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Abstract Skeletal muscle is the most abundant tissue in the
human body, and the maintenance of its mass is essential to
ensure basic function as locomotion, strength and respira-
tion. The decision to synthesize or to break down skeletal
muscle proteins is regulated by a network of signaling
pathways that transmit external stimuli to intracellular
factors regulating gene transcription. The tightly regulated
balance of muscle protein breakdown and synthesis is
disturbed in several distinct myopathies, but also in two
pathologies: sarcopenia and cachexia. In recent years, it
became evident that in these two muscle wasting disorders
specific regulating molecules are increased in expression
(e.g. members of the ubiquitin–proteasome system, myo-
statin, apoptosis inducing factors), whereas other factors
(e.g. insulin-like growth factor 1) are down-regulated. So
far, not many treatment options to fight the muscle loss are
available. One of the most promising approaches is exercise
training that, due to its multifactorial effects, can act on
several signaling pathways. Therefore, this review will
concentrate on specific alterations discussed in the current
literature that are present in the skeletal muscle of both
muscle wasting disorders. In addition, we will focus on
exercise training as an intervention strategy.
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1 Introduction

Skeletal muscle comprises a system that represents the
largest organ of the human body. As it consists of over 600
separate muscles it is the major reservoir of body proteins
and takes up to 50% of the total body weight. Its main
functions are not only to provide movement, strength and
respiration but also to balance posture and to regulate the
body temperature. Besides distinct myopathies there are
two pathologies of muscle wasting which are of general
interest, namely sarcopenia and cachexia.

Sarcopenia, meaning poverty of flesh, is the degenera-
tive unintentional loss of skeletal muscle mass and strength
associated with aging [1]. It is estimated that the prevalence
of sarcopenia in community-dwelling older adults is
approximately 25% [2], and there is a loss of 5% of muscle
mass per decade of life from the fourth decade onwards,
potentially increasing after the age of 65 years [3, 4]. From
a histological point of view, sarcopenia is characterized by a
decrease in the number and the size of the muscle fibers.

Cachexia is a complex metabolic syndrome associated
with underlying illness and characterized by loss of muscle
with or without loss of fat mass [5]. Cachexia typically
manifests in chronic diseases such as cancer, chronic
obstructive pulmonary disease (COPD), chronic heart
failure (CHF) and chronic kidney disease [6] (CKD)
(Fig. 1). The prominent clinical feature of cachexia is
weight loss in adults (corrected for fluid retention) or
growth failure in children (excluding endocrine disorders).
The key component was at least a 5% loss of edema-free
body weight during the previous 12 months or less.

A major barrier to effective management of skeletal
muscle wasting is the inadequate understanding of its
underlying biological mechanisms. Therefore, in this
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review, we will concentrate on specific alterations discussed
in the current literature that are present in the skeletal
muscle of both muscle wasting disorders. In addition, we
will focus on exercise training as a strategy to intervene
with these alterations.

2 Protein catabolism/anabolism—ubiquitin proteasome
system and autophagy

The most evident metabolic explanation for muscle decline
is an imbalance between protein catabolism and anabolism.
At least four major proteolytic pathways (lysosomal, Ca2+-
dependent, caspase-dependent and ubiquitin–proteasome-
dependent) operate in skeletal muscle, and may be altered
in the process of sarcopenia and muscle cachexia. Aside
from these four distinct pathways, the autophagic/lysosomal
pathway also has to be considered. In this pathway, portions
of the cytoplasm and cell organelles are sequestered into
autophagosomes, which subsequently fuse with lysosomes,
where the proteins are digested [7]. Dissecting the
molecular regulation of the ubiquitin–proteasome-depen-
dent system (UPS) and autophagy it became evident that
forkhead box O (FoxO) transcription factors take a central
position. FoxO transcription factors, normally phosphory-
lated and inactivated by PI3K-Akt/PKB, translocate into the
cell nucleus and induce the transcription of the skeletal
muscle-specific E3 ubiquitin ligases, MuRF1 and MAFbx/
atrogin [8], as well as autophagy-related genes like LC3 and
Bnip3 [9]. Upstream of PI3K-Akt, several factors like
reactive oxygen species (ROS), tumor necrosis factor α
(TNF-α), the tumor-released proteolysis-inducing factor
(PIF), the peroxisome proliferator-activated receptor gam-
ma coactivator 1alpha (PGC-1α) or insulin-like growth
factor 1 (IGF-1) have been shown to influence this
regulatory system [8, 10–12].

On the other hand, protein anabolic factors like IGF-1
are counteracting muscle atrophy. Besides inhibiting
autophagy and the UPS, IGF-1 activates via Akt–mTOR
(mammalian target of rapamycin)–p70S6K (p70 S6 kinase)
protein synthesis [13, 14].

2.1 Sarcopenia

Experimental and human studies in the last decade
clearly demonstrated that UPS is activated in several
muscle wasting conditions (reviewed by Mitch and
Goldberg [15]). However, data on muscle wasting by
the ubiquitin–proteasome system (UPS) in aging are
conflicting. Several authors described an up-regulation of
components of the UPS in sarcopenia [16–18], whereas
others found a down-regulation [19–21] or no change
[22]. Therefore, at least in sarcopenia, the UPS seems not
to be the major pathway responsible for muscle loss.

Calpains belong to a large family of calcium-dependent
cystein proteases, and demonstrate a ubiquitous or tissue-
specific expression [23]. Besides its regulation by calcium,
calpain activity is tightly controlled by its inhibitor
calpastatin [24]. In an animal study comparing the mRNA
expression of calpains and calpastatin in the skeletal muscle
of 3- and 24-month-old rats, a 38% increase in μ-calpain
and a 28% decrease in calpastatin in the old specimens was
evident [25]. In addition, these changes at the expression
levels were confirmed by calpain activity measurements. At
least, these animal data point to a possible involvement of
the calpains in muscle loss during ageing. Nevertheless, this
has to be confirmed in human muscle biopsies, and further
experiments have to elucidate the physiological targets of
calpains in sarcopenia.

Lysosomes are responsible for the degradation of
long-lived proteins and for the enhanced protein degra-
dation observed under starvation conditions. Using a
gene expression profile analysis from young (3–4 months)
and old (30–31 months) rats, Pattison and colleagues
[26] described a slight up-regulation of cathepsin L in the
old soleus muscle. Nevertheless, this result could not be
confirmed in a later study by O’Connell et al. [27], who
screened for differentially expressed protein in the
gastrocnemius muscle of 30- and 3-month-old rats. Data
for the direct analysis of lysosomal components in young
vs. old skeletal muscle are missing.

At least in transgenic mice overexpressing IGF-1
specifically in the skeletal muscle, it was evident that the
age-related sarcopenia was prevented [28]. Furthermore, it
is well known that post-maturational aging is associated
with reduced serum IGF-1 concentration. This finding was
supported by detecting a reduced expression level in the
skeletal muscle of older men when compared to younger
ones [29, 30]. Unfortunately, no correlation between muscle
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Fig. 1 Schematic drawing of aetiological factors leading to cachexia
or sarcopenia and finally to muscle wasting. Exercise training as an
intervention is able to modify this course
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mass or protein synthesis rate was found [30], whereby the
functional significance of the alterations are uncertain.

2.2 Cachexia

The UPS is the major proteolytic machinery systematically
activated in cachexia. To assess the role of the UPS in
cancer cachexia, Williams and colleagues [31] took
biopsies of cancer and non-cancer patients undergoing
laparotomy for various reasons. The mRNA levels for
ubiquitin and the 20 S proteasome subunits were two to
four times higher in muscle from patients with cancer than
in muscle from control patients.

In a report by Lecker et al. [32], muscles atrophying
from different causes (cancer cachexia, streptozotocin-
induced diabetes mellitus, uremia induced by subtotal
nephrectomy, and from pair-fed control rats) were investi-
gated. Proteins involved in protein degradation, including
polyubiquitins, Ub fusion proteins, the Ub ligases atrogin-
1/MAFbx and MuRF-1, multiple but not all subunits of the
20 S proteasome and its 19 S regulator, and cathepsin L
were up-regulated [32].

In a cancer cachexia animal study by Acharyya and
coworkers [33] it was demonstrated that myosin heavy
chain (MyHC) is a selective target associated with a
wasting state compared to other myofibrillar proteins [33].
MyHC protein was significantly reduced, whereas MyHC
mRNA levels were unchanged. Results showed that the
mature form of MyHC could readily be immunoprecipitated
with ubiquitin, which supports the involvement of this
proteolytic pathway in the basal turnover of myosin.

The important role of the FoxO transcription factors was
underlined in a study by Liu et al. [34] when they targeted
Foxo-1 in a cancer cachexia mice model by an oligonucle-
otide. It could be demonstrated that the RNA oligonucleotide
can reduce the expression of Foxo-1 in normal and cachectic
mice, leading to an increase in skeletal muscle mass of the
mice. In the search for downstream target genes of Foxo-1,
increased levels of MyoD and decreased concentrations of
myostatin were found.

Investigating the UPS and the lysosomal proteolytic
pathway in lung cancer patients, Jagoe and colleagues
reported that mRNA levels for cathepsin B, but not for
components of the ubiquitin–proteasome pathway, were
higher in patients with cancer compared with controls
suggesting that cathepsin B may have a role in inducing
muscle wasting in the early stages of lung cancer [35].

Besides an increased catabolism, there is reduced
anabolism, which has been shown, for example in cancer-
related cachexia. Although the underlying mechanism
remains unknown, it could be demonstrated that the IGF-1
system is down-regulated in an animal model of cancer
cachexia [36]. Interestingly, the transgenic overexpression

of locally acting IGF-1 in skeletal muscle inhibits ubiquitin-
mediated muscle atrophy in chronic left-ventricular dys-
function [37].

In cancer cachexia, in particular, the decrease in skeletal
muscle protein synthesis is partly related to the increased
serum level of the PIF. Intravenous administration of PIF to
normal mice produced a rapid decrease in body weight that
was accompanied by increased mRNA levels for ubiquitin
in the gastrocnemius muscle [11]. There were also
increased protein levels of the 20 S proteasome core and
19 S regulatory subunit, suggesting activation of the ATP–
ubiquitin-dependent proteolytic pathway. Recent evidence
proposes that PIF decreases protein synthesis by inhibiting
protein translation initiation through phosphorylation of the
eukaryotic initiation factor 2 (eIF2-alpha) [38].

Another factor that may contribute to a decreased
anabolism is angiotensin II. In an animal model of
continuously administered angiotensin II, a markedly
reduced plasma IGF I levels occurred [39]. Compared with
sham, angiotensin II-infused hypertensive rats lost 18–26%
of body weight by 1 week, which was completely
reversible by losartan, an AT1 receptor antagonist.

3 Oxidative stress—ROS

Oxidative stress is a state wherein the normally well-
balanced control of oxidant production and antioxidant
capacity is disturbed. The sources of oxidants are numerous
and include enzymatic and chemical reactions producing
superoxide anions, hydrogen peroxides or nitric oxide.
Once produced, these molecules can interact with each
other to form even more highly reactive products like
peroxynitrite (ONOO-) or hydroxyl radicals (OH.). At basal
levels these molecules fulfill important signaling tasks, but
when the concentration rises above a certain level detri-
mental effects like alterations of lipids, proteins and even
DNA are overwhelming. There is plenty of evidence in the
current literature that oxidative stress is associated with
chronic diseases, and it is assumed that an increase in ROS
directs muscle cells into a catabolic state leading to muscle
wasting [40–42]. At least from cell culture experiments
mainly performed in C2C12 cells, it is well documented
that ROS have the potency to induce the expression of E3-
ubiquitin ligases [43], correlating with an increased
ubiquitin-conjugating activity and proteasome activity and
decreased myosin protein [43, 44]. In addition, oxidative
stress is a potent inducer of apoptotic cell death [45].

3.1 Sarcopenia

The free radical theory of aging formulated more than
50 years ago proposes that aging and associated degener-
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ative diseases can be attributed to the effect of ROS [46]. A
current version of this theory is the oxidative stress theory
of aging, stating that a chronic state of oxidative stress even
exists under normal conditions and is increased with aging
due to an imbalance of generation and detoxification of
ROS [47]. An elegant method to estimate the load of
oxidative stress is the measurement of protein modifica-
tions, like carbonylation or nitration. Using this approach,
Feng and coworkers could demonstrate a significant up-
regulation of carbonylated proteins of mitochondria from
older (26 months) vs. younger (12 months) Fisher 344 rats
[48]. This is further supported by several studies linking the
amount of carbonylated protein with muscle strength [49].
The other marker for increased oxidative stress is 3-
nitrotyrosine (3-NT). This posttranslational modification
can alter protein function and activity, and is formed when
tyrosine residues are nitrated by peroxynitrite [50]. A case-
control study measuring 3-NT immunoreactivity in external
intercostals and quadriceps muscle obtained from elderly
and young individuals revealed a significant increase in the
elderly [51]. In animal studies, 3-NT was evaluated in
muscles from young, adult and old rats [52–54]. A
significant age-associated increase in nitrotyrosine-
modified proteins involved in metabolism, contraction and
calcium homeostasis was observed. This increase of
oxidative stress in the aged skeletal muscle may be due to
a reduction in the detoxification system due to a lower
expression/activity of Mn-SOD or catalase [51, 55].

3.2 Cachexia

Also, in cachexia, ROS are regarded as crucial players for
muscle protein catabolism by stimulating the UPS. As
mentioned above, reaction products are measured as
indirect markers for oxidative stress. In cachexia, malon-
dialdehyde (MDA) is regarded as such indirect marker. In
an animal study, a significantly increased level of MDA in
muscles from cachectic MAC16 mice was detected, when
compared with control non-tumor-bearing animals [44]. In
addition, experimental cancer cachexia appears to be
mediated by increased nitrosative stress secondary to
increased nitric oxide formation. Indeed, protein tyrosine
nitration is markedly increased in the muscles of tumor
bearing rats with advanced cachexia [56]. Also, in cachexia,
this increase in ROS is due to significantly lower activities
of antioxidant enzymes: superoxide dismutase and gluta-
thione peroxidase [57].

4 Inflammation

Since the influential report of elevated levels of TNF-α in
patients with cardiac cachexia, it has become clear that pro-

inflammatory cytokines play an important role in the
evolvement of cachexia and other muscle wasting disorders
[58]. TNF-α either on its own or in combination with other
cytokines can induce the breakdown of mature myotubes
[59, 60]. For example TNF-α and IFN-γ act synergistically
not only to inhibit the activation of messenger RNA for
MyHC synthesis, but also for stimulating the proteolysis of
this protein [33]. With respect to the UPS, cell culture studies
revealed that TNF-α in particular is a potent stimulator of
MuRF1 and MAFbx expression [61, 62]. Based on animal
experiments, it even seems that MuRF1 is essential for TNF-
α-induced loss of muscle function [63].

Exposure of myocytes to TNF-α rapidly activates the
transcription factor NF-κB, which in turn inhibits muscle
cell differentiation by suppressing the synthesis of MyoD,
thereby influencing muscle regeneration (see below). It
should be noted that the activation of NF-kB is also
involved in the up-regulation of cytokine synthesis, which
can contribute to paracrine effects of cytokines on skeletal
muscle tissue as described above.

Thus, cytokine-induced skeletal muscle wasting is
probably a multifactorial process, involving increased
protein degradation and reduced myocyte regeneration and
repair [64].

4.1 Sarcopenia

There is growing evidence that higher levels of inflamma-
tory markers are associated with physical decline in older
persons, possibly through the catabolic effects of inflam-
matory markers on muscle. In an observational study of
more than 2,000 men and women, TNF-α showed a
consistent association with the decline in muscle mass and
strength [65]. The impact of inflammation in the develop-
ment of sarcopenia is furthermore supported by a recently
published animal study showing that reduction of low-
grade inflammation by ibuprofen in old (20 months)
animals resulted in a significant decreased muscle mass
loss [66]. The loss of muscle mass in the situation of low-
grade inflammation is possibly due to a loss of stimulation
in protein synthesis by food intake with an unaltered rate of
protein degradation [67].

4.2 Cachexia

TNF-α, interleukin-1 (IL-1), IL-6 and IFN-γ have been
implicated in the induction of cancer-related muscle
wasting [68]. There is growing evidence that the acceler-
ated muscle proteolysis during malignant tumor growth is
mediated via the activation of the non-lysosomal adenosine
triphosphate-dependent (ATP-dependent) ubiquitin protea-
some pathway [31, 69]. In addition, inflammatory cytokines
influence the expression of functionally relevant enzymes
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in cardiac cachexia. It has been demonstrated that TNF-α,
IFN-γ and IL1-β, which are known to be increased in
cachectic patients, are potent activators of inducible nitric
oxide synthase (iNOS) expression [70], which in turn
produces toxic levels of NO high enough to inhibit key
enzymes of the oxidative phosphorylation. It could be
shown in vitro that NO is able to impair the contractile
performance of the skeletal muscle [71].

5 Regenerative capacity and cell death

Adult muscle contains a pool of undifferentiated cells
located between the basal lamina and the plasma membrane
with the capacity to proliferate and differentiate only when
required. These cells were first identified in the frog skeletal
muscle and designated ‘satellite cells’ [72]. They are
responsible for pre- and postnatal muscle growth, and are
capable of repairing skeletal muscle fibers following injury.
The proliferative life span of human satellite cells is limited
with the potential number of cell divisions decreasing
considerably as a function of donor age [73]. The
differentiation of myogenic cells is under the control of the
MyoD family of transcription factors, including MyoD,
myogenin, Myf5 and MRF4 [74]. In the quiescent state of
the satellite cells MyoD expression is absent, but as soon as
they are activated by external stimuli they start to proliferate
with high levels of MyoD in their nuclei [75]. Using yeast
two-hybrid screens, an interaction between MAFbx and
MyoD was evident, suggesting that MyoD is ubiquitinated
by the atrophy-related E3 ubiquitin ligase MAFbx and
subsequently degraded by the proteasome system [76].

Another factor regulating the regenerative capacity of the
skeletal muscle is myostatin, a member of the transforming
growth factor (TGF-β) superfamily. This relation was first
evident in myostatin knockout mice, exhibiting an improved
healing after a myotoxic injury [77]. Dissecting the molecular
pathway, it became evident that myostatin influences satellite
cell proliferation and differentiation through the down-
regulation of Pax7 [78], an important factor of satellite cell
proliferation [79]. Besides the regulation of satellite cell
differentiation via MyoD, increased oxidative stress also
impairs the regenerative capacity of these cells [80]. Therefore,
in the case of muscle atrophy with an up-regulation of
MuRF1/MAFbx and an elevated oxidative stress, the regen-
erative capacity of satellite cells is also impaired.

Regarding muscle atrophy, the loss of skeletal muscle
myocytes via the energy-dependent programmed cell death
apoptosis also needs to be considered. Apoptosis is well
known to play an important physiological role during
embryogenic development and in the control of cell number
in proliferative tissue. A central component of the signal
mechanism leading to apoptotic cell death is the activation

of a series of caspases [81]. In particular, the activation of
caspase-3 seems to be an initial step triggering accelerated
muscle proteolysis in catabolic conditions [82, 83]. Se-
quentially, the activation of caspase-3, potentially regulated
via PI3K [83], disassociates actomyosin complexes as a
rate-limiting step, before the UPS can degrade the contrac-
tile proteins of the muscle [83].

5.1 Sarcopenia

Studies investigating the age-related concentration of satellite
cells have produced diverging results. In one of the first
studies performed, Snow [84] reported a decrease in satellite
cells from 4.6% at 8 months of age to 2.4% at 30 months.
Subsequent studies have either confirmed this result [85, 86]
or have found no change with aging [87, 88]. Based on these
discrepant results, it was suggested to focus more on
function instead of the pure amount of the satellite cells in
a given muscle. Analyzing the activation of satellite cells by
nitric oxide or stretch in cell culture obtained from mice at
different age revealed that satellite cells are increasingly
refractory to an activation in aged mouse-muscle cultures
[89]. An increase in oxidative stress, due to an imbalance in
the antioxidative system may be partially responsible for the
age-dependent decline in satellite function [90]. As discussed
above, myostatin is an important factor regulating satellite
cell proliferation and differentiation. Comparing the results
published in the current literature, the relevance of myostatin
for age-related muscle atrophy is unclear. Some authors
describe no age-related change in myostatin expression,
whereas others describe a significant up- or even down-
regulation at the mRNA and/or protein level [30, 91–94].
With respect to the association of apoptosis/apoptosis related
proteins and sarcopenia, the data currently available are more
solid. An often used animal model to investigate sarcopenia
is the Fischer 344 Brown Norway rat. Using either the
release of mitochondrial cytochrom c [95], or TUNEL
staining [96], or caspase- and caspase-9 activity [96, 97],
or DNA fragmentation [97, 98] as marker for apoptosis,
apoptosis was significantly increased in older animals when
compared to younger rats.

At least for sarcopenia, the involvement of skeletal
apoptosis seems to be proven, whereas the participation of
satellite cells and myostatin needs further investigations.

5.2 Cachexia

As pointed out above, experimental data suggest that local
IGF-1 may act as a regenerative agent, promoting recruit-
ment of stem cells to sites of muscle injury [99]. As IGF-1
is reduced in experimental cachexia [36], it is reasonable to
assume that in the cachectic situation the function of
satellite cells is impaired. Other factors controlling the
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differentiation of satellite cells to functional fibers are
nuclear factor kappa B (NFκB) and myostatin. Data are
available demonstrating a beneficial effect of myostatin
inhibition in cancer cachexia [100], but negative study
results are also reported [101].

With respect to apoptosis, several reports demonstrated
an increase in apoptosis or apoptosis-related protein in
skeletal muscle after induction of cachexia. The skeletal
muscle of cachectic tumor-bearing animals reveals the
activation of DNA fragmentation, a hallmark of apoptosis
[102]. These results from animal experiments could be
confirmed in muscle biopsies from weight-losing patients
with upper gastrointestinal cancer, where a significant
increase in muscle DNA fragmentation (threefold) was
documented [103]. In addition to DNA fragmentation, a
significant up-regulation of caspase-1, -3, -6, -8, and -9
activity could also be documented in the gastrocnemius
muscle of tumor-bearing mice [104].

Taken together, it seems that in cachexia and sarcopenia
similar mechanisms are activated or deactivated to shift the
balance towards protein breakdown, finally leading to a
loss of muscle mass (Fig. 2a).

6 Anabolic steroids

Testosterone and testosterone derivatives are steroid
hormones that exert their effects through binding to
cytosolic receptors, which leads to an increase in protein
synthesis and muscle mass [105]. Testosterone effects on
skeletal muscle mass are dose-dependent, with adminis-
tration of supraphysiological doses leading to a substantial
increase in muscle size and strength. Interestingly, studies
determining the effects of testosterone on muscle perfor-
mance showed that testosterone administration is associ-
ated with an increase in leg power and strength but
showed no change in muscle fatigability and no change in
specific tension, indicating that testosterone-induced gains
in muscle strength are reflective of an increase in muscle
mass [106]. The increase in muscle mass is hypertrophic
growth, as it is associated with an increase in myofiber
cross-sectional area, observed both in type I and type II
myofibers [107], and is not due to an increase in the
number of myofibers. In addition, no change is observed
in the number of fibers per unit of muscle; however, an
increase in myonuclear number is apparent and is
hypothesized to be attributable to fusion with satellite
cells [107].

6.1 Sarcopenia

Among the hormonal changes that might be related to
aging, a primary role is likely exerted by the aging-related

deficit of anabolic hormones, promoting a milieu that
favours catabolism. This aging-related deficiency in ana-
bolic hormone milieu takes several different forms, being
relatively sudden and dramatic in the case of estrogen (E2)
in women, although being more gradual and steady for
testosterone (Te) in men, and dihydroepiandosterone
(DHEA) and growth hormone in both genders.

Numerous studies have been performed during the past
years with different outcomes. Some have reported modest
increases in lean mass [108, 109]. Some have reported
increased grip strength [110, 111] and others did not [109,
112, 113]. Several studies have addressed the question of
whether testosterone replacement increases lower body
strength [108–110, 113–115]. with only two obtaining
substantial positive results [115, 116]. Nevertheless, the
magnitude of strength increases, although substantial, is
lower than what can be achieved through resistance
exercise training.

6.2 Cachexia

There is a relative deficiency or resistance to anabolic
hormones in cachectic states. Up to 50% of men with
metastatic cancer prior to chemotherapy can present
with low concentrations of testosterone [117]. A reduc-
tion in testosterone might lead to a reduced bone mass,
muscle strength and sexual function in both men and
women [118, 119]. Based on these and several other
observations, Evans and colleagues [5] have suggested a
new definition and pathophysiology for cachexia. Low
concentrations of testosterone and other anabolic hor-
mones are major contributors to cachexia related wasting
of skeletal muscle [5]. However, with respect to a
correlation of body composition including muscle mass
and the concentration conflicting results were reported in
the current literature. Some studies found a correlation
[117, 120], whereas others reported no association [121].

7 Impact of exercise training

Although it is increasingly recognized that exercise
training seems to be a poly-pill against the dramatic
changes in the skeletal muscle in cachexia, scientific
proof is scarce. As a matter of fact, there are only very
few clinical trials investigating the impact of exercise
training in cachexia. A few small studies have shown
that exercise training leads to changes in body compo-
sition. Investigations with larger cohorts and hard end
points are still missing. Most of the research concerning
exercise training and cachexia has been done in the
field of cancer cachexia, preferably with animal models.
Therefore, the majority of data covers this entity.
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However, as there are numerous similarities in the
pathophysiology of cachexia regardless of its origin,
these facts might be applicable to other facets of this
syndrome.

With respect to sarcopenia, exercise training is the most
effective and safe intervention to attenuate or recover some
of the loss of muscle mass and strength that accompanies
aging (reviewed by Jones et al. [122]).

7.1 Mode of exercise training and obvious effects

There are mainly two different types of exercise training:
endurance and resistance exercise training. Since the
early 1980 s, nurse researchers and others have shown
that endurance exercise has beneficial effects in cancer
patients. Several reports propose that endurance training
can ameliorate cancer related fatigue. In various studies,
self-reported fatigue could be significantly reduced by
different types of endurance training [123, 124]. Further-
more, it could be demonstrated that endurance training led
to an improved physical capacity in cancer patients [123,
125]. Additional evidence for the beneficial role of
endurance exercise has been provided by data generated
from animal studies of experimental tumor-bearing
rodents [126, 127]. Endurance training such as running,
treadmill walking, and swimming have been associated
with smaller tumors and greater food consumption.
Endurance exercise was associated with an increase in
muscle protein synthesis and in muscle to body weight
ratio. It should be emphasized, however, that the exercised
animals had smaller tumors and consumed more food
compared to the sedentary tumor-bearing animals. There-
fore, it is not clear whether the observed positive change
in muscle protein metabolism was a consequence of
smaller tumors and higher food intake or a consequence
of a direct effect of the exercise on the muscles. Besides
these animal studies, four studies examined the effects of
resistance training on skeletal muscle mass and/or strength
in patients with cancer. Two studies investigated the effect
of resistance training in breast cancer patients receiving
adjuvant therapy [128, 129]. Women in the resistance
training group had a significant increase in lean muscle
mass compared to the control group with no effects.
Unfortunately, these results cannot be generalized to
patients having cancer related skeletal muscle wasting as
breast cancer is not typically associated with this syn-
drome. The other two studies observed the effects of
resistance training in patients with androgen deprivation
therapy due to prostate cancer. In both studies, resistance
training prevented loss of muscle mass and strength seen
in patients without exercise training [130, 131]. Never-
theless, because of the small amount of clinical trials, it is
difficult to make general conclusions about the effect of

resistance training in patients with cachexia due to cancer
or other catabolic states.

With respect to exercise training in the elderly,
endurance training has a broad application, improving
body composition and insulin sensitivity, but with minor
effects for strength and muscle mass. In a recently
performed randomised study, the different responses to
eccentric and concentric training in older men and
women were anlyzed [132]. The authors concluded that
resistance and endurance training are beneficial for the
elderly with regard to muscle function and structural
improvements.

7.2 Molecular biological effects of exercise training

But what are the effects of exercise training within the
muscle? The anabolic effects of exercise training may be
mediated by cytokines, namely, IL-6. This proinflammatory
cytokine is released by muscle contraction in healthy
individuals as well as diseased patients for example with
prostate cancer or muscle wasted COPD [133, 134]. It exerts
anti-inflammatory effects by inhibiting the production of
TNF-α and IL-1 in vitro, and is reducing the amount of
circulating TNF-α [135, 136]. Additionally, exercise training
seems to have effects on the antioxidative capacity as it
increases the activity of radical scavenger enzymes [137].

Another mechanism of exercise training seems to be
mediated via PGC-1α. Increased muscular activity induces
PGC-1α production, which in turn protects skeletal muscle
from atrophy by suppressing FoxO3 action and atrophy-
specific gene transcription [12]. Recently, it has been
shown that progressive resistance training may increase
muscle protein synthesis by increasing the phosphorylation
of mTOR and p70S6k [138, 139]. One acute bout of
resistance exercise resulted in significant phosphorylation
of mTOR in the plantaris and tibialis anterior muscle of
rats. In a healthy young man, an acute bout of low-intensity
exercise enhanced mTOR signalling in the vastus lateralis
muscle. This was associated with an increased protein
synthesis within the skeletal muscle. It has also been shown
that both resistance and endurance training blunted the
increase in disease-induced muscle proteolysis and im-
proved phosphorylation of Akt and the forkhead transcrip-
tion factor FoxO1 in a mice model of CKD [140].
Resistance training, but not endurance exercise, corrected
protein synthesis and levels of mediators of protein
synthesis such as phosphorylated mTOR and p70S6K in
the muscles of mice with CKD. Additionally, in these mice,
muscle progenitor cell number and activity, as measured by
the amounts of MyoD, myogenin and eMyHC mRNAs,
were increased.

Another factor influenced by exercise training is myo-
statin. In an animal model of CHF, we documented a
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reduction of myostatin concentration after 4 weeks of
endurance training in skeletal and heart muscle compared
to sham operated animals who underwent exercise [141]. A
recently published study reported that exercise training in
cachectic and non-cachectic patients with COPD led to an
increased IGF-mRNA and protein expression and an
increased MyoD concentration. Interestingly, myostatin
was down-regulated at mRNA and protein level only in
non-cachectic patients [142]. Surprisingly, no effect on
TNF-α expression could be detected, but the activation of
the transcription factor NFκB was decreased in both
groups. MafBx and MuRF-1 expression was increased in
cachectic COPD, but it was decreased in non-cachectic
patients.

To summarize these data, exercise training is acting in
a variety of modes (Fig. 2b), of which the majority is
possibly still unknown. Looking at all the collected data, it
is impossible to comment on the importance of each
affected pathway. They all seem to interact with each
other, also depending finally on the genotype of the
individual patient. As exercise training has its positive
effects, we need to underline this with hard data to put it
on a scientific basis and be able to offer it to all affected
patients.
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