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INTRODUCTION 
 

Osteoarthritis (OA) is a multifactorial disease that 

manifests with synovial inflammation, cartilage 

destruction, joint swelling and pain [1, 2]. Among the 

various risk factors, obesity has been linked to the risk 

of developing OA [3, 4], with the Framingham Heart 

Study demonstrating a 1.5- to 2-fold higher risk of 
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ABSTRACT 
 

Much data suggests intersecting activities between the adipokine apelin (APLN) and the pathologic processes of 
obesity and osteoarthritis (OA), with APLN modulating cartilage, synovium, bone, and various immune cell 
activities. The synovium plays an important role in the pathogenesis of OA. We investigated the crosstalk 
between APLN, a major OA-related adipokine, and interleukin 1 beta (IL-1β), a major proinflammatory 
cytokine, in human OA synovial fibroblasts (OASFs). We showed that APLN stimulated the synthesis of IL-1β in a 
concentration- and time-dependent manner, which was mitigated by blockade of the PI3K and ERK pathway. 
We also showed that APLN inhibited the expression of miRNA-144-3p, which blocks IL-1β transcription; this 
suppression activity was reversed via blockade of the PI3K and ERK pathway. Moreover, pathologic changes in 
OA cartilage were rescued when APLN was silenced by shAPLN transfection both in vitro and in vivo. Our 
evidence is the first to show that APLN stimulates the expression of IL-1β by activating the PI3K and ERK 
pathway and suppressing downstream expression of miRNA-144-3p in OASFs. We also demonstrate that 
knockdown of APLN expression by shAPLN transfection ameliorated changes in OA cartilage severity. These 
results shed light on OA pathogenesis and suggest a novel treatment pathway. 
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developing knee OA among people who are obese 

compared with slimmer individuals [5]. In a US 

population-based study investigating community-

dwelling older individuals (aged ≥70 years), a 5 kg/m2 

increase in BMI increased the likelihood of 

developing knee OA by 32% [6]. However, despite 

the observations suggesting a correlation between 

obesity and OA, the detailed mechanisms underlying 

this correlation are far from clear. What is known  

is that adipokines, multifunctional molecules secreted 

by adipose tissue, act as an intersecting link  

between obesity and OA by modulating the activities 

of cartilage, synovium, bone, and various immune 

cells [3, 7]. 

 

The synovium plays an important role in the 

pathogenesis of OA. The synthesis of chondrolytic 

enzymes and proinflammatory mediators by the 

inflamed synovium leads to cartilage destruction, 

which enhances synovial inflammation, forming a 

vicious cycle [8, 9]. OA synovial cells sustain arthritic 

pathology by excreting chondrolytic enzymes and 

inflammatory mediators [8, 10, 11]. Synovium-

targeted therapy could theoretically slow OA 

progression and lessen the severity of OA symptoms 

[12, 13]. 

 

Apelin (APLN) is one adipokine that is established as a 

pivotal player in OA pathogenesis [14]. Early in vitro 

investigations suggested that APLN stimulates 

chondrocyte proliferation and significantly increases 

transcript levels of the catabolic factors matrix 

metalloproteinase (MMP)-1, -3 and -9, as well as the 

expression of the proinflammatory cytokine interleukin 

1 beta (IL-1β) [14]. IL-1β is a major chondrolytic 

enzyme that induces the degradation of proteoglycan 

from cartilage and suppresses new proteoglycan 

synthesis [15–17]. 

 

Non-coding, single-stranded micro-ribonucleic acids 

(miRNAs) mediate the expression of target genes at 

the post-transcriptional level [18, 19]. 3'-untranslated 

region (3'-UTR) miRNAs base-pair with the seed 

sequence of target mRNA molecules and effectively 

suppress target gene expression [1, 20]. While both 

APLN and IL-1β are known to be involved in the 

pathogenesis of OA, no details exist as to  

any interaction between these molecules in OA 

synovial cells. In view of the importance of synovial 

cells in OA pathogenesis, we explored the crosstalk 

between APLN and IL-1β in human osteoarthritis 

synovial fibroblasts (OASFs). Myriads of miRNAs 

are involved in OA pathogenesis [1, 8]. We 

hypothesized that APLN upregulates IL-1β 

expression by modulating miRNA expression in 

OASFs. 

RESULTS 
 

APLN expression is positively correlated with IL-1β 

expression in OA patients 
 

To decipher crosstalk between APLN and IL-1β in the 

OA cohort, we used IHC staining to examine normal and 

OA synovial tissue samples. Levels of APLN and IL-1β 

expression were significantly higher in OA tissue than in 

normal tissue according to IHC staining (Figure 1A–1C, 

respectively). A positive correlation was observed 

between APLN and IL-1β in IHC stain (Figure 1D). 

 

APLN stimulates IL-1β expression in human OASFs 
 

Both APLN and IL-1β are known to act as 

proinflammatory mediators in arthritic disease [3]. 

However, no detailed information exists regarding any 

crosstalk between them in the pathogenesis of OA nor 

on how such an interaction may influence the 

synovium-induced inflammation in OASFs. APLN (0–

10 ng/mL) dose-dependently stimulated IL-1β 

transcription and translation (Figure 2A and 2B, 

respectively) and the excretion of IL-1β protein by 

OASFs (Figure 2C). Treatment of OASFs with APLN 

(10 ng/mL) for 24 hours stimulated IL-1β gene 

transcription and translation, as well as IL-1β protein 

excretion, in a time-dependent manner, as determined 

by RT-qPCR Western blot and ELISA assays, 

respectively (Figure 2D–2F). However, stimulation of 

OASFs with APLN did not significantly increase TNF-

α expression (Supplementary Figure 1). These findings 

indicate that APLN enhances the downstream 

expression of IL-1β in human OASFs, via 

concentration- and time-dependent manners. 

 

APLN stimulates IL-1β expression via 

phosphoinositide 3-kinase (PI3K) and extracellular-

signal-regulated kinase (ERK)  

 

The PI3K enzyme is modulated by many stimuli, 

including APLN [21, 22]. To validate the role of PI3K 

in APLN-enhanced IL-1β production, we pretreated 

OASFs with PI3K inhibitors (LY294002, Wortmannin) 

or transfected them with PI3K siRNAs. RT-qPCR and 

Western blot assays confirmed that both PI3K inhibitors 

and PI3K siRNAs significantly mitigated APLN-

enhanced IL-1β synthesis in OASFs (Figure 3A–3D). 

Moreover, Western blot demonstrated that APLN-

induced stimulation of OASFs time-dependently 

increased the phosphorylation of p85, the PI3K 

regulatory subunit (Figure 3E). 

 

The protein kinase intracellular signaling molecule, 

extracellular signal-regulated kinase (ERK), regulates 

cellular proliferation and differentiation. ERK is 
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phosphorylated by various stimuli, including growth 

factors, cytokines and carcinogens, and is implicated in 

Wogonin-mediated anti-inflammatory and protective 

effects in human OA chondrocytes [23]. The Ras-ERK 

and PI3K-mechanistic target of rapamycin (PI3K-

mTOR) signaling pathways have long been considered 

to act as linear signaling conduits that are activated by 

different stimuli, but recently it has become clear  

that ERK and PI3K regulate each other by intersecting 

and co-regulating downstream functions [24]. In this 

study, treatment of OASFs with ERK inhibitors 

(PD98059, U0126) and the transfection of OASFs  

with ERK siRNA prior to APLN administration 

significantly mitigated APLN-enhanced IL-1β synthesis 

(Figure 4A–4D). In Western blot analysis, APLN 

time-dependently stimulated ERK phosphorylation 

(Figure 4E), which was mitigated by PI3K inhibitors 

(LY294002, Wortmannin) (Figure 4F). These findings 

suggest that APLN enhances IL-1β expression through 

the PI3K and ERK signaling pathways and that PI3K 

transmits information upstream of ERK in this 

cascade. 

APLN enhances IL-1β expression by inhibiting miR-

144-3p synthesis 

 

Various miRNAs demonstrate differential expression 

patterns between OA and normal cartilage and are 

involved in the pathogenesis of OA [1, 8]. However, the 

miRNA networks involved in OA pathogenesis are far 

from clear. We used open-source software (TargetScan, 

miRMap, RNAhybrid, and miRWalk) to identify 

miRNAs that could possibly interfere with IL-1β 

transcription (Figure 5A; Supplementary Table 1). 

Among the 15 candidate miRNAs that could possibly 

bind to the 3’UTR region of IL-1β mRNA, levels of 

miR-144-3p expression were significantly decreased by 

the greatest extent after APLN administration. To 

confirm these findings, we compared levels of miR-

144-3p expression in OASFs treated with APLN 1–10 

ng/mL. APLN concentration-dependently inhibited 

miR-144-3p expression (Figure 5B). To further 

determine whether APLN stimulates IL-1β expression 

by inhibiting miR-144-3p synthesis, we transfected  

OASFs with miR-144-3p mimic and observed

 

 
 

Figure 1. APLN expression is positively correlated with IL-1β expression in OA patients. (A) IHC staining showing increased levels 
of APLN and IL-1β expression in OA synovial tissue (n=8) compared to normal healthy tissue (n=5). (B, C) The IHC score of APLN and IL-1β are 
presented. (D) Correlation between levels of APLN and IL-1β expression in synovial tissues retrieved from OA patients. 
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reductions in APLN-enhanced IL-1β mRNA and protein 

secretion (Figure 5C and 5D).  

 

We also used the luciferase reporter vector, including 

the wild-type 3’UTR of IL-1β mRNA (wt-IL-1β-

3’UTR) and the mutated vector harboring mismatches 

in the predicted miR-144-3p binding site (mut-IL-1β-

3’UTR), to determine whether miR-144-3p regulates 

transcription of the IL-1β gene (Figure 5E). miR-144-3p 

mimic reduced APLN-enhanced luciferase activity in 

the wt-IL-1β-3’UTR plasmid, but not in the mt-IL-1β-

3’UTR plasmid (Figure 5E). In addition, the PI3K 

inhibitors (LY294002, Wortmannin) and ERK 

inhibitors (PD98059, U0126) significantly reversed 

APLN-inhibited miR-144-3p expression (Figure 5F).  

It appears that miR-144-3p directly suppresses

 

 
 

Figure 2. APLN stimulates IL-1β expression in OASFs in concentration- and time-dependent manners. (A) Human OASFs were 
incubated with 0, 1, 3, and 10 ng/mL of APLN for 24 h, and IL-1β mRNA expression levels were examined by RT-qPCR (n=4). (B) OASFs were 
incubated under various concentrations of APLN for 24 h, and IL-1β expression levels were examined by Western blot (n=3). (C) OASFs were 
cultured under various concentrations of APLN for 24 h, and excreted IL-1β were examined by ELISA assay (n=5). (D) OASFs were incubated 
with 10 ng/mL of APLN for 0, 6, 12, and 24 h. IL-1β mRNA levels were examined by RT-qPCR (n=4). (E) IL-1β protein synthesis levels were 
examined by Western blot (n=3). (F) Excretion of IL-1β protein levels in human OASFs was examined by ELISA (n=5). * p<0.05 compared with 
control group. 
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Figure 3. PI3K phosphorylation is involved in APLN-induced IL-1β synthesis. (A) OASFs were pretreated with PI3K inhibitors 
(LY294002, Wortmannin; 10 µM) for 30 min, then incubated with APLN (10 ng/mL) for 24 h. IL-1β mRNA and protein levels were examined by 
RT-qPCR (n=4) and Western blot (n=3) assays, respectively. (B) OASFs were pretreated with PI3K inhibitors (LY294002, Wortmannin; 10 µM) 
for 30 min, then incubated with APLN (10 ng/mL) for 24 h. Excreted IL-1 β protein levels were examined by ELISA (n=5). (C) OASFs were 
transfected with PI3K siRNA (1 µg) then incubated with APLN (10 ng/mL) for 24 h. IL-1β mRNA levels were examined by ELISA assay (n=5). (D) 
OASFs were transfected with PI3K siRNA (1 µg), then incubated with APLN (10 ng/mL) for 24 h. Excreted IL-1β protein levels were examined 
by ELISA assay (n=5). (E) OASFs were incubated with APLN for the indicated time intervals, and the extent of PI3K phosphorylation was 
examined by Western blot (n=3). * p<0.05 compared with control group; # p<0.05 compared with the APLN-treated group. 
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Figure 4. ERK phosphorylation is involved in APLN-induced IL-1β synthesis. (A) OASFs were pretreated with ERK inhibitors 
(PD98059, U0126; 10 μM) for 30 min, then incubated with APLN (10 ng/mL) for 24 h. IL-1β mRNA and protein levels were examined by RT-
qPCR (n=4) and Western blot (n=3) assays, respectively. (B) OASFs were pretreated with ERK inhibitors (PD98059, U0126; 10 μM) for 30 min, 
then incubated with APLN (10 ng/mL) for 24 h. Excreted IL-1β protein levels were examined by ELISA (n=5). (C) OASFs were transfected with 
ERK siRNA (1 μg), then incubated with APLN (10 ng/mL) for 24 h. IL-1β mRNA levels were examined by ELISA assay (n=5). (D) OASFs were 
transfected with ERK siRNA (1 μg), then incubated with APLN (10 ng/mL) for 24 h. Excreted IL-1β protein levels were examined by ELISA assay 
(n=5). (E) OASFs were incubated with APLN (10 ng/mL) for the indicated time intervals, and the extent of ERK phosphorylation was examined 
by Western blot (n=3). (F) OASFs were pretreated with LY294002 and Wortmannin (10 μM) for 30 min, then incubated with APLN (10 ng/mL) 
for 24 h. The extent of ERK phosphorylation was examined by Western blot (n=3). * p<0.05 compared with control group; # p<0.05 compared 
with the APLN-treated group. 



 

www.aging-us.com 9230 AGING 

 
 

Figure 5. APLN-induced suppression of miRNA-144-3p enhances IL-1β production. (A) Open-source software (TargetScan, miRMap, 
RNAhybrid, and miRWalk) was used to identify which miRNAs could possibly interfere with IL-1β transcription. (B) OASFs were incubated with 
APLN (0, 1, 3, and 10 ng/mL). Levels of miR-144-3p expression were examined by RT-qPCR assay (n=4). (C, D) OASFs were transfected with 
miR-144-3p mimic and then stimulated with APLN (10 ng/mL). mRNA and excreted protein levels were examined by RT-qPCR (n=4) and ELISA 
assays (n=5). (E) OASFs were transfected with the mut-IL-1β-3′UTR plasmid with or without miRNA-144-3p mimic, then stimulated with APLN 
(10 ng/mL). Relative luciferase activity reflected IL-1β promoter activity (n=6). (F) OASFs were treated with PI3K or ERK inhibitor then 
incubated with APLN. miR-144-3p expression levels were examined by RT-qPCR assay (n=4). Results are expressed as the mean ± S.E.M.  
* p<0.05 compared with the control group; # p<0.05 compared with the APLN-treated group. 
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IL-1β transcription by binding to the 3'UTR region of 

human IL-1β mRNA, and that miR-144-3p expression is 

negatively regulated by PI3K and ERK phosphorylation 

induced by upstream APLN signaling. 

 

Knockdown of APLN mitigates histologic features of 

OA  
 

To validate the in vivo role of APLN, we investigated 

the effects of shRNA-mediated APLN knockdown in 

mitigating disease severity in the ACLT OA model. 

Compared with control samples, ACLT samples 

transfected with control shRNA exhibited significantly

lower cartilage thickness in Safranin-O and H&E 

staining (Figure 6A), and a significantly higher 

proportion of IL-1β- and APLN-positive synovial cells 

in IHC analysis (Figure 6B–6D). ACLT-induced 

histologic changes were reversed by downregulating 

APLN expression. 

 

DISCUSSION 
 

APLN has a crucial role in the pathogenesis of arthritic 

diseases, including rheumatoid arthritis and OA [3]. 

Early in vitro investigations indicated that APLN 

significantly increases MMP-1, -3 and -9 transcript

 

 
 

Figure 6. shAPLN administration mitigates the histologic severity of OA. (A) Staining of specimens with H&E, Safranin-O, IL-1β and 
APLN from the control knee (n=6), ACLT knee (n=6), and shAPLN-transfected ACLT knee (n=6). (B) Cartilage degeneration scores were 
calculated for articular cartilage sections stained with Safranin-O. (C) Synovial membrane inflammation score. Magnified area of synovium 
used to generate synovial inflammation score in all samples. Scoring was performed in H&E-stained slides. (D) IHC analysis of proportions of 
IL-1β-positive cells (red arrows) and APLN-positive cells in synovial lining tissues in specimens from control knees (n=6), ACLT knees (n=6), and 
shAPLN-transfected ACLT knees (n=6). * p<0.05 compared with the control group; # p<0.05 compared with the control shRNA-transfected 
ACLT group. 
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levels, and IL-1β protein synthesis in chondrocytes [14]. 

In that same study, rats administered intra-articular 

injections of APLN (1 nM) experienced significant 

increases in gene expression levels of MMP-1, -3 and -

9, A disintegrin and metalloproteinase with 

thrombospondin motifs 4 (ADAMTS-4) and -5, and IL-

1β, while the gene expression of collagen II was 

significantly decreased by APLN; moreover, protein 

syntheses of MMP-3, -9, and IL-1β were significantly 

increased and synthesis of collage II decreased by 

APLN, compared with control samples. APLN also 

lowered cartilage proteoglycan production in articular 

cartilage [14]. The impact of APLN on OASFs has not 

been previously clarified. Here we reported that APLN 

levels were higher in OA tissue than in normal tissue. 

We did not examine APLN expression in other articular 

tissues such as cartilage and muscle, blood vessels, or 

inflammatory cells. The autocrine- and paracrine-driven 

aspects of APLN-induced effects in the articular 

microenvironment deserve further study. In this study, 

we found that APLN stimulates IL-1β expression in 

OASFs by stimulating PI3K and ERK phosphorylation 

and suppressing the downstream expression of miR-

144-3p. These results add to the existing literature on 

OA pathogenesis. 

 

Many miRNAs are involved in OA pathogenesis [25, 

26]. We used open-source software (TargetScan, 

miRMap, RNAhybrid, and miRWalk) to predict which 

miRNAs potentially interfere with APLN transcription. 

Among all candidate miRNAs, miR-144-3p was 

suppressed to the greatest extent by APLN. The 

analyses also showed that transfection of OASFs with 

miR-144-3p mimic mitigates APLN-stimulated IL-1β 

expression. These findings underscore the importance 

of miR-144-3p in the process of APLN-stimulated IL-

1β expression. 

 

The APJ receptor is a major receptor of APLN. The 

APLN/APJ system is a critical regulator of various 

physiological functions, such as glycometabolism, liver 

disease and macrophage activation [27–29]. This study 

did not examine APJ expression in synovial tissues. 

Further investigation needs to determine whether similar 

interactions are involved in APLN-induced promotion  

of IL-1β expression in OA synovial fibroblasts. The roles 

of PI3K and ERK in OA pathogenesis have been 

explored in previous work. The PI3K/Akt pathway  

is involved in both the degradation of extracellular  

matrix and chondrocyte death [30]. Inhibition of the 

PI3K/AKT/mTOR signaling pathway promotes 

autophagy of articular chondrocytes and attenuates 

inflammatory responses in rats with OA [31]. PI3K plays 

a pivotal role in allicin-suppressed IL-1β expression in 

chondrocytes [32]. In a dog model of surgically-induced 

OA, activation of ERK1/2, JNK and p38 was higher in 

OA tissue compared with normal tissue [33]. ERK is 

involved in the pathologic interaction between OA 

subchondral osteoblasts and articular chondrocytes as 

well as the hypertrophic differentiation of articular 

chondrocytes [34]. In this study, we show that APLN 

stimulates IL-1β expression via PI3K and ERK 

phosphorylation. Our data emphasize the importance of 

PI3K and ERK in OA pathogenesis. Transcriptional and

 

 
 

Figure 7. Schematic diagram summarizes the mechanism whereby APLN promotes IL-1β production in OASFs. APLN induces 
inflammatory IL-1β production in OASFs by downregulating miR-144-3p through the PI3K and ERK signaling pathways. 
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post-transcriptional modulations affect miRNA activation 

and inhibition [35]. In this study, treatment of OASFs 

with PI3K and ERK inhibitors antagonized APLN-

inhibited miR-144-3p expression, indicating that APLN 

suppresses the expression of miR-144-3p via PI3K/ERK 

signaling. Whether PI3K/ERK modulates miR-144-3p 

expression via post-transcriptional regulation warrants 

further examination. 

 

In summary, our study shows that APLN treatment of 

OASFs triggers PI3K and ERK phosphorylation and 

contributes to a decline in miR-144-3p expression 

(Figure 7). These results improve our understanding 

about the role of OASFs in the pathogenesis of obesity 

and OA and may lead to the design of more effective 

therapy for OA patients. 

 

MATERIALS AND METHODS 
 

Antibodies against IL-1β, PI3K, and ERK were all bought 

from Santa Cruz (Santa Cruz, CA, USA). Antibodies 

against p-PI3K and p-ERK were purchased from Cell 

Signaling (Cell Signaling, UK). ON-TARGETplus 

siRNAs for IL-1β, PI3K, ERK and the control siRNA 

were purchased from Dharmacon (Lafayette, CO, USA). 

PI3K inhibitors (LY294002, Wortmannin) and ERK 

inhibitors (PD98059, U0126) were supplied by 

Calbiochem (San Diego, CA, USA). Cell culture 

supplements were purchased from Invitrogen (Carlsbad, 

CA, USA). A Dual-Luciferase® Reporter Assay System 

was bought from Promega (Madison, WI, USA). The 

qPCR primers and probes, as well as the Taqman® one-

step PCR Master Mix, were supplied by Applied 

Biosystems (Foster City, CA, USA). All other chemicals 

not mentioned above were supplied by Sigma-Aldrich (St. 

Louis, MO, USA). 

 

Cell culture 
 

Synovial tissue from the suprapatellar pouch of the knee 

was obtained from 20 patients diagnosed with Ahlbäck 

stage IV OA. Synovial fibroblasts were cultured in 

DMEM medium supplemented with 10% fetal bovine 

serum (FBS), 50 units/mL penicillin and 50 μg/mL 

streptomycin, as previously described [1, 36].  

 

Clinical samples 
 

Synovial tissue samples were obtained from patients 

with OA undergoing knee replacement surgery and 

those undergoing arthroscopy after trauma/joint 

derangement (these were used as healthy controls) at 

China Medical University Hospital. The study protocol 

was approved by the Institutional Review Board (IRB) 

of China Medical University Hospital and all methods 

were performed in accordance with the IRB’s 

guidelines and regulations. Informed written consent 

was obtained from all patients. 

 

Real-time quantitative PCR analysis of mRNA and 

miRNA 

 

Total RNA was extracted from human synovial 

fibroblasts by TRIzol; reverse transcription used 1 μg of 

total RNA transcribed into cDNA by oligo (dT) 

primers. Real-time quantitative PCR (RT-qPCR) used 

the Taqman® One-Step RT-PCR Master Mix. All RT-

qPCR assays were performed using the StepOnePlus 

sequence detection system (Applied Biosystems)  

[37, 38]. 

 

Western blot analysis 
 

Cell lysate was separated by SDS-PAGE 

electrophoresis then transferred to polyvinylidene 

difluoride (PVDF) membranes, following the method 

described in our previous work [39]. After blocking the 

blots with 4% bovine serum albumin, the blots were 

treated with primary antibody and then secondary 

antibody. Enhanced chemiluminescent imaging of the 

blots was visualized with the UVP Biospectrum system 

(UVP, Upland, CA, USA) [40–42]. 

 

Plasmid construction and luciferase assays 

 

Wild-type and mutant IL-1β 3’-UTRs were generated 

on the miR-144-3p target recognition sites (seed 

sequences). The wild-type 3’-UTRs of IL-1β were 

cloned into the pmirGLO-luciferase reporter vector 

using Nhe1 and Xho1 restriction sites. The primer 

sequences used were defined as the IL-1β forward 

primer (CGGCTAGCAGAAACCACGGCCACATTT) 

and the reverse primer (GGCTCGAGTTCAGTG 

AAGTTTATTTCAGAACCA). All constructs were 

sequenced to verify that they contained the 3’-UTR 

inserts. The mutant 3’UTR region of IL-1β mRNA 

(mut-IL-1β 3’-UTR) was purchased from Invitrogen. 

Luciferase activity was assayed using the method 

described in our previous publications [1, 8, 43]. 

 

Lentiviral production 
 

Recombinant lentiviruses were produced by transient 

cotransfection of 293T cells with short hairpin 

(sh)RNA-expressing plasmid (TRCN0000004877) with 

the packaging plasmid pCMVDR8.91 and the VSV-G 

envelope glycoprotein expression plasmid pMD.G. All 

were obtained from the National RNAi Core Facility at 

the Academia Sinica in Taiwan. After 48 hours, 

lentiviral particles carrying shAPLN (Lenti-shAPLN) 

were isolated from the supernatant of 293T cells. A 

plaque assay using serial dilutions was performed in 
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OASFs and determined the viral titer of Lenti-shAPLN 

to be ~7.1 x 106 plaque-forming units (PFU)/mL. 

 

Experimental OA model 
 

Sprague-Dawley (SD) rats (8 weeks of age, weighing 

300–350 g) were purchased from the National 

Laboratory Animal Center in Taiwan and maintained 

under conditions complying with the Guidelines of the 

Animal Care Committee of China Medical University, 

Taichung, Taiwan, as described in our previous work 

[44]. We followed the protocol established by Wang et 

al. for our ACLT model to induce OA in rats [45]. In 

brief, the right knee was prepared in a surgically sterile 

fashion. Using a medial parapatellar mini-arthrotomy 

approach, the ACL fibers were transected with a scalpel 

and the entire medial meniscus was excised. After 

surgery, the joint surface was washed with sterile saline 

solution and the capsule and skin were sutured. The rats 

received prophylactic antibiotic with ampicillin 50 

mg/kg body weight for 5 days post-surgery. After 

surgery (day 0), the rats were divided into 3 groups 

(n=8 per group), including a control group, an ACLT 

group, and an shAPLN-transfected ACLT group. For 6 

weeks, the shAPLN-transfected ACLT group were 

given weekly intra-articular injections of ~7.1 x 106 

PFU of APLN-shRNA. All rats were allowed to move 

freely in plastic cages until their necropsies at 6 weeks 

post-surgery. 

 

Histological analysis  

 

Immunohistochemistry (IHC) staining was performed on 

serial sections of the mice knee joints. After fixing the 

knee joints in 1% formaldehyde, the specimens were 

decalcified in 10% EDTA and dehydrated in 

ethanol/xylene, following previous work [46]. All sections 

were stained with primary anti-IL-1β (1:200) (Santa Cruz 

Biotechnology). Biotin conjugated goat anti-rabbit 

immunoglobulin G (IgG) was used as the secondary 

antibody and 3,3ʹ-diaminobenzidine tetrahydrochloride as 

the substrate for color development. Some specimens 

were also stained with Safranin-O/Fast-green or 

hematoxylin and eosin (H&E) [44, 46]. 

 

The cartilage degeneration score evaluates overall 

cartilage pathology and includes the important 

parameters of collagen matrix fibrillation/loss and 

chondrocyte death/loss, with chondrocyte loss being the 

primary determinant of the score (Grade 0 = no 

changes; Grade 1 = minimal degeneration, with 5–10% 

of the total projected cartilage area affected by matrix or 

chondrocyte loss; Grade 2 = greater than mild 

degeneration, with 11–25% of the area affected; Grade 

3 = greater than moderate degeneration, with 26–50% 

of the area affected; Grade 4 = marked degeneration, 

with 51–75% of the area affected; Grade 5 = more 

severe degeneration, with over 75% of the area 

affected). 

 

Synovial membrane inflammation was scored as 

follows: Grade 0 = no changes (1–2 layers of synovial 

lining cells); Grade 1 = an increased number of lining 

cell layers (≥3–4 layers) or slight proliferation of 

subsynovial tissue; Grade 2 = an increased number  

of lining cell layers (≤3–4 layers) and/or proliferation of 

subsynovial tissue; Grade 3 = an increased number  

of  lining cell layers (>4 layers) and/or proliferation of 

subsynovial tissue and infiltration of few inflammatory 

cells; Grade 4 = an increased number of lining cell 

layers (>4 layers) and/or proliferation of subsynovial 

tissue with infiltration of a large number of 

inflammatory cells. 

 

Statistics 
 

All values are given as the mean ± standard error of the 

mean (S.E.M.). The Student’s t-test assessed between-

group differences. A p value of <0.05 was considered to 

be statistically significant. 
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SUPPLEMENTARY MATERIALS 
 

Supplementary Figure 

 

 

 

 

 
 

Supplementary Figure 1. Stimulation of OASFs with APLN did not significantly increase TNF-α expression. After incubating 
human OASFs with 0, 1, 3, or 10 ng/mL of APLN for 24 h, TNF-α mRNA expression levels were examined using RT-qPCR analysis (n=4). 
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Supplementary Table 
 

 

Supplementary Table 1. Open-source software programs (TargetScan, miRMap, RNAhybrid, and miRWalk) predicted 
miRNAs that may interfere with IL-1β transcription. 

miRNAs identified from open-source softwares 

miR-21-5p, miR-27b-5p, miR-34b-5p, miR-124, 
miR-144-5p, miR-149-5p, miR-181a-5p, miR-181c-5p, 
miR-185-5p, miR-204-5p, miR-211-5p, miR-219a-5p, 

miR-296-5p, miR-340-5p, miR-345-5p 

The predicted miRNA results were made using miRWalk2.0 (http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/). The 
detailed protocol is as follows: 
1. Click on “Predicted Target Module” and select “Gene-miRNA Targets”. 
2. In Step 1, select “NCBI” and enter the gene ID (3553; IL-1β). 
3. In Step 3, in the other databases section, select all databases and choose the command “OR” against each database.   
4. In Step 4, select “SEARCH”. 
5. On the new page that appears, under the header “Putative miRNA binding sites predicted by chosen algorithms within 
mRNA selected regions”, select “3UTR”. 
6. This reveals many predicted miRNAs that bind to IL-1β 3’-UTR, ranging in scores from high to low. Fifteen high-scoring 
candidate miRNAs were used in this study. 

http://zmf.umm.uni-heidelberg.de/apps/zmf/mirwalk2/

