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The STriatal-Enriched protein tyrosine phosphatase STEP is a brain-specific tyrosine
phosphatase that plays a pivotal role in themechanisms of learning andmemory, and it has
been demonstrated to be involved in several neuropsychiatric diseases. Recently, we
found a functional interaction between STEP and adenosine A2A receptor (A2AR), a
subtype of the adenosine receptor family widely expressed in the central nervous
system, where it regulates motor behavior and cognition, and plays a role in cell
survival and neurodegeneration. Specifically, we demonstrated the involvement of
STEP in A2AR-mediated cocaine effects in the striatum and, more recently, we found
that in the rat striatum and hippocampus, as well as in a neuroblastoma cell line, the
overexpression of the A2AR, or its stimulation, results in an increase in STEP activity. In the
present article wewill discuss the functional implication of this interaction, trying to examine
the possible mechanisms involved in this relation between STEP and A2ARs.
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INTRODUCTION

P1 adenosine receptors are the most investigated purinergic receptors within the central nervous
system (CNS). Since their identification in the late 70s, they have been the subject of numerous
studies that established their widespread distribution in the brain and their pivotal role in the
functioning of the CNS. The adenosine A2A receptor (A2AR) is one of the four G protein coupled
receptor subtypes (A1, A2A, A2B, and A3), it is coupled with Gs protein and its stimulation activates
adenylate cyclase causing an increase in intracellular cAMP levels (Borea et al., 2018). With the
exception of the dorsal and ventral striatum, where A2AR is present at remarkably high levels, in the
rest of the brain the expression of the receptor is quite low (Rosin et al., 2003). Despite this, the huge
importance of A2AR in the CNS is witnessed by its role in the regulation of fundamental functions
such as movement, cognition and emotions and, for this reason, it has attracted the interest of
researchers as a potential therapeutic target (Borah et al., 2019). Indeed, the A2AR antagonist
istradefylline (Nourianz®) has recently been approved in the United States, after its first
registration in Japan, for the treatment of Parkinson’s disease, as an add-on to levodopa (Chen
and Cunha, 2020).
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One of the peculiarities of A2AR is the ability to modulate the
activation and function of several other receptors, such as
dopamine D2, cannabinoid CB1, metabotropic glutamate 5
receptor (mGlu5R), as well as adenosine A1 receptors, by
forming heteroreceptor complexes (Cabello et al., 2009;
Tebano et al., 2012; Moreno et al., 2018; Ferré and Ciruela,
2019). Recently, we identified a novel role of A2ARs in the
rodent brain and in neuronal cells. Specifically, we
demonstrated that the stimulation of A2ARs results in the
activation of the STriatal-Enriched protein tyrosine
phosphatase STEP, a brain-specific tyrosine phosphatase
involved in several functions, including learning and memory
(Goebel-Goody et al., 2012; Chiodi et al., 2014; Mallozzi et al.,
2020).

In this article we will present some recent results on the A2ARs/
STEP interaction and on the possible mechanisms involved. The
physiological implication of this new receptor function will be
discussed.

STRIATAL-ENRICHEDPROTEIN TYROSINE
PHOSPHATASE

In the early 90s, Paul J. Lombroso and collaborators isolated a
new protein tyrosine phosphatase in the brain, particularly
enriched in the striatum, that strongly colocalized with
DARPP32 and tyrosine hydroxylase-positive neurons, which
was denominated STEP (Lombroso et al., 1991, 1993). STEP
exists in several isoforms that differ in intracellular localization
and functions, and all originate by alternative splicing of a single
Ptpn5 gene (Boulanger et al., 1995). The two major isoforms are
STEP61, associated with membrane compartments, and the
cytosolic protein STEP46, and both carry the consensus
sequence required for the phosphatase catalytic activity and a
kinase-interacting motif (KIM), that allows the interaction with

the substrates. When phosphorylated at the specific Ser residues
(221 for STEP61 and 49 for STEP46) within the KIM domains,
STEP61 and STEP46 become inactive since they lose their ability
to bind to the substrates (Bult et al., 1996; Pulido et al., 1998;
Kamceva et al., 2016). STEP activity is regulated by quite complex
phosphorylation/dephosphorylation mechanisms, in which
calcineurin (a calcium/calmodulin-activated serine/threonine
phosphatase, also known as PP2B) and protein kinase A
(PKA) play a major role (Figure 1). Calcineurin activates
STEP through protein phosphatase 1 (PP1), which
dephosphorylates the regulatory serine residue and activates
STEP (Paul et al., 2000). The activation of PKA results in the
inhibition of STEP activity either through the direct
phosphorylation of STEP61 and STEP46 at the specific serine
residues and, indirectly, through the phosphorylation of DARPP-
32 and the inhibition of PP1(Paul et al., 2000; Valjent et al., 2005;
Giralt et al., 2011). Several neurotransmitter receptors, such as
dopamine D1 receptor and nicotinic α7 nAChR, are able to
modulate STEP activity (Paul et al., 2000; Zhang et al., 2013).
Moreover, mGlu5R has been shown to increase STEP translation
at dendritic levels that mediates AMPA receptor endocytosis, a
mechanism that could be involved in DHPG-induced LTD.
(Moult et al., 2002; Zhang et al., 2008; Goebel-Goody et al.,
2012; Chen et al., 2013). As already mentioned, and as we will
discuss later, STEP activity is also modulated by A2AR (Chiodi
et al., 2014; Mallozzi et al., 2020).

Several substrates of STEP have been identified. The glutamate
receptor subunits GluN2B and GluA1/GluA2 of the NMDA and
AMPA receptors, respectively, are important STEP substrates
whose dephosphorylation at specific tyrosine residues promotes
receptor internalization and reduces NMDA- and AMPA-
mediated synaptic transmission, having a strong impact on
synaptic plasticity (Won and Roche, 2021). Pyk2 and Fyn, two
other STEP substrates, are also involved in the modulation of
synaptic transmission and synaptic plasticity by influencing

FIGURE 1 | Schematic representation of the possible mechanisms involved in the regulation of STEP activity by A2ARs. Activation of A2ARs, directly with the
selective A2AR agonist CGS 21680 or indirectly with cocaine, increases STEP activity through a peculiar mechanism involving mGlu5R, intracellular Ca++ increase and
calcineurin recruitment. On the contrary, activation of PKA by forkolin promotes STEP inactivation through phosphorylation of Ser residue.
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several mechanisms, including the direct or indirect
phosphorylation of glutamate receptor subunits (Huang et al.,
2001; Giralt et al., 2017; Matrone et al., 2020). Moreover, STEP
shows a role at presynaptic level, modulating glutamate
neurotransmitter release (Bosco et al., 2018). Additional STEP
substrates are the extracellular signal-regulated kinases 1 and 2
(ERK1/2), involved in memory processes and in synaptic
plasticity, and p38, implicated in cell death and survival, and
both are inactivated by dephosphorylation of specific tyrosine
residues upon STEP activation (Goebel-Goody et al., 2012).

STEP appears to be strongly involved in neurological disorders
where synaptic dysfunctions have been identified, as well as in
diseases where excitotoxicity play a major role.

Indeed, in the last years a dysregulation of STEP has been
found in several neuropsychiatric diseases and its modulation, by
genetic or pharmacological tools, was accompanied by the
attenuation of the symptoms in animal models of diseases
(Karasawa and Lombroso, 2014; Kulikova and Kulikov, 2017).
The general idea is that elevated STEP levels or activity have
detrimental effects on cognition by negatively influencing
synaptic strengthening through the dephosphorylation of
substrates regulating synaptic plasticity (Pelkey et al., 2002;
Fitzpatrick and Lombroso, 2011). Indeed, high levels of STEP
expression have been found in animal models of Alzheimer’s and
Parkinson’s diseases (neurodegenerative diseases characterized
by cognitive impairment), and in the hippocampus of aged mice,
rats and rhesus monkeys and in the brain of individuals with mild
cognitive impairment (Xu et al., 2012; Kurup et al., 2015;
Castonguay et al., 2018). Furthermore, STEP over-expression
induced memory deficits in mice, and its inhibition
ameliorates memory performances in aged rats and in animal
models of neuropsychiatric diseases (Castonguay et al., 2018).
However, during aging reduced STEP activity and expression
have also been reported (Rajagopal et al., 2016; Cases et al., 2018).

Beside its role in modulating synaptic plasticity and cognition,
STEP is emerging as a key regulator of neuronal survival and
death. As demonstrated by Choi et al. (2007), STEP increases
neuronal vulnerability to excitotoxic cell death in primary
hippocampal cultures and the sensitivity of neurons to
excitotoxicity induced by Status Epilepticus in mice. These
effects were due to the blockade of neuroprotective responses
initiated by the ERK/MAPK signaling pathway. On the other
hand, in an in vivo model of cerebral ischemia, where excitotoxic
cell death plays a major role, STEP exerts a neuroprotective effect
by inhibiting the p38 MAPK signaling pathway. In fact,
administration of the STEP-derived peptide prevents p38
MAPK activation and reduces ischemic brain damage in STEP
KOmice (Deb et al., 2013). In order to reconcile those apparently
conflicting results, it should be considered that, depending on the
level of calcium increase following NMDA receptors stimulation,
STEP activity can be increased and promote neuroprotection by
reducing p38 activation or, in case of a prolonged insult, the
resulting STEP degradation will facilitate cell death pathways by
increasing the phosphorylation of p38 MAPK (Poddar et al.,
2010). In addition, the stimulation of synaptic or extrasynaptic
NMDA receptors differently impacts on STEP expression,
resulting in the activation of ERK1/2 or p38 MAPK,

respectively, and promoting cell survival or death (Xu et al.,
2009).

Another well identified role for STEP is the modulation of the
effects of psychostimulant drugs such as cocaine and
amphetamine (Valjent et al., 2005; Hopf and Bonci, 2009; Sun
et al., 2013; Siemsen et al., 2018). As for cocaine effects, initial
studies demonstrated that following acute cocaine treatment in
mice, the increase in ERK1/2 phosphorylation (pERK1/2) in a
subpopulation of dopamine D1R-containing striatal neurons was
mediated, at least in part, by D1R-mediated STEP inactivation
(Valjent et al., 2005). However, in condition of chronic cocaine
consumption, such as in models of cocaine self-administration, a
decrease in STEP phosphorylation and pERK1/2 are observed in
the rat prefrontal cortex, that could represent early events in
withdrawal mechanisms (Sun et al., 2013). More recently,
cocaine-induced STEP activation has been demonstrated in the
early phase of abstinence, which mediates the decrease in p-ERK
observed in the pre-limbic cortex of cocaine-seeking rats
(Siemsen et al., 2018). These studies demonstrate an active
role of STEP in cocaine-mediated effects. In line with this, as
we will describe below, we found that the synaptic depression
exerted by cocaine in the striatum involved STEP activation
through the stimulation of A2ARs (Chiodi et al., 2014),
suggesting an interaction between the receptor and the
phosphatase.

EVIDENCE OF A FUNCTIONAL
INTERACTION BETWEEN A2AR AND
STRIATAL-ENRICHEDPROTEIN TYROSINE
PHOSPHATASE

The first evidence of an involvement of STEP in A2AR-mediated
effects came from our study investigating the synaptic effects of
cocaine in the striatum (Chiodi et al., 2014). We found that
cocaine reduced striatal synaptic transmission, evaluated by
recording extracellular field potentials and AMPA- and
NMDA-mediated currents in whole cell patch-clamp
experiments in corticostriatal slices. Cocaine effects were
reduced by A2AR antagonist, by inhibitor of protein tyrosine
phosphatases, by a calcineurin inhibitor and by TAT-STEP, a
substrate trapping mutant peptide that makes STEP
enzymatically inactive. In addition, the effect of cocaine was
strongly reduced in A2AR knock-out mice. In order to
understand the relationship among cocaine, A2ARs and
tyrosine phosphatases (and STEP in particular), we evaluated
the enzimatic activity of the total tyrosine phosphatases, and of
STEP in particular, in mice striatal tissue after cocaine
stimulation. We could show that cocaine increased tyrosine
phosphatase activity, and in particular STEP activity, in
A2AR-dependent manner. In fact, cocaine failed to activate
STEP in the presence of the A2AR antagonist or in A2AR
knock-out mice. These results suggested that a possible
mechanism through which cocaine reduced synaptic
transmission is the recruitment of A2AR and STEP activation.
Indeed, STEP activation results in the dephosphorylation and
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internalization of NMDA and AMPA receptor subunits causing
depression of excitatory synaptic transmission (Zhang et al., 2008;
Zhang et al., 2010; Zhang et al., 2011; Kurup et al., 2010).
Moreover, the involvement of calcineurin suggests the need of
intracellular calcium increase. These mechanisms have been very
nicely examined and depicted by Robert Yasuda (Yasuda, 2020)
who recapitulated the way through which A2AR modulates
cocaine-induced synaptic depression and, possibly, cocaine
self-administration, via STEP activation.

In a recent paper, in order to confirm and further investigate
the relationship between A2AR and STEP, we used cellular,
genetic, and pharmacological approaches to evaluated STEP
activity in different condition of A2AR stimulation and in
different brain areas (Mallozzi et al., 2020). We took
advantage of a transgenic rat strain overexpressing A2AR in
the brain (Chiodi et al., 2016) in which we evaluated STEP
activity in the striatum and hippocampus. In basal conditions,
we found a significant increase in STEP activity in the striatum
and hippocampus of A2AR overexpressing rats with respect to
wild type. Moreover, in the striatum the selective A2AR agonist
CGS21680 increased STEP activity in wild type but not in A2AR
overexpressing rats (where STEP activity was already high), while
ZM241385, the A2AR antagonist, reduced STEP activity in
overexpressing rats (up to wild type levels), without any effects
in wild type animals. In addition, in A2AR overexpressing rats we
found a decrease in the phosphorylation levels of GluN2B and
Pyk2, two well-known STEP substrates, consistent with an
increased phosphatase activity (Mallozzi et al., 2020).

Similar results have been obtained in the neuroblastoma cell
line SH-SY5Y, which expresses both STEP and A2ARs, where we
confirmed that the stimulation of A2AR with CGS21680 causes an
increase in STEP activity, evaluated also by western blotting
analysis as a decrease in STEP phosphorylation status.

An interesting point to address is by which mechanism the
stimulation of A2ARs results in STEP activation. It is
demonstrated, in fact, that the activation of the cAMP/PKA
pathway, as it occurs with the activation of Gs-coupled
receptors (and the A2AR belongs indeed to the family of
Gs-coupled receptors), rather results in the phosphorylation
and inactivation of STEP (Paul et al., 2000). Actually, also in
our hands the treatment of SH-SY5Y cells with forskolin
(Mallozzi et al., 2020), which induces activation of the cAMP/
PKA pathway, causes an up-regulation of phosphoSTEP,
consistent with the inactivation of the phosphatase. Thus, a
different mechanism must be hypothesized to explain
A2AR-mediated STEP activation.

To assess if a physical interaction between A2AR and STEP
could be necessary, we performed Bioluminescence Resonance
Energy Transfer (BRET) assays (Molinari et al., 2008; Casella
et al., 2011) in SH-SY5Y cell populations co-expressing a green
fluorescent version of STEP61 with either luminescent-A2AR (a
kind gift from Francisco Ciruela) or luminescent-β-arrestin 2
protein (a well recognized G-protein independent signal
transducer) (Sachs et al., 2005). In our experiments, exposure
of these cells to the A2AR agonist CGS21680 failed to enhance the
BRET signal over the level of unstimulated samples, suggesting
that STEP61 is probably not an A2AR interacting partner

(unpublished data) and that the signaling route of A2AR to
STEP61 probably does not depend on their direct interaction.
However, to definitively exclude a direct interaction between
A2AR and STEP, BRET experiments should be performed also
by using other STEP isoforms (i.e., STEP46).

In a recent paper Won and collaborators used mass
spectrometry to study STEP binding proteins and identified
315 candidate proteins and, among them, the authors
recognized mGlu5R as an interactor of STEP (Won et al.,
2019). This finding is particularly interesting since it is well
known that A2AR and mGlu5R physically and functionally
interact in several brain areas, that activation of A2ARs exerts
a permissive role onmGluR5R-mediated effects (Ferre et al., 2002;
Domenici et al., 2004; Tebano et al., 2005; Krania et al., 2018) and,
most importantly, that mGlu5R stimulation results in an increase
in STEP translation and, presumably, activation (Zhang et al.,
2008). Moreover, mGlu5R interacts with Gq proteins and its
stimulation enables the activation of PLC signaling and
intracellular calcium increase (Conn and Pin, 1997).
Interestingly, in our recent paper we found that A2AR-induced
STEP activation is calcium-dependent since in SH-SY5Y cells it is
prevented by the calcium chelator BAPTA-AM and by the
calcineurin inhibitor FK506 (Mallozzi et al., 2020). Thus, on
the basis of this calcium dependence, the mGlu5R could be a good
candidate to mediate A2AR effects on STEP activity. Therefore, in
preliminary experiments we verified in the SH-SY5Y cell line the
effect of the selective A2AR agonist CGS 21680 on STEP activity in
the presence of the mGlu5R antagonist MPEP, and we found that
by blocking mGlu5R, CGS 21680 was no longer able to increase
STEP activity (unpublished results). Even though additional
experiments are needed, these results clearly suggest that
A2ARs modulate STEP activity through the involvement of
mGlu5R (Figure 1).

DISCUSSION AND CONCLUSION

The studies presented above provide a clear demonstration of a
functional interaction between A2ARs and STEP in the striatum
and hippocampus of the rat and mouse brain, which has been
confirmed in the SH-SY5Y neuroblastoma cell line, suggesting that
this interaction can occur in different cell types. The mechanism
throughwhich A2AR and STEP interact is still not clearly identified,
but the calcium dependence and the involvement of mGlu5R are
both very likely. Even though a strong evidence that this interaction
occurs also in vivo is still lacking, a review of the scientific literature
shows that in some neuropathologic conditions STEP and the
A2AR are dysregulated in a similar way. For example, STEP levels
are elevated in rodent models of Alzheimer’s disease, in
postmortem brains of patients with Alzheimer’s disease and in
the brain of individuals with mild cognitive impairment (Zhang
et al., 2011; Xu et al., 2012; Castonguay et al., 2018). In the same
way, A2ARs are upregulated in Alzheimer’s disease, both in animal
models and in the brain of patients (Arendash et al., 2006; Albasanz
et al., 2008; Orr et al., 2015; Temido-Ferreira et al., 2020). More
interestingly, during aging both STEP and A2ARs are upregulated
and show an enhanced activity in animal models and in the human
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aged brain, and inhibition of STEP activity or the blockade of
A2ARs improved memory performances (Castonguay et al.,
2018; Orr et al., 2018; Ferré and Ciruela, 2019; Temido-
Ferreira et al., 2019; Temido-Ferreira et al., 2020). Finally,
STEP over-expression induced memory impairment in adult
mice (Castonguay et al., 2018), and the same occurs in
conditions of increased A2ARs activation (Gimenez-Llort
et al., 2007; Li et al., 2015; Pagnussat et al., 2015).
Accordingly, in A2AR overexpressing rats, in which we
demonstrated an increased basal STEP activity in the
striatum and hippocampus, working memory deficits have
been reported (Gimenez-Llort et al., 2007; Mallozzi et al.,
2020). Very recently, Ferrante et al. (2021) demonstrated that
STEP protein expression and activity were increased in Fragile X
mice and normalized by the A2AR antagonist KW6002 treatment,
which improved the behavioral phenotype as well.

Thus, one important conclusion is that the modulation of
STEP activity could contribute to the effects of A2ARs on
cognitive functions (Chen, 2014; Uchida et al., 2014; Temido-
Ferreira et al., 2019). As for Parkinson’s disease, an interesting
consideration is that long-term treatment of patients with
istradefylline could result not only in the improvement of
motor deficits but also in beneficial effects on cognitive
dysfunction, and that the inhibition of STEP could play a
major role in this effect. In fact, STEP levels are increased in
human brains and in animal models of Parkinson’s disease, which

may contribute to the cognitive impairment that occurs in the
disease (Kurup et al., 2015).

In conclusion, the interaction between A2AR and STEP
(possibly through the involvement of mGlu5R) could have
clinical relevance and its possible consequences should be
contemplated when proposing drugs targeting the A2ARs.
Notably, particular attention should be payed when considering
A2AR agonists as potential treatment for human pathologies
(Borea et al., 2018; Borah et al., 2019), given their potential to
impair cognitive performance by increasing STEP activity.
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