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Abstract

The novel coronavirus COVID-19 is spreading across the globe. By 30 Sep 2020, the World

Health Organization (WHO) announced that the number of cases worldwide had reached

34 million with more than one million deaths. The Kingdom of Saudi Arabia (KSA) registered

the first case of COVID-19 on 2 Mar 2020. Since then, the number of infections has been

increasing gradually on a daily basis. On 20 Sep 2020, the KSA reported 334,605 cases,

with 319,154 recoveries and 4,768 deaths. The KSA has taken several measures to control

the spread of COVID-19, especially during the Umrah and Hajj events of 1441, including

stopping Umrah and performing this year’s Hajj in reduced numbers from within the King-

dom, and imposing a curfew on the cities of the Kingdom from 23 Mar to 28 May 2020. In

this article, two statistical models were used to measure the impact of the curfew on the

spread of COVID-19 in KSA. The two models are Autoregressive Integrated Moving Aver-

age (ARIMA) model and Spatial Time-Autoregressive Integrated Moving Average (STAR-

IMA) model. We used the data obtained from 31 May to 11 October 2020 to assess the

model of STARIMA for the COVID-19 confirmation cases in (Makkah, Jeddah, and Taif) in

KSA. The results show that STARIMA models are more reliable in forecasting future epi-

demics of COVID-19 than ARIMA models. We demonstrated the preference of STARIMA

models over ARIMA models during the period in which the curfew was lifted.

Introduction

In univariate time series, we observe autocorrelation between the successive observations over

a time frame. In building a time series model, the Autoregressive Moving Average (ARMA)

models for spatial data can be viewed in a time series frame called space-time models. Space-

time models explain the dependencies across space in the systematic dependency systems

among the observations at various locations. Applications of spatial statistics cover many areas

such that geostatistics, sociology, economics, and environmental.

Pfeifer and Deutsch [1] proposed the space-time autoregressive moving average (STARMA)

model for some processes that can be modeled by STARMA. Models are characterized by a

single random variable observed at N fixed points in space. The dependencies between the N

time series are incorporated in the model through hierarchical N×N weighted matrices.
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The STARMA model characterizes the spatial-temporal reliance between diverse districts

by inferring the interaction between adjoining locales inside the system. So this model is more

suitable for modeling geographic spatial-temporal data [1]; because this model completely

considers the autocorrelation existing within the geographic spatial-temporal data set. In any

case, the STARMA has certain restrictions in a few viewpoints, such as spatial and temporal

non-stationary time series data modeling.

This paper is organized as follows: Section 2 reviews some literature about STARIMA Mod-

els, whereas Section 3 presents the used framework of time series data models. Section 4 intro-

duces STARIMA models (STARMA, STAR, and STMA). Section 5 presents our empirical

study on Makkah region states. Finally, Section 6 presents the conclusion and remarks.

Literature review

The STARMA was first introduced by [2]. In 1979 Pfeifer started studying "Spatial-dynamic

modeling" on his Ph. D. dissertation. Later, Deutsch joined him and became his co-author on

"Stationarity and invertibility regions for low-order STARMA models". Pfeifer and Deutsch

successively developed this model in the eighties and published articles as follows:

In 1980a, Pfeifer and Deutsch presented the three stages of building STARIMA models:

identification, estimation, and diagnostic checking, and illustrated it with a substantive exam-

ple. In the same year, Pfeifer and Deutsch [3] studied the characteristics of the STAR (1,1) and

STMA (1,1) models as well as the behavior and patterns of the theoretical space-time autocor-

relation, partial autocorrelation functions, and initial estimation. Pfeifer and Deutsch [4] also

suggested a simulation of the experiment results to compare the accuracy of three alternative

estimation techniques (maximum likelihood estimation, least squares estimation, and condi-

tional maximum likelihood estimation) of STARMA model. Pfeifer and Deutsch [5] used the

likelihood ratio test to develop an independence test of the STARIMA models’ residual.

Furthermore, Pfeifer and Deutsch [6] discussed the case of contemporaneously correlated

variables in which the error covariance matrix (G) of the observations is non-spherical. In the

same year, Pfeifer and Deutsch [7] presented Seasonal STARIMA models and discussed three

stages for building the models. They illustrated the report with an example of their application.

Pfeifer and Deutsch [8] also presented STARMA models where the covariance matrix of the

innovations (G = σ2I) is not spherical. Also incorporated in these modeling procedures were

tests of hypotheses concerning the form of G. The entire procedure was illustrated with two

applications. Also, Pfeifer and Deutsch [9] developed approximate variances of the sample

space-time autocorrelation function when the underlying process is white noise, which is

needed to test the significance of the observed autocorrelations.

Recently, the STARMA models have been used in several studies, such as [10–12]. More-

over, Bayesian spatial and temporal approaches have been proposed in several studies, to take

into account the effect of unobserved heterogeneity and spatio-temporal correlation, such as

[13–16]

Applied previous studies for COVID-19

Perone [17] used ARIMA model to forecast the epidemic trend for COVID-19 over the period

after 4 April 2020, by using the Italian epidemiological data at national and regional levels.

Results suggest that COVID-19 epidemic in Italy reach the plateau, in term of cumulative

cases in May 2020 and the final epidemic size in Italy maybe around 200 thousand cases.

Tandon et al [18] developed a model for forecasting future COVID-19 cases in India. In

their study, confirmed, recovered and death cases of COVID-19 infection were collected in

India from 22 Jan 2020 to 13 April 2020. The study indicates an ascending trend for the cases
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in the coming days. The time series analysis also presents an exponential increase in the num-

ber of cases. The results for a measure of model accuracy for ARIMA, Linear Trend, Quadratic

Linear, S-Curve Trend, Moving Average, Single Exponential and Double Exponential model

suggests that ARIMA (2, 2, 2) model is the most accurate of all the models for forecasting

future incidences as it possesses the least value for all the measures.

Iran was the first Middle East country to report a coronavirus case. Tran et al [19] devel-

oped a prediction model for COVID-19 in Iran. The model utilizes SARS-CoV-2 daily data,

from 20 Feb to 4 May 2020, and ARIMA was employed to forecast the trend of the pandemic

spread. The ARIMA model predicts that Iran can easily exhibit an increase in the daily total

confirmed cases and the total deaths, while the daily total confirmed new cases, total new

deaths, and growth rate in confirmed cases/deaths become stable in the near future. This study

predicts that Iran can control the SARS-CoV-2 disease soon.

COVID-19 in KSA

Alzahrani et al [20] employed ARIMA model to forecast the expected daily number of

COVID-19 cases in Saudi Arabia. They used to perform four different prediction models of

ARIMA models, and determine the best model ARIMA (2,1,1). The forecasting results showed

that the trend in Saudi Arabia will continue growing and may reach up to 7668 new cases per

day and over 127,129 cumulative daily cases by 21 May 2020, if stringent precautionary mea-

sures were not implemented to limit the spread of COVID-19. They pointed out that training

the model on more data will lead to more reliable forecasting.

Elhassan and Gaafar [21] developed both the ARIMA model and Logistic growth model to

study the trend and to provide short and long-term forecasting of the prevalence COVID-19

cases in Saudi Arabia. The data analyzed in their study covered the period of 2 Mar to 21 Jun

2020. ARIMA and Logistic growth models showed excellent performance in projecting the

epidemic prevalence.

Among the effects of the pandemic is the suspension of the Hajj and Umrah events in the

two holy cities of Mecca and Medina that were supposed to be performed by nearly two mil-

lion Muslims in mid-July. Makkah is in the middle of the cities of Jeddah and Taif. Pilgrims

and Umrah performers cross those cities come to Makkah to complete their religious journey.

Noticeably, the spread of the COVID-19 in the Kingdom started from Mar 2020, as a result of

the movement of pilgrims and residents between those cities. These movements led to the

rapid spread of COVID-19 between the cities. Thus, this paper aims to study the spatial effects

(neighborhood analysis) of infected cases of COVID-19 in Makkah, Jeddah, and Taif.

ARIMA models

Box and Jenkins [22] is one of the most well-known traditional methods of time series model-

ing. It is also called Autoregressive Integrated Moving Average (ARIMA). Vandaele [23]

explains that this method is divided into several models. It can be divided into stable and

unstable models. The following is a brief presentation of the models for this method.

Autoregressive (AR) models

These models are called Autoregressive models because the variable (Xt) is linear with itself in

previous time periods (Xt−1, Xt−2,. . .,Xt−p). It is possible to express the current observation of

the series (Xt) as a linear function in its previous observations and random error limit, denoted

by the symbol (ut). Autoregressive models can be formulated as follows:

Xt ¼ φ
1
Xt� 1 þ φ

2
Xt� 2 þ � � � þ φpXt� p þ ut ð1Þ
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where Xt are observations of a stationary time series, ut is a white noise process with mean zero

and constant variance ðs2
uÞ, and φ1, φ2,. . .,φp are autoregressive parameters of the model.

Moving Average (MA) models

These models are called moving average models because the variable (Xt) is linear with random

errors limit in previous and current time periods (ut, ut−1, ut−2,. . .,ut−q). According to [24],

Moving Average models can be formulated as follows:

Xt ¼ ut � y1ut� 1 � y2ut� 2 � � � � � yqut� q ð2Þ

where θ1, θ2,. . .,θq are moving average parameters of the model.

Autoregressive Moving Average (ARMA) models

These models are called Autoregressive and Moving Average models because the variable Xt is

linear with itself in previous time periods (Xt−1, Xt−2,. . .,Xt−p), and the random errors limit in

previous and current time periods (ut, ut−1, ut−2,. . .,ut−q). Autoregressive Moving Average

models can be formulated as follows:

Xt ¼ φ
1
Xt� 1 þ � � � þ φpXt� p � y1ut� 1 � . . . � yqut� q þ ut ð3Þ

Autoregressive Integrated Moving Average (ARIMA) models

Some time series models are non-stationary in mean, and thus uses differencing as for their

transformation. A stationary differenced time series can be modeled with autoregressive mov-

ing average, but requires an inclusion of the differenced operator. Since the order of integra-

tion of a process is the number of differenced needed to achieve stationarity, we therefore

name the model-autoregressive integrated moving average (ARIMA) model. The general form

of this model is ARIMA (p, d, q):

Wt ¼ φ
1
Wt� 1 þ � � � þ φpWt� p � y1ut� 1 � � � � � yqut� q þ ut ð4Þ

where Wt is the first difference of Xt, i.e., Wt = Xt−Xt−1.

Framework of spatial time series models

After the emergence of STARIMA models, many theoretical and applied studies, which stud-

ied and evaluated different types of these models in the statistical analysis of spatial time series

data were presented, This section discusses a set of those studies in a theoretical way.

The spatial time series models have been defined as: “the models that used for the study of

linear relationships between the variables in two dimensions: time and space” [3, 25]. Elhorst

[25] assumes that, in the space-time model, there are relationships between the data gotten

from several locales under the acceptance and the systematic dependency to the proportional

distance between the locales. So, the conditional average of variable Zi(t), can be modeled by i
and a linear function of the past values of the subject variables that obtained from its neighbor

locales.

STARMA models

These models are called the STARMA models because the variable Zi(t) can be expressed as a

spatial dependence function in the previous observations Zi = 1,. . .,N(t−1),. . .,Zi = 1,. . .,N(t−K)

and the previous random error limits εi = 1,. . .N(t−1),. . .,εi = 1,. . .N(t−k) in addition to the cur-

rent random error limit εi = 1,. . .N(t). The order rank is determined by the number of previous
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observations. The limits of the previous random error and the spatial order of the (kth) autore-

gressive and moving average included in the model. If the current observation zi(t) relied on

the number (p) of the previous observations, the number (q) of the previous random error lim-

its, the current random error limit εi(t), the numbers (λk) of the previous observations in the

site (k), the number (mk) of the previous random error limits in the site (k), then zi(t) is said to

follow a Space-Time Autoregressive Moving Average (p, q, λk, mk) and it can be formulate as

follows:

ZiðtÞ ¼
Pp

k¼1

Plk
l¼0

φklL
ðlÞZiðt � kÞ þ εiðtÞ �

Pq
k¼1

Pmk
l¼0
yklL

ðlÞεiðt � kÞ ð5Þ

where Zi(t) is the observation of the random variable at site (i)i = 1,2,. . .,N, and time (t)t = 1,2,. . .,K.

While p is the autoregressive order, q is the moving average order, λk is the spatial order of the

kth autoregressive term, mk is the spatial order of the kth moving average term, φkl is the autore-

gressive parameter at temporal lag k and spatial lag l, θkl is the moving average parameter at

temporal lag k and spatial lag l, L(l) is the N×1 vector of weights for spatial, and εi(t) is the ran-

dom normally distributed error vector at time (t) with E[εi(t)] = 0 and

E½εiðtÞεjðtþ sÞ� ¼
s2; i ¼ j; s ¼ 0

0; otherwise:

(

We refers to this model as STARMA ðpl1 ;l2 ;...:;lp ;
qm1 ;m2 ;...:;mq

Þ. We express the same model in

vector form as

ZðtÞ ¼
Pp

k¼1

Plk
l¼0

φklW
ðlÞZðt � kÞ �

Pq
k¼1

Pmk
l¼0
yklW

ðlÞεðt � kÞ þ εðtÞ; ð6Þ

with E[ε(t)] = 0 and E½εðtÞεðtþ sÞ0� ¼
s2INT; s ¼ 0

0; otherwise:

(

STAR model

Two special sub-classes of the STARMA model are considered in this study. When q = 0, only

autoregressive terms remain, and this model is referred to as space-time autoregressive or

STAR model. The STAR model is given as:

ZðtÞ ¼
Pp

k¼1

Plk
l¼0

φklW
ðlÞZðt � kÞ þ εðtÞ ð7Þ

We refer to this model as STAR ðpl1 ;l2 ;...:;lp
Þ.

STMA model

Models that contain no autoregressive terms (p = 0) are referred to as STMA models. STMA

model is given as:

ZðtÞ ¼
Pq

k¼1

Pmk
l¼0
yklW

ðlÞεðt � kÞ þ εðtÞ ð8Þ

We refer to this model as STMA ðqm1 ;m2 ;...:;mq
Þ:

Spatial weight matrix

The specification of the form of weights Wðf Þ
ij for various positive i’s is a matter left to the

model builder who may choose weights to reflect the configuration of the physical properties

of a system. For example, the county system. The Wðf Þ
ij may be chosen to reflect the physical
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properties of the observed system such as the length of the common boundary between contig-

uous counties i and j, the distance between the centers of counties, natural barriers such as riv-

ers or mountains, and even the ease of accessibility of county i to county j. This last factor

includes such things like the number of roads between i and j, the amount of public transpor-

tation available that connects the two county, and even the flow rates upon these avenues.

Parameters estimation

After identifying the order of the model from the STARMA model family, the next step is to

estimate the parameters. This section deals with the estimation of the STARMA subclass fami-

ly’s parameters. It should be noted that the method of estimating STARMA models are not the

same for each subclass. This is because the STAR is in linear form, whereas the STMA and

mixed STARMA are in nonlinear form.

Maximum likelihood estimation

The best estimates of the φkl and θkl from many points of view are the maximum likelihood

estimates (MLEs) [1]. This is because our basic model formulation has errors that are purely

white noise. The distribution of ε is multivariate normal with mean zero and variance-covari-

ance matrix, σ2INT. We define its probability density function as follow:

f εjF;Y; s2ð Þ ¼ ð2pÞ
� TN

2 js2INTj
� 1

2exp �
1

2s2
ε0ε

� �

¼ ð2pÞ
� TN

2 ðs2Þ
� TN

2 exp �
SðF;YÞ

2s2

� �

ð9Þ

where SðF;YÞ ¼ ε0ε ¼
PN

i¼1

PT
t¼1
εiðtÞ

2
:

Since the ε(t) are the unobservable random errors and the Z(t) are the quantities actually

observed, it is necessary to recursively calculate the ε(t) from the observed Z(t). The appropri-

ate equation is given as

εðtÞ ¼ ZðtÞ þ
Pp

k¼1

Plk
l¼0

φklW
ðlÞZðt � kÞ �

Pq
k¼1

Pmk
l¼0
yklW

ðlÞεðt � kÞ for t ¼ 1; 2; . . . ;T ð10Þ

The conditional likelihood function of F, Θ, and σ2 is given as

L F;Y; s2jZð Þ ¼ ð2pÞ
� TN

2 ðs2Þ
� TN

2 exp �
S�ðF;YÞ

2s2

� �

ð11Þ

where S�(F, Θ) is the function of conditional sum of squares: S�ðF;YÞ ¼ ε̂ 0ε̂; where the ε̂ vec-

tor is calculated via Eq (10) with Z(t) and ε(t) set equal to zero for t<1. The conditional MLEs

of F, Θ, σ2 are given as ŝ2 ¼ ðNTÞ� 1S�ðF̂; ŶÞ, and F̂; Ŷ that minimize S�(F, Θ).

COVID-19 in Makkah region

The data collected relates to the total reported confirmed cases of COVID-19 of three districts

of Saudi Arabia, i.e., Makkah, Jeddah, and Taif of Makkah region. The dataset was obtained

from 31 May to 11 October 2020 from the application programming interface (https://

covid19.moh.gov.sa/). We employ ARIMA and STARIMA models utilizing the neighbor spa-

tial weights matrices.

The objective is to show how to choose the appropriate model to fit our data. It is necessary

to know whether or not there are spatial effects resulting from curfew, and determine the type

of spatial interaction effects to consider for the data. To this end, we will employ the three-

stage model building procedures proposed by Box and Jenkins in modeling daily confirmed

patient’s data of the Covid-19 pandemic for both ARIMA and STARIMA.
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Descriptive statistics of COVID-19 time series

Descriptive statistics of the prevalent confirmed cases of COVID-19 from 31 May to 11 Octo-

ber 2020 are given in Table 1. That is, the prevalence of COVID-19 in Jeddah, Makkah, and

Taif cases as reported during this period.

Implementation

Models were implemented using R (Version 3.6). Fig 1 shows a flow chart for the implementa-

tion of STARIMA and ARIMA models in our analysis.

Preliminary stage

The preliminary analysis of the data was done by using time plots of the series as shown in Fig

2. A visual inspection of the time series plot indicates that the confirmed cases of COVID-19

Table 1. Descriptive statistics of COVID-19 cases.

Location Minimum Maximum Mean Std. Deviation Skewness Kurtosis

Jeddah 3 577 140.903 139.561 1.285 3.711

Makkah 8 623 132.828 110.63 1.494 5.140

Taif 0 306 68.776 77.469 1.234 3.539

https://doi.org/10.1371/journal.pone.0250149.t001

Fig 1. Applied study steps for ARIMA and STARIMA model.

https://doi.org/10.1371/journal.pone.0250149.g001
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in three districts of Saudi Arabia are not stationary series. So, the data must be transformed to

achieve stationary. The series was transformed by taking the first difference of the natural loga-

rithm of the values of each series to obtain stationary, the equation representing the transfor-

mation is given by: Wt = ln (Xt)−ln (Xt−1). After the transformation, Fig 3 shows that Wt series

is stationary and have no trend. The value of d = 1 in ARIMA and STARIMA models.

ARIMA models for COVID-19 in Makkah region

The univariate ARIMA model is fitted for the three districts separately, according to Box-Jen-

kins ARIMA approach.

Identification. To identify the value of the two parameters p and q from ACF and PACF

of the differenced series and compare the two plots shown in Fig 4. The ACF of all series has a

significant spike at time lag (1), described by the first order of moving average. Note that the

time lag (0) was ignored. The PACF of the three series have a significant spike at time lag (1)

and lag (2), which is described by the order of the autoregressive process.

Parameters estimation. Base on the ACF and PACF from the first stage and "auto.arima"

function in R package "forecast," the Box-Jenkins ARIMA model has been fitted for the three

locations separately. As a result, it was the best models as shown in Table 2. The autoregressive

and moving average parameters of our models for the three districts (Jeddah, Makkah, and

Taif). After the candidate model selection and parameters estimation by the maximum likeli-

hood estimation method. Furthermore, we can note that all moving average parameters of

three models are statistically significant at 0.05.

Diagnostics. According to Box-Jenkins approach, diagnostic testing of a model involves

checking the normality and the stationary of the residuals [26]. Fig 5 shows that the residuals

are distributed normally. From the autocorrelation function of the residual, it is clear that all

the autocorrelation coefficients are between the two limits of the confidence interval. This

Fig 2. Time series plot of daily confirmed cases of COVID-19.

https://doi.org/10.1371/journal.pone.0250149.g002
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indicates the independence of the residuals and the satisfaction of the assumption of

independence.

STARIMA models

In this stage, we consider the multivariate STARIMA model for the three districts together.

Construction spatial weight matrix. For the STARIMA model, a spatial weight matrix

was created. First order spatial neighborhood spatial matrices in Table 3 were gotten agreeing

to the spatial neighborhood relationship of the three counties in Makkah region. We assumed

the diagonal elements of the first-order contiguity matrix equal zero. The spatial weight matrix

was also constructed by assigning equal weight to each neighbor.

STARMA model fitting

In this article, we estimated the STARMA model using the three-stage procedure according to

[1]. As discussed in methodology section, STARMA estimation procedure is an extension of

the Box-Jenkins methodology in spatio-temporal set up. As in ARIMA, it has three stages of

model building: the model identification, estimation, and diagnostic checking.

Identification. Model identification is the most vital stride to utilize the forms of spatio-

temporal models: STAR, STAMA, and STARMA. To identify the value of the parameters, we

used STACF, and STPACF of the differenced series for the three locations (see Fig 6). Accord-

ing to Fig 6, we can conclude that the appropriate model for the data is one of the following:

STARIMA (0,1,10), STARIMA (0,1,11), or STARIMA (10,1,11).

Parameters estimation. The estimated parameters of the identified models (STARIMA

(0,1,10), STARIMA (0,1,11) and STARIMA (10,1,11)), using the maximum likelihood method,

given in Table 4, alongside their standard errors, t.values, and p.values.

Fig 3. Time series plot of the differenced daily confirmed cases of COVID-19.

https://doi.org/10.1371/journal.pone.0250149.g003
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Choosing the best spatial model. To choose the best spatial model, we depended on the

following accuracy measures: Mean Absolute Error (MAE), Mean Squared Error (MSE), and

Root Mean Squared Error (RMSE), to compare the forecasting performances of the STARIMA

models. According to the results in Table 5, the lowest MAE, MSE, and RMSE values is STAR-

IMA (10,1,11), so the best spatial model is STARIMA (10,1,11) for the dataset.

Diagnostics. The diagnostic checking stage involves checking the independence of the

residuals of STARIMA (10,1,11) model. We applied the multivariate Box-Pierce non-correla-

tion test (Chi-square = 51.89, df = 42, p.value = 0.141), since the p.value of Box-Pierce test

more than 0.05, then we can’t reject non-correlation hypothesis, this means that the residuals

were uncorrelated (independent). Furthermore, from the STACF and STPACF functions of

the residual (see Fig 7), it was clear that the independence of the residuals and the satisfaction

of the independence assumption.

Fig 4. ACF and PACF of the differenced series.

https://doi.org/10.1371/journal.pone.0250149.g004
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Measuring the predictive power of models

MAE, MSE, and RMSE measures were computed to compare the forecasting performances of

the best traditional ARIMA model and the best STARIMA models under considerations for all

Table 2. The results of ARIMA model.

Location Model Statistic AR Parameter MA Parameter Intercept

Jeddah ARIMA (0,1,1) Estimate -0.4112���

SE 0.0892

t.value -4.6088

p.value 0.0001

Makkah ARIMA (1,1,1) Estimate -0.2172 -0.7431��� -0.0177��

SE 0.1112 0.0858 0.0067

t.value -1.9529 -8.6646 -2.6330

p.value 0.0530 0.0001 0.0095

Taif ARIMA (0,1,1) Estimate -0.6009���

SE 0.0748

t.value -8.0354

p.value 0.0001

Note

��, ��� indicate statistical significance at the 0.05, 0.001, respectively.

https://doi.org/10.1371/journal.pone.0250149.t002

Fig 5. Residuals analysis plots of the three ARIMA model.

https://doi.org/10.1371/journal.pone.0250149.g005
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the locations separately after the curfew. According to the results in Table 6, the lowest MAE,

MSE, and RMSE values of the proposed STARIMA model for Jeddah, Makkah, and Taif after

the curfew, it is confirmed that the interpretation of the curfew STARIMA model performed

better than the Box-Jenkins ARIMA model in the locations for training dataset.

Conclusion

Box-Jenkins univariate ARIMA models are most popularly used in univariate time series data,

whereas their applications are limited when it comes to multivariate spatio-temporal time

series data. Unlike the univariate ARIMA models, STARIMA models have a smaller number

of parameters. For the illustrated dataset, the STARIMA model has only three parameters for

the three locations, whereas ARIMA model has numerous parameters, under such cases over

parameterization may prompt to lower sum of squares of residuals. In conclusion, we studied

the trend pattern of the COVID-19 outbreak in Makkah, Jeddah, and Taif in Saudi Arabia. We

found out that the best prediction model for forecasting the trend of daily confirmed cases in

Makkah, Jeddah, and Taif is STARIMA (10,1,11).

Table 3. Spatial weight matrix of order and one.

Spatial weight matrix of order zero

Location Jeddah Makkah Taif

Jeddah 1 0 0

Makkah 0 1 0

Taif 0 0 1

First order spatial weight matrix

Location Jeddah Makkah Taif

Jeddah 0 1 0

Makkah 0.5 0 0.5

Taif 0 1 0

https://doi.org/10.1371/journal.pone.0250149.t003

Fig 6. STACF and STPACF of the differenced series.

https://doi.org/10.1371/journal.pone.0250149.g006
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Table 4. The results of the estimated STARIMA models.

Spatial Order Model Statistic Spatial Spatial

AR Parameters MA Parameters

φ10 θ10 θ11

Lag(0) STARIMA (0,1,10) Estimate -0.5882���

SE 0.0508

t.value -11.5840

p.value < 2.2e-16

Lag(1) STARIMA (0,1,11) Estimate -0.5807��� 0.1976��

SE 0.05132 0.0611

t.value -11.3159 3.2334

p.value < 2.2e-16 0.0013

STARIMA (10,1,11) Estimate -0.0991 -0.48063��� 0.1967��

SE 0.0866 0.1013 0.0627

t.value -1.1443 -4.7431 3.1353

p.value 0.2532 2.942e-06 0.0018

Note

��, ��� indicate statistical significance at the 0.05, 0.001, respectively.

https://doi.org/10.1371/journal.pone.0250149.t004

Table 5. Accuracy measures of STARIMA models.

Location Measure STARIMA (0,1,1)0 STARIMA (0,1,11) STARIMA (10,1,11)

Jeddah MAE 0.1668 0.1710 0.1560

MSE 0.0516 0.0544 0.0487

RMSE 0.2273 0.2333 0.2206

Makkah MAE 0.1800 0.1775 0.1706

MSE 0.0557 0.0538 0.0507

RMSE 0.2360 0.2319 0.2252

Taif MAE 0.2489 0.2493 0.2482

MSE 0.1167 0.1156 0.1150

RMSE 0.3416 0.3400 0.3391

https://doi.org/10.1371/journal.pone.0250149.t005

Fig 7. STACF and STPACF of STARIMA (10,1,11) residuals.

https://doi.org/10.1371/journal.pone.0250149.g007
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Based on the results obtained, one can infer that the STARIMA model outperforms the uni-

variate ARIMA model. The outperformance of the STARIMA model over the univariate

ARIMA model could be due to the inclusion of spatial information i.e. neighboring effect in

the form of spatial weight matrix. Accordingly, we recommend using spatial analysis for pre-

dicting the COVID-19 confirmation cases and limiting the increase of these cases by taking

appropriate preventive measures such as social distancing, curfew, banning gatherings, etc.

As future work for our study, we can use the updated spatial-temporal models, such as

Bayesian spatial-temporal models [13–16] or spatial fixed/random effects panel models [27–

29].
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