mechanisms involved in the decrease of cellular mitochondria
content upon oxidative stress in the ∆tpk3 strain, regulation of mitochondrial biogenesis in this strain
was studied. Enhancement of ROS production in this strain triggers a decrease in the HAP complex
activity that correlates with a decrease in the cellular amount of the Hap4p protein, the co-activator
of the HAP complex (Figure 5). Evidence that the decrease in mitochondrial biogenesis originates in
Hap4p decrease came from a full reversion of this decrease upon overexpression of this protein [33].
Further, it was shown that this protein’s stability is highly decreased upon any kind of oxidative
stress applied to cells [34]. Evidence that ∆tpk3-induced mitochondrial ROS were responsible for
the decrease came from the restoration of a wild type phenotype (activity of the complex, stability
of Hap4p, mitochondrial content) in the presence of an antioxidant (N-acetyl cystein or NAC) or
overexpression of superoxide dismutase (SOD1) [33]. Thus, in the yeast Saccharomyces cerevisiae,
mitochondrial ROS are able to down-regulate mitochondrial biogenesis.
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Figure 5. Regulation of mitochondrial biogenesis by mitochondrial reactive oxygen species
(ROS) in Saccharomyces cerevisiae. All dehydrogenases are able to generate ROS. Mitochondrial
ROS production induces an enhancement of HAP4 degradation and consequently a decrease in
mitochondrial biogenesis.

3.4. The Role of Glutathione in ROS-Induced Down-Regulation of Mitochondrial Biogenesis

One of the best indicators of the cellular redox state is the glutathione [48]. Indeed, the glutathione
has a high concentration in the cytoplasm (of the order of 1mM) and the GSSG/GSH couple has a very
high redox potential. Therefore, glutathione is considered one of the main cellular redox buffer [48].
The glutathione redox state is mostly maintained within the cell thanks to the glutathione reductase
(GLR1), which reduces back the oxidized form (GSSG). Consequently, the glutathione redox state is
decreased, i.e., more oxidized, in the null mutant for this enzyme. Even though this mutant is sensitive
to oxidative stress [49], it is perfectly viable and the glutathione redox state can be increased in the
mutant by addition of exogenous reduced glutathione to the culture medium [50]. We were able to
show that the amount of transcription co-activator Hap4p (and consequently mitochondrial biogenesis)
was decreased in the ∆glr1 strain and its amount increased back when reduced glutathione was added
to the culture medium, whereas ascorbate and lipoate had no effect on Hap4p amount either in the
wild type cells or in the ∆glr1 cells [32]. This supports a specific role of the glutathione redox state in
the control of the biogenesis of the mitochondrial compartment through Hap4p.

4. ROS and Its Regulation of Mitochondrial Biogenesis in Mammalian Cells

4.1. Cellular cAMP Signaling and Mitochondrial Biogenesis

In mammalian cells, the consequences of the cAMP/PKA pathway signaling at the mitochondrial
level has been very much studied and led to the discovery of a PKA and sAC (soluble adenylate cyclase)
in the mitochondrial matrix [51,52] (Figure 6). It has been shown that induction of this mitochondrial
matrix signaling pathway led to an increase of OXPHOS activity [53,54]. Intramitochondrial cAMP
has been shown to regulate cytochrome c oxidase (complex IV). Indeed, cAMP/PKA-induced
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phosphorylation of complex IV subunit IV induces an increase in complex IV activity [55,56]. Moreover,
PKA-dependent phosphorylation of several subunits of complex I appears to be involved in the
assembly and enzymatic activity of this complex [57].
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Figure 6. PKA actives CREB. PKA is able to phosphorylate cAMP response element binding protein
(CREB) and consequently activates this transcription co-factor. CREB is present in the nucleus and in
the mitochondria.

Beyond sAC and mitochondrial cAMP production, the cAMP/PKA pathway signaling regulates
mitochondrial responses to cellular stimulations through cytosolic PKA. Upon signaling, PKA is mostly
localized within membranes: both plasma and organelles membranes; of interest here is its localization
in the mitochondrial membrane. This membranal localization requires an interaction with A-kinase
anchor proteins (AKAP) [58,59]. In mitochondria, AKAPs are present in the outer membrane [60].
These anchor proteins tether PKA near cAMP production sites and PKA targets. This enhances cAMP
transduction signal in apoptotic inhibition [61] and mitochondrial dynamics mechanisms [62] for
example. Moreover, it has been shown that the cAMP/PKA pathway via the AKAPs can regulate
the OXPHOS activity. PKA can phosphorylate a subunit of complex I, NDUFS4, which triggers its
mitochondrial localization and a functional assembly of complex I [62,63]. On the other hand, in the
presence of a high ATP/ADP ratio, PKA phosphorylates COX and promotes its inhibition by ATP.
This allows a decrease in membrane potential and consequently in ROS production [64].

At the nuclear level, PKA phosphorylates and consequently activates cAMP response element
binding protein (CREB), a transcriptional co-factor whose binding sequence is present on several
promotors (Figure 6). Once activated, it initiates transcriptional cascades involved in multiple
mechanisms such as mitochondrial biogenesis [65,66]. Indeed, the PGC-1α promotor as well as some
mitochondrial genes, such as ND2, ND4, and ND5, encoding complex I subunits, have a CREB binding
sequence [65]. Hence, activation of the cAMP pathway not only leads to mitochondrial biogenesis
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but also increases mitochondrial activities that are regulated by PKA induced phosphorylation [67].
An alteration of this pathway induces alterations of both mitochondrial respiration and ATP synthesis
and enhancement of ROS production, that can be restored with restoration of the pathway [68].

It should be stressed here that CREB is a nuclear transcription factor that is able to localize
in the mitochondria [69]. Indeed, despite the absence of mitochondrial localization signals on
CREB, this transcription factor gets imported into mitochondria through the TOM complex in a
membrane potential-dependent manner with the aid of mitochondrial matrix-residing heat shock
protein, mtHSP70 [65]. Moreover, chromatin immunoprecipitation (ChIP) assay have evidenced
CREB-binding sites on the D-loop of mitochondrial genome [70]. In order to decipher an eventual role
of mitochondrial imported CREB, this transcription factor was depleted within the mitochondria. Such
a depletion induced a decrease in the expression of several mitochondria-encoded RNAs of complex I
with a concomitant reduction in complex I activity [65].

Mitochondrial dynamics (fission/fusion) and mtDNA maintenance are also essential for
mitochondrial biogenesis. It has been shown that the cAMP/PKA pathway regulates mitochondrial
dynamics thanks to PKA-induced DRP1 phosphorylation [71]. However, to date, very few data
are available on the role of cAMP/PKA signaling on the molecular players of mitochondrial fusion.
PKA can phosphorylate Mfn2, leading to cell growth arrest in rat vascular smooth muscle cells [72].
The relationships between cAMP signaling and mitochondrial dynamics have been reviewed in [73].

4.2. cAMP Signaling and Oxidative Stress

As stipulated above, the activities of at least two complexes of the respiratory chain have been
shown to be regulated by cAMP-induced phosphorylation [57]. Such a regulation has consequences
on mitochondrial ROS production that are highly dependent on both mitochondrial respiratory chain
activity and the proton motive force across the mitochondrial membrane. Papa and his team showed
that mitochondrial ROS production is enhanced under serum-limitation conditions in human and
murine cells. This can be limited by addition of dibutyryl cAMP to the cells, a permeant derivative
of cAMP that is able to activate PKA [74]. Moreover, in these conditions, cAMP has been shown to
stimulate complex I activity and consequently mitochondrial respiratory chain activity [75]. Further
studies have shown that in cancer cells (K-ras-transformed mouse fibroblast cells as well as in breast
cancer cells), the cAMP/PKA pathway is altered [68]. This alteration is associated to an increase in
ROS production and an alteration of mitochondrial activity. Moreover, the team of Papa showed that,
in these different cell lines, Forskolin addition, an activator of AC, induces an increase in cellular cAMP
level. This triggers an activation of the cAMP/PKA signaling pathway and consequently an increase
in CREB phosphorylation and an enhancement in mitochondrial activity associated to a decrease
in mitochondrial ROS [68]. Hence, cAMP pathway activation led to a decrease in mitochondrial
ROS production.

These results clearly show that, similarly to what has been shown in the yeast Saccharomyces
cerevisiae, a defect in the cAMP/PKA-induced phosphorylation of complexes of the respiratory chain
leads to an increase in the oxidative stress at the mitochondrial level.

However, conflicting results regarding mitochondrial ROS production and the cAMP/PKA
signaling pathway have been published. Indeed, a study by Westerblad and his team has shown that
application of forskolin increases mitochondrial ROS production in isolated cardiomyocytes. Moreover,
this increase in mitochondrial ROS can be prevented by PKA inhibitor pre-treatment [76], clearly
showing it requires PKA activity. This result was further confirmed by Zhang et al. who showed
that after an isoproterenol stimulation (that induces cAMP/PKA signaling) or forskolin treatment,
mitochondrial ROS production is enhanced. In their study, the cAMP/PKA pathway triggered a rapid
rise in mitochondrial ROS in neonatal murine cardiomycytes [77].

In conclusion, unlike what was shown in the yeast Saccharomyces cerevisiae, in mammalian cells,
the role of cAMP/PKA pathway is much more ambiguous regarding the regulation of mitochondrial
ROS production.
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4.3. Oxidative Stress and Mitochondrial Biogenesis Regulation

In mammalian cells, it has been shown that mitochondrial biogenesis is tightly linked to ROS
production [78–80]. In their studies, Lee et al. bring to light that an indoxyl sulfate-induced oxidative
stress triggers a decrease in cellular mitochondrial content through a decrease in the biogenesis of this
compartment in human umbilical vein endothelial cells. This ROS-induced trigger can be counteracted
by antioxidant treatment such as NAC [81]. Similarly, resveratrol, a natural antioxidant, protects cells
against HFD-induced apoptosis by reducing oxidative stress and stimulates mitochondrial biogenesis
in T-reg [82].

Nevertheless, in neural cells, Spiegelman and colleagues show that upon oxidative stress
expression of PGC-1α is enhanced as well as the expression of components of the mitochondrial ROS
defense system such as SOD1, SOD2, catalase or glutathione peroxidase (GPX) [80]. Similar results
have been shown in melanoma tumors. Indeed, in PGC-1α negative cells, ROS production is enhanced
and induces apoptosis [83]. Moreover, Sharma et al. show, after a pre-treatment of rat brain cells with
quercetin, a reduction of ROS production associated to an enhancement of PGC-1α expression and
consequently an increase mitochondrial biogenesis [84].

Moreover, conflicting results were published: treatment of human preadipocytes with forskolin,
which leads to an overactivation of the cAMP/PKA pathway -and a decrease in mitochondrial ROS
production-, increased mitochondrial DNA copy number [85]. Further, in HeLa cells, respiratory
uncoupling, which is well known to decrease mitochondrial reactive oxygen species production,
activates NRF-1 (nuclear respiratory factor-1) [86].

Hence, in mammalian cells, ROS induced regulation of mitochondrial biogenesis can lead to
either an increase or a decrease of this process in response to an increase of mitochondrial ROS.

One possible explanation for such conflicting results in the literature might be that the effect of
oxidative stress on mitochondrial biogenesis depends on the severity and duration of the stress.
Acute/mild stress can stimulate PGC-1α expression and mitochondrial biogenesis due to the
involvement of mitochondrial quality control [80]. However, severe and permanent stress can have
the opposite effects. For example, heart failure induced by aortic banding [87] and myocardial
infarction [88] decreased mitochondrial transcription factors, including PGC-1α as well as NRF1,
NRF2, MTF. This decrease in mitochondrial transcription factors is associated with a decrease in
mitochondrial content/activities.

5. Conclusions

It is well known mitochondria are the first site of ROS production. The generation of these species
is controlled by multiple parameters. In mammalian cells as well as in yeast, ROS-induced signaling is
able to regulate mitochondrial biogenesis. In yeast, the role of ROS is primarily a down-regulation
by its action on Hap4p, the main regulator of mitochondrial biogenesis (homologous of PGC-1α).
In mammalian, the situation is less straightforward: ROS formation can trigger PGC-1α induction
and induces an enhancement of mitochondrial biogenesis, however PGC-1α is also induced under
uncoupling conditions where mitochondrial ROS production rate are the lowest. Mitochondrial ROS
are clearly involved in the cross talk between this compartment and the nucleus. However, conflicting
results regarding their role in the regulation of mitochondrial biogenesis in mammalian cells show that
further studies will be necessary to clarify the situation.
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