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Fertility rate is one of the most important global indexes. Past researchers found models which fit to age-specific fertility rates. For
example, mixture probability density functions have been proposed for situations with bi-modal fertility patterns.Thismodel is less
useful for unimodal age-specific fertility rate patterns, so a model based on skew-symmetric (skew-normal) pdf was proposed by
Mazzuco and Scarpa (2011) which was flexible for unimodal and bimodal fertility patterns. In this paper, we introduce skew-logistic
probability density function as a better model: its residuals are less than those of the skew-normal model and it can more precisely
estimate the parameters of the model.

1. Introduction

Some countries have a bimodal shape of age-specific fertility
rates that classical bell shaped models [1] cannot fit suitably.
It is possible to fit these patterns by means of a mixture
model. Past researchers have proposed somemodels for these
patterns, which we briefly mention as follows.

Chandola et al. [2] have proposed a Hadwiger mixture
model which has seven parameters. Peristera and Kostaki in
their paper [3] have developed a model, based on normal
distribution which has six parameters. Schmertmann [4]
has proposed a piecewise quadratic spline function which
has 13 parameters. Mazzuco and Scarpa [5] have introduced
a different model based on skew-normal density function
which has 4 parameters. Because of the skewness parameter,
that model has been suitable for most types of fertility
patterns, including bimodal fertility patterns.

In this paper, as a developed by Mazzuco and Scarpa
(2011) [5], a skew-logistic model is proposed. This model is
fitted to the age-specific fertility rate data, and it has been
shown that the residuals of this model are less than the
residuals of the skew-normal model. The researchers have
determined that this model estimates the parameters more
precisely.

Section 2 contains a brief review of existing models of
age-specific fertility rates. Section 3 is an introduction to our
proposed model for age-specific fertility rates, based upon
a skew-logistic probability density function. Fitting fertility
models to real data is done in Section 4. Conclusions and
future research are explained in Section 5.

2. Summary of Some Age-Specific
Fertility Models

The general form of a fertility curve is as follows:
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modelwas useful for bimodalmodels.TheHadwiger function
is as following:
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In 1999, Chandola et al. introduced the “Hadwiger mixture
model” [2] which has the following formula:
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Here, 0 ≤ 𝑚 ≤ 1 is the mixture parameter. Another model
was proposed in [4] with the following formula:
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Here, 𝐼(⋅) is the indicator function, 𝛼 and 𝛽 are the age
limits, 𝑡

𝑘
are the spline knots, and also 𝜃

𝑘
are the parameters.

Then Peristera and Kostaki [3] proposed another model for
fertility patterns based on normal mixture model which has
the following formula:
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In [5], a new model was proposed to fit age-specific data
based on skew-symmetric (skew-normal) density function.
This model is flexible for almost all types of fertility patterns.
We briefly explain their proposed model as follows: at
the beginning, we review the skew-normal pdf, which was
studied in
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Ma and Genton [6] showed that the skew-normal pdf is
unimodal, so this model is useful for fertility patterns such
as USA age-specific fertility rates (1963); compare [5]. To
improve this model, Mazzuco and Scarpa proved that model
(1) may be generalized using the results shown in [7–10].
There is more information about this as follows.

For any symmetric pdf 𝑓
0
and distribution function 𝐺

with a symmetric density, function (2) is a density function
for any odd function 𝜔(⋅). Consider

𝑓 (𝑥) = 2𝑓
0
(𝑥) 𝐺 {𝜔 (𝑥)} . (7)

Now if pdf and cdf of standard normal distribution
replace 𝑓

0
and 𝐺, respectively, and insert 𝜔(𝑥) = 𝛼𝑥,

the Flexible Generalized Skew-Normal (FGSN) distributions
formed as follows:
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According to [6], the pdf in (8) has at almost two modes,
so this model is adequate for bimodal fertility patterns. As
you can see, there are now 4 parameters 𝛼, 𝛽, 𝜉, and 𝜔 in this
model which will be interpreted as the following.

Parameter 𝜉 is location parameter, and 𝜔 is scale param-
eter. Parameter 𝛼 is the skewness parameter in the skew-
normal distribution when 𝛽 = 0, and, in the FGSN
distribution,𝛽 is the skewness parameter.The two parameters
𝛼 and 𝛽 are related to the location of two modes fertility
patterns. We do not have the exact value of them, so we
assumed that they vary between −5 and +5. According to
Mazzuco and Scarpa, there is different plots for the situations
in which 𝜉, 𝜔, and 𝛼 are fixed, and the parameter 𝛽 has
various values. After interpreting the parameters of Mazzuco
and Scarpa [5], their model was fitted to real data. Notice
that parameters of fertility patterns are estimated through
nonlinear least squares, by minimizing the following term:
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where 𝑓
𝑥
is the real age-specific fertility rate, 𝑔(𝑥; 𝑅, 𝜃
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𝜃
𝑟
) is the fertility rate at age 𝑥 given by the fertility model

used, and 𝑏 and 𝑒 are the ages at the beginning and at the
end of the fertile period, respectively; compare [5]. In that
paper, you can find two figures, the Italian fertility model
and the USA fertility model. In these figures, the residuals
of the skew-normal model are somewhat less than those of
the other models. Although there are some models in these
figures which do not have smaller residuals, because these
models have more parameters, again we can claim that skew-
normal is preferred.

In the next section, we show that the skew-logistic model
as a new fertility model has 4 parameters, just as the skew-
normal model. However, its residuals are less than skew-
normal, so it is the preferred model so far.

3. Skew-Logistic Distribution as
a Fertility Model

In this paper, our aim is to introduce and to fit a skew-logistic
model for age-specific fertility patterns.

Equations (10) and (11) show cdf and pdf of the logistic
respectively:

𝐺 (𝑥) =
1
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, (10)

𝑔 (𝑥) =
𝜆𝑒
−𝜆𝑥

(1 + 𝑒−𝜆𝑥)
2
. (11)
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Figure 1: Skew-logistic probability function when 𝜉 = 30, 𝜎 = 8, 𝛼 = 1, and 𝛽 has different value.

The following formula was introduced by Azzalini for skew-
ing a symmetric distribution:

𝑓 (𝑥) = 2𝑓
0
(𝑥) 𝐺 {𝜔 (𝑥)} . (12)

If we replace (10) and (11) instead of 𝐺 and 𝑓
0
at (12) and

put 𝜔 = 𝛼𝑥, we will have skew-logistic distribution function
which is as follows:
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Here, 𝛼 is the skewness parameter and 𝑥 ∈ R. Now we
transform 𝑥 to (𝑦−𝜇)/𝜎, in which 𝜇 is the location parameter
and 𝜎 is the scale parameter:
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If we rewrite (14) based on the odd power, we will have
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Figure 2: Residuals of fertility models fitted to Italy data.

Equation (15) is the model which we propose for age-specific
fertility patterns. Examples which show that this pdf can have
two modes are in Figure 1.

4. Fitting Fertility Models to Real Data

As it is shown in [5] and Figure 2, which is for an Italian data
set, the skew-normalmodel is generally a better fit, with lower
residuals.

In this section, the skew-normal and skew-logistic fertil-
ity models will be fitted to real data and their quality will be
assessed. The results show that the skew-logistic’s fit is better
than that of skew-normal, so, with respect to Mazzuco and
Scarpa’s findings, we conclude that skew-logistic has the best
fit of the models mentioned above.

To compare, we will use the fertility data of Ireland in the
same years. The data of Greece will be surveyed in Figure 3.
Data are taken from Human Fertility Database (HFD) [11]
and Eurostat (http://epp.eurostat.ec.europa.eu/). Notice that
the parameters of the model will be estimated through
nonlinear least squares, just as skew-normal; it means by
minimizing (9) that here 𝑔(𝑥; 𝑅, 𝜃

2
, . . . , 𝜃

𝑟
) is the fertility rate

at age 𝑥 given by the skew-logistic fertility model.This model
is fitted to the age-specific fertility rate data of Ireland in
Figure 3. Looking at this figure, it appears that skew-normal
and skew-logistic have a similar pattern but it is clear that
skew-logistic is preferred to skew-normal because its sum of
square of residuals is much lower than that of skew-normal.
It is also superior to other models introduced later (there is
more information in Section 5). Also, fitting themodel to age-
specific fertility rate data of Greece in Figure 4, it is again
shown that the skew-logistic has a lower sum of square of
residuals.

5. Conclusions

A new fertility model has been proposed which is based on
skew-logistic probability density function. Previously, other
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Figure 3: Residuals of fertility models fitted to Ireland data.
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Figure 4: Residuals of fertility models fitted to Greece data.

models were usedwhich hadmultiple parameters and sowere
less ideal for our aim. Recently, Mazzuco and Scarpa (2011)
[5] proposed a model based on generalization of the skew-
normal distribution (FGSN). The advantage of the FGSN
model is its flexibility for complex fertility patterns and also
the number of its parameters, which is lower than the later
models.We showed that themodel based on the skew-logistic
distribution function is better than skew-normal not because
of having lower number of parameters but because of having
a better fit to data. For future research, it is proposed that
student’s 𝑡-distribution is used instead of logistic.

Because itmay be possible that amodel based on student’s
𝑡-distribution will have fewer parameters. It is also possible
that, skewing by Fernndez and Steel [12] method instead of
Azzalini [13], better fit to real data may be produced.
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Finally it is necessary to discover whether the MATLAB
program could be used for calculating parameters and draw-
ing graphs. Outputs of this program show that, with the same
data, the norm of the residual (resnorm) of the skew-normal
model is 148.7917 and the resnorm of the skew-logistic model
is 143.5909.This shows that the accuracy of the latter is greater
than the former.
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