
RESEARCH ARTICLE

Pre-processing by data augmentation for

improved ellipse fitting

Pankaj Kumar☯, Erika R. Belchamber, Stanley J. Miklavcic☯‡*

Phenomics and Bioinformatics Research Center, School of Information Technology and Mathematical

Sciences, University of South Australia, Mawson Lakes, Adelaide, Australia

☯ These authors contributed equally to this work.
‡ Senior author.
* stan.miklavcic@unisa.edu.au

Abstract

Ellipse fitting is a highly researched and mature topic. Surprisingly, however, no existing

method has thus far considered the data point eccentricity in its ellipse fitting procedure.

Here, we introduce the concept of eccentricity of a data point, in analogy with the idea of

ellipse eccentricity. We then show empirically that, irrespective of ellipse fitting method

used, the root mean square error (RMSE) of a fit increases with the eccentricity of the data

point set. The main contribution of the paper is based on the hypothesis that if the data point

set were pre-processed to strategically add additional data points in regions of high eccen-

tricity, then the quality of a fit could be improved. Conditional validity of this hypothesis is

demonstrated mathematically using a model scenario. Based on this confirmation we pro-

pose an algorithm that pre-processes the data so that data points with high eccentricity are

replicated. The improvement of ellipse fitting is then demonstrated empirically in real-world

application of 3D reconstruction of a plant root system for phenotypic analysis. The degree

of improvement for different underlying ellipse fitting methods as a function of data noise

level is also analysed. We show that almost every method tested, irrespective of whether it

minimizes algebraic error or geometric error, shows improvement in the fit following data

augmentation using the proposed pre-processing algorithm.

Introduction

The task of identifying and fitting ellipses to point data is an important and recurring problem

in the mathematical and computer sciences, with a broad spectrum of applications. In his Prin-
cipia (Book I, Section IV, Propositions 22-27) [1], Newton outlined how one could establish,

precisely, the unique ellipse satisfying five pieces of information, either passing through given

points or being tangent to given lines. The intention then was, as is historically documented,

to determine the shape of orbits of planets and comets. Factored into the validity of those ellip-

ses was, of course, the assumed accuracy of the observed input data. Naturally, uniqueness

immediately becomes questionable when there are more than five pieces of independent data

to fit, especially when each data point possesses some degree of measurement or observation

error.
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Applications of ellipse or conic fitting continue to arise to the present day not only in

astronomy and astrophysics, e.g. in the study of galaxies [2], but also in camera optics, such as

in the calibration of catadioptric cameras in [3] and [4], and with pin hole cameras, for the

geometry of single axis rotatory motion [5] and [6]. In image analysis, ellipse fitting sees appli-

cation in foreground segmentation, of biological cells in microscopic images [7] or of cereal

grains in macroscopic images [8], and for the 3D reconstruction of root architecture [9, 10]. In

the medical diagnosis of malaria, ellipse fitting was employed by Sheikhhosseini et al. [11], and

more generally by Tang et al. in [12]. Ellipse fitting arises in biometrics, exemplified by the

application to iris segmentation and localization [13–15] face detection [16] and pathological

brain detection [17]. Finally, ellipse fitting arises in the application to industrial inspection

[18] and control of silicon single crystal growth [19, 20].

Previous numerical approaches to ellipse fitting have usually focused on minimizing a dis-

tance function as a condition to satisfy in order to obtain the best fit to point data (see works

by Rosin [21, 22]). In [23], Fitzgibbon et al. reported on a direct method based on minimizing

an algebraic distance measure, while Halir and Flusser presented a numerically stable version

of the same in [24]. A contrasting approach was followed by Ahn et al. [25, 26] who employed

a geometric distance measure in their minimization scheme. A geometric distance measure

featured also in a maximum likelihood estimation algorithm in [27, 28]. Other measures

include treating ellipse data points as a noisy signal and applying filtering techniques [29], use

of Gaussian Mixture Models [30], projective invariants [31] and hybrid approaches [18, 32]. In

yet another approach, Kanatani and Rangarajan proposed hyperaccurate methods of ellipse fit-

ting in [33] and [34], while Yu et al. in [35] proposed a new distance metric based on some

intrinsic properties of ellipses and spheroids. Their new distance function had a clear geomet-

ric interpretation and was less computationally intensive than the geometric distance measure.

Despite these developments the majority of the ellipse fitting approaches had not consid-

ered a non-uniform weighting of individual contributions to the respective distance measures

of error, thus taking particular account of the concept, which is introduced here, of eccentricity
of data points. It is not difficult to imagine, however, that points which are more distant from

the ellipse center and lying closer to the semi-major axis are more difficult to capture than data

points which are closer to the ellipse center. In this paper we amend this deficiency by consid-

ering, in distance measures and ellipse fitting generally, a weighting of points according to

their respective eccentricity values. We show that by doing so the performance of any fitting

procedure is improved. Our mathematical definition of point eccentricity is given in the follow-

ing Section. We note that Yu et al. [35] also considered including weightings in their optimiza-

tion method, thus making their scheme more robust. Although somewhat related to their

method, we argue that no new error measure is needed; existing measures, with their estab-

lished advantages and disadvantages, are adequate but can be improved by a pre-processing of

point data to achieve a better ellipse fit. In [21, 22] Rosin investigated different error functions

which can be used in the least square fitting of ellipses. Among other factors Rosin assessed the

suitability of various error functions against curvature bias. His objective was to gain better

understanding of the merits of different EOF functions. Our objective, however, differs in that

we focus on improving the performance of different ellipse fitting algorithms by an appropri-

ate pre-processing of the raw data. Incidentally, in [22] Rosin concluded that most of the error

functions he considered were insensitive to ellipse eccentricity. From this we again surmise

that an approach such as the one we present here is more warranted rather than a consider-

ation of alternative error measures. Our pre-processing of data is analogous to the resampling

algorithm of particle filters where samples (data points) having a higher weighting are repeated

and samples with insignificant weights are dropped. Through a series of numerical studies we

Data augmentation for ellipse fitting
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show that residual errors of best ellipse fitting are reduced after processing and resampling of

data points.

Methods

In this section we introduce a mathematical definition of eccentricity of individual data points

and demonstrate how the root mean square error (RMSE) of a fit increases with the average

eccentricity of data points. The mean square error (MSE) calculation is based on an error mea-

sure that uses the shortest orthogonal distance of a point to the ellipse. The detailed description

of this can be found in [36]. In the following subsection we present our modelling and simula-

tion framework to validate our empirical observation and support the hypothesis that aug-

menting existing high eccentricity data points will improve the fit. In the final subsection we

present our data supplementation algorithm, which is analogous to the resampling algorithm

of particle filter [37].

Eccentricity of a data point set

The eccentricity of an ellipse is defined by ε ¼
ffiffiffiffiffiffiffiffi
a2 � b2

a2

q

, where a is the semi-major axis and b is

the semi-minor axis of the ellipse and 0� ε< 1. The value ε = 0 corresponds to a circle and

the value ε = 1 corresponds to a straight line. Given a candidate ellipse with a and b and the

orientation of corresponding axes defined, we here introduce the concept of pointwise eccen-

tricity of a data set. For a point Xs of S points we define its eccentricity by the function,

xs ¼ ε
ds;a

ds;b þ ds;a

 !

; s ¼ 1; . . . ; S; ð1Þ

where ds,a is the orthogonal distance of data point Xs to the minor axis and ds,b is the orthogo-

nal distance of the point to the major axis (see Fig 1). This function, whose values range

between 0 and 1, takes on larger values for data points that are more distant from the minor

axis than from the major axis.

Empirical evidence of increasing error with increasing eccentricity

We conducted experiments to demonstrate that the RMSE of a fit increases with the average

eccentricity of the data point set, �x ¼
PN

j¼1
xj=N. In these experiments we generated a simu-

lated set of data points to be fitted based on a random selection of points on a parametric

ellipse and adding zero mean Gaussian noise to these. Different ellipse fitting algorithms were

applied to obtain an ellipse of best fit to these data points. In our study we considered the fol-

lowing ellipse-fitting algorithms for which codes have been provided by the respective authors:

CGIP-1979 [38], a basic and very initial approach to conic fitting; PAMI-1999 [23] and

WSCG-1998 [24], are methods which minimize algebraic errors; PAMI-1991 [39], minimizes

geometric distance error; and ECCV-2012 [28], is a MLE-based approach to minimize geomet-

ric distance. One could argue that a wider range of ellipse fitting algorithms should be consid-

ered for experimentation. However, those algorithms chosen represent a good cross-section of

openly available ellipse fitting procedures. With our list we have covered both traditional as

well as the latest methods; the set is representative of methods which minimize algebraic errors

as well as those that minimize geometric errors. The computed RMSE values corresponding to

data points within the various angular sectors of the conic as shown in Fig 2 are given in

Table 1.

Data augmentation for ellipse fitting
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Data points in the different sectors result in different average eccentricities. The average

eccentricity of data points decreases from the greatest value in the narrowest sector to the least

value for points in the broader sector; in the former region, the data points are further from

the ellipse centre.

The literature clearly documents the fact that different ellipse fitting methods result in dif-

ferent average RMSE values. Naturally, in any application the foremost consideration is the

desire to employ a method that gives a lowest RMSE. However, factors other than the lowest

RMSE value may come into consideration; there may be other application-specific criteria,

such as computational efficiency, that influence the choice of one method over another. All the

same, in our experiments, computing RMSE values for data points with different average

eccentricities, we clearly see a trend of increasing RMSE with increasing average eccentricity

of the data point set, see Table 1; this trend, moreover, is common to all ellipse fitting methods.

This phenomena is visually demonstrated in Fig 3, which shows magnified views of the results

of ellipse fitting in regions of different mean eccentricity: errors are higher for the more eccen-

tric data points. The results given in Table 1 and shown in Fig 3, are averages over 250 repeats

for each of the five different algorithms.

Ellipse data augmentation algorithm

Resampling is a process used in particle filters to avoid the problem of particle degeneration

[37]. In that application particles having greater weights are repeated while particles with insig-

nificant weights are dropped, with the overall number of particles being preserved. Algorithm

1 gives the pseudo code for the present augmentation method where, in contrast to the usual

Fig 1. Schematic illustrating the eccentricity of an ellipse and of a data point as used in this paper.

https://doi.org/10.1371/journal.pone.0196902.g001
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Fig 2. The angular regions between like-coloured lines (on the left and right of the ellipse centre) define sectors containing

different data points for experimentation. The angular ranges are as follows: blue: [−4˚, 4˚] and [176˚, 184˚]; black:[−8˚, 8˚] and

[172˚, 188˚]; magenta: [−15˚, 15˚] and [165˚, 195˚]; red: [−30˚, 30˚] and [150˚, −210˚]; green: [−60˚, 60˚] and [120˚, 240˚].

https://doi.org/10.1371/journal.pone.0196902.g002

Table 1. Average RMSE value per data point in the different sectors for an ellipse of eccentricity 0.947418 with white noise of σ = 0.2. The RMSE increases with aver-

age eccentricity of the data point set. RMSE values are averages of 250 repeats for each method. Ranges of the data points are as follows: range 1: [−60˚, 60˚] and [120˚,

240˚]; range2: [−30˚, 30˚] and [150˚, 210˚]; range3: [−15˚, 15˚] and [165˚, 195˚]; range4:[−8˚, 8˚] and [172˚, 188˚]; range5: [−4˚, 4˚] and [176˚, 184˚].

Ellipse fitting methods Average eccentricity of data points �x in different sectors and corresponding angle ranges of the sectors

0.792539 0.872694 0.909291 0.926683 0.936820

range1 range2 range3 range4 range5

CGIP-1979 3.774845 4.279448 4.739379 4.873605 4.906938

PAMI-1991 16.850676 19.962282 22.702475 23.489765 23.684542

PAMI-1999 18.154369 21.507089 24.459577 25.307857 25.517723

WSCG-1998 12.989561 15.384374 17.493729 18.099821 18.249772

ECCV-2012 14.750664 19.311192 19.933120 20.087211 20.133998

https://doi.org/10.1371/journal.pone.0196902.t001

Data augmentation for ellipse fitting
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resampling process, we increase the data point set by increasing the number of points in the

vicinity of those points having high point-wise eccentricities. Denote by Xs = (xs, ys) an arbi-

trary (2D) data point in a set of S points, s = 1, . . ., S. To each such data point we assign a

weight according to the function

ws ¼ exs ; ð2Þ

where ξs is the point’s eccentricity as defined in Eq (1). The augmented sampling algorithm

described in Algorithm 1 is applied to the data point set complemented by the set of corre-

sponding normalized weights

Ws ¼ ws=
XS

k¼1

wk: ð3Þ

Fig 3. Synthesised data point set generated by introducing Gaussian noise to a given ellipse (gray solid curve). Other solid lines are fitting

attempts using the methods listed in Table 1. Subplots are magnified views of regions (a), (b), and (c).

https://doi.org/10.1371/journal.pone.0196902.g003
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Algorithm 1: Given discrete set fðXs;WsÞg
S
s¼1

, of S data points Xs with weightsWs, by adding

supplementary points produce a discrete set fðYt;ZtÞg
T
t¼1

of T data points Yt with weights Zt
such that T� S.

1. Perform an ellipse fit to the S data points fXsg
S
s¼1
; a and b are

defined.
2. Assign an eccentricity value, ξs, to each data point according to
Eq (1).
3. Compute weights fWsg

S
s¼1

for data point set fXsg
S
s¼1

according to Eqs (2)
and (3).
4. Set T = integer((min(Ws))

−1) > S.
5. Construct the set of cumulative weights, C: c1 = W1,
for s = 2: S do
construct C: cs = cs−1 + Ws

end for
6. Initialize variables told = 1, increments = false, Xsold = X1 and μ1 = 0
or T−1.
7. Begin: s = 1 (the base of C)
for t = 1: T do
Move along C: μt = μ1 + T−1(t − 1)
while (μt > cs) do
Xsold = Xs;
s = s + 1;
increments = true;

end while
if increments == true then
{Yt,. . ., Ytold} = interpolate ([Xs, Xsold] for {told, . . ., t});
Assign new weights Zu = T−1, u 2 {told, . . ., t};
told = t;
increments = false.

end if
end for

In our application of the augmented sampling algorithm, the numbers of input data points

and output data points can be varied. In practice, better ellipse fitting results when the number

of output data points exceeds the number of input data points. As already mentioned, we have

adopted the strategy of retaining all original data points and augmenting the set with new

points in the region around those data points having higher weights. To increase the data

point set the additional data points are obtained (in the sequential Algorithm (1)) by interpo-

lating between point currently considered and its preceding neighbour. The number of points

to be added by interpolation is set by the number of 1/T steps required to cross the current

value cs in the cumulative weight distribution. To compute the weights of data points a knowl-

edge of the major and minor axis is required. In our experiments using the synthesized data

set referred to in the subsection Eccentricity of a data point set, the major and minor axes are

known from the original ellipse used to generate the data points. In the example application

involving a series of real data sets, an example of which is depicted in subsection Application to
a root phenotyping data set, of the Results and Discussion section, an estimate of the major and

minor axes was obtained by taking means of ellipse parameters generated using two or more

of the five different methods. Alternatively, one could take two passes of the same algorithm

before and after data augmentation. The estimation of the eccentric weights of the data points

is not sensitive to small errors in the estimate of the major and minor axes.

Data augmentation for ellipse fitting
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Theoretical model and simulations

In the preceding section we provided an empirical demonstration of the effect of data point

eccentricity on the accuracy of a fit to observed data. We also described an algorithm used to

generate a supplementary set of data points that we hypothesize would improve the accuracy.

Before presenting numerical results of simulations in the next section we shall here provide a

theoretical validation of the hypothesis as well as indicate the quantitative limitations to an

augmentation process. In other words, we establish here, albeit for an ideal setting, criteria that

need to be satisfied for improved fitting.

There are different parametric representations of an ellipse. An ellipse lying in the x0 y0–
plane can be represented by the (generic) conic equation

Ax02 þ Bx0y0 þ Cy02 þ Dx0 þ Ey0 þ F ¼ 0; ð4Þ

with the constraint B2 − 4AC = 1. Eccentricity of the ellipse, based on the coefficients (A, B, C,

D, E, F), is then given by

ε ¼
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � CÞ2 þ B2

q

ZðAþ CÞ þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðA � CÞ2 þ B2

q ; ð5Þ

where η = 1 when

A B=2 D=2

B=2 C E=2

D=2 E=2 F

�
�
�
�
�
�
�

�
�
�
�
�
�
�

< 0 and η = −1 otherwise. Alternatively, an ellipse with

semi-major and semi-minor axes (a0, b0), centered at (x0, y0) and with major axis oriented an

angle θ relative to the x0 axis can be represented by

ððx0 � x0Þcosyþ ðy0 � y0ÞsinyÞ
2

a2
0

� �

þ
ððy0 � y0Þcosyþ ðx0 � x0ÞsinyÞ

2

b2
0

� �

¼ 1 ð6Þ

Construction of ground truth and observation data

Through suitable affine transformations, (x0, y0)!(x, y), the ellipse center at (x0, y0) can be

mapped to the origin (0, 0) and θ is mapped to 0. Thus, without loss of generality but with the

advantage of simplicity, an ellipse, E0, can be represented as

E0 ¼ fðx; yÞ : x2=a2
0
þ y2=b2

0
¼ 1g: ð7Þ

With this description, E0 will be here used to define ground truth data, which we shall attempt

to approximate after some treatment with noise and data point addition.

We choose N points, fð�xi; �yiÞg
N
i¼1

, from that part of E0 which lies in the first quadrant. The

points fð�xi; �yiÞg
N
i¼1

can be presented in polar co-ordinates as �xi ¼ ricosyi and �yi ¼ risinyi,

where ri, θi are the polar co-ordinates of the point fð�xi; �yiÞg. These points are then given ran-

dom small perturbations (not necessarily zero mean) to obtain a set C0 of new points

fð~xi; ~yiÞg
N
i¼1

. These perturbed data points lie randomly about E0. Using this set we generate a

set of 4N points by first reflecting the set C0 about the x–axis to give a second set C00, and then

reflecting both C0 and C0 0 about the y–axis to give new sets C00 0 and C00 00, respectively. This sim-

ple reflective operation ensures, that the centre of the fitted ellipse will conveniently be the ori-

gin of the xy–coordinate system. Thus, any contribution to the error of a fit will only be due to

errors in the estimates of the semi-major and semi-minor axes of the fitted ellipse.

Data augmentation for ellipse fitting
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We now seek to obtain an ellipse of best fit, E1 ¼ fðx; yÞ : x2=a2
1
þ y2=b2

1
¼ 1g, to the com-

bined random data set C = C0[C00[C0 00[C0 00 0, where the positive constants a1 and b1 are chosen

to minimize the mean square error,

S ¼
1

N

XN

i¼1

½ðxðyiÞ � xiÞ
2
þ ðyðyiÞ � yiÞ

2
�;

¼
1

N

XN

i¼1

½ða � riÞ
2 cos 2yi þ ðb � riÞ

2 sin 2yi�;

ð8Þ

In the above, because of the doubly reflective symmetry of the data points, we need only

actively consider the N original data points of C lying in the first quadrant. The commonality

of θ values in the polar representation of the ground truth data points allows easy identification

of corresponding points on the parametric fitted ellipse and thus ready formulation of a simple

algebraic representation of the geometric error Eq (8).

We minimize (8) in the usual way and solve the equations generated by the zero derivatives,

@S/@a = 0 and @S/@b = 0, to obtain the best constants a1 and b1:

a1 ¼

PN
i¼1
ri cos 2yi

PN
i¼1

cos 2yi
and b1 ¼

PN
i¼1
ri sin 2yi

PN
i¼1

sin 2yi
: ð9Þ

A measure of the error arising from this approximation, E1, to the true ellipse, E0, is given

by the L2 norm

S1 ¼

Z 2p

0

½ða0 � a1Þ
2 cos 2yþ ðb0 � b1Þ

2 sin 2y�dy

¼ p½ða0 � a1Þ
2
þ ðb0 � b1Þ

2
�:

ð10Þ

Our aim now, according to our hypothesis, is to improve on this error by adding supple-

mentary data points to the original data set. That this is indeed possible is readily shown by

adding particular points to our original set, C, noting that, by construction, we do so in such a

way as to maintain symmetry. Two possibilities arise. First, one may introduce 2n new points

on the x–axis, n at θ = 0 and n corresponding points at θ = π. Alternatively, we introducem
new off-axis points in the positive quadrant and generate symmetric reflections of these points

in the other three quadrants, giving a total of 4m new sample points. However, it suffices for

our analysis to consider the simple cases of adding a single point in each of the above two sce-

narios. That is, n = 1 andm = 1, respectively.

Supplementary point on-axis

We consider first the case of a single new point at θN+1 = 0 (as well as its mirror image point at

θN+2 = π). From symmetry, in the coming analysis we need only consider the point at θN+1 = 0.

The least squares procedure results in a new best-fit ellipse, E2, with optimal ellipse parameters

given by

a2 ¼

PNþ1

i¼1
ri cos 2yi

PNþ1

i¼1
cos 2yi

and b2 ¼

PNþ1

i¼1
ri sin 2yi

PNþ1

i¼1
sin 2yi

: ð11Þ

That is,

a2 ¼

PN
i¼1
ri cos 2yi þ R

PN
i¼1

cos 2yi þ 1
and b2 ¼

PN
i¼1
ri sin 2yi

PN
i¼1

sin 2yi
� b1; ð12Þ

Data augmentation for ellipse fitting
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where we have written R for rN+1. The error incurred by this new approximation is thus

S2 ¼ p½ða0 � a2Þ
2
þ ðb0 � b2Þ

2
�: ð13Þ

The difference between the errors in these two approximations,

DS � S1 � S2 ¼ p½ða0 � a1Þ
2
� ða0 � a2Þ

2
�; ð14Þ

is our point of focus. If we denote by β the ratio

b ¼

PN
i¼1

cos 2yi þ R=a1
PN

i¼1
cos 2yi þ 1

; ð15Þ

then this difference in error becomes

DS ¼ pðb � 1Þa1½2a0 � ðbþ 1Þa1�: ð16Þ

Consequently, the new least squares fit obtained by adding a supplementary point on the

(semi-major) axis will be an improvement provided ΔS> 0 or, equivalently, if the two factors

appearing in Eq (16) are of the same sign. This condition can be shown to reduce to the sum-

mary inequality condition on the distance from the origin of the supplementary point in terms

of given information,

minfa1; a1 þ Da0g < R < maxfa1; a1 þ Da0g: ð17Þ

In Eq (17) we have introduced

Da0 ¼ 2ða0 � a1Þ
XN

i¼1

cos 2yi þ 1

" #

; ð18Þ

in terms of given information. The case of a1 being the minimum of the two scalar values cor-

responds to the case a1 < a0, suggesting that the randomized data points lie predominantly

within the original ellipse, E0, while the case of a1 being the maximum is correlated with a1 >

a0 and the randomized points lying beyond the original ellipse.

The first and obvious conclusion to draw from this result is that there exists a two-sided

constraint on where an additional point can be placed for there to be improvement (relative to

the ground truth). Adding a point (or points) too close to the origin or two far away will result

in a less accurate fit. The second conclusion is that the restricted placement is dependent not

only on the observed data to be fitted, but also on that data’s relation to the true ellipse posi-

tion. Indeed, the limited choice for R nevertheless seeks to counteract the inclination of the

noisy data to either under- or overestimate the ellipse’s size and eccentricity. A third conclu-

sion is that Eq (17) verifies our hypothesis that data augmentation can improve the fitted

result.

Supplementary point off-axis

We shall now consider the more general and more likely case of additional off-axis points. In

particular, we consider adding the supplementary point XN+1 = (xN+1, yN+1) = (R cos α, R sin

α). Although we make no assumptions about the values of α, it is worth noting that, according

to our intent, XN+1 will be a high eccentricity point. Thus, α will be close to zero. The new least
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squares fit will possess the optimal ellipse parameter values

a2 ¼

PN
i¼1
ri cos 2yi þ R cos 2a

PN
i¼1

cos 2yi þ cos 2a
¼ a1b; ð19Þ

b2 ¼

PN
i¼1
ri sin 2yi þ R sin 2a

PN
i¼1

sin 2yi þ sin 2a
¼ b1d; ð20Þ

where

b ¼

PN
i¼1

cos 2yi þ R=a1 cos 2a
PN

i¼1
cos 2yi þ cos 2a

and d ¼

PN
i¼1

sin 2yi þ R=b1 sin 2a
PN

i¼1
sin 2yi þ sin 2a

ð21Þ

are defined in analogy to (and are generalizations of) the β in Eq (16). The difference in errors

in the ellipse fittings is now expressed as

DS ¼ pf½ða0 � a1Þ
2
� ða0 � a2Þ

2
� þ ½ðb0 � b1Þ

2
� ðb0 � b2Þ

2
�g ð22Þ

or, more simply, as

DS ¼ pfðb � 1Þa1½2a0 � ðbþ 1Þa1� þ ðd � 1Þb1½2b0 � ðdþ 1Þb1�g: ð23Þ

For the fitting to be an improvement we again require a positive difference, i.e., ΔS> 0. Not

surprisingly, this condition leads to a greater number of possible cases than was identified in

the previous subsection. In fact, there are twelve possible combinations of the four factors

appearing in Eq (23) that result in a positive ΔS (e.g., both terms being positive can either

mean that all factors are positive, the first two are positive while the second two are negative,

the reverse case, or all four factors being negative).

A systematic study will show that these twelve possible combinations correspond to four

scenarios associated with different distributions of the randomized data points relative to the

true ellipse. Framing the discussion in terms of the points in the first quadrant only (the

remainder follow from symmetry), the scenarios are as follows.

Type 1. the set of random points (0 < θi< π/2, i = 1, . . ., N) lie predominantly within the origi-

nal ellipse,

Type 2. the points lie predominantly outside the original ellipse,

Type 3. points near θ = π/2 lie within the original ellipse, while those near θ = 0 lie predomi-

nantly beyond the original ellipse, and

Type 4. points near θ = π/2 lie outside the original ellipse, while those near θ = 0 lie predomi-

nantly within the original ellipse.

In fact, it can be shown that of the twelve possible combinations of terms and factors, lead-

ing to a non-negative ΔS, four fall uniquely into one scenario, while the other eight alternative

combinations correspond to two scenarios. Consequently, associated with each of the four sce-

narios are five combinations of the terms and factors in Eq (23). Of the twelve cases, six can be

eliminated immediately as they violate one or more fundamental conditions (e.g., b1 > R
simultaneously as R> a1, which contradicts our ellipse construction with b1 < a1). After some

elementary algebra, the remaining six cases can be reduced to the following summary
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conditions

b1 < R < b1 þ Dba and
R < minfa1; a1 þ Daag

minfa1; a1 þ Daag < R < maxfa1; a1 þ Daag

R > maxfa1; a1 þ Daag

ð24Þ

8
><

>:

for the case of Δbα> 0, or

minfa1; a1 þ Daag < R < maxfa1; a1 þ Daag and R > maxfb1; b1 þ Dbag ð25Þ

for Δaα and Δbα positive or negative. Here we have introduced

Daa ¼
2ða0 � a1Þ

PN
i¼1

cos 2yi þ cos 2a
� �

cos 2a
ð26Þ

and

Dba ¼
2ðb0 � b1Þ

PN
i¼1

sin 2yi þ sin 2a
� �

sin 2a
: ð27Þ

Note that Δbα (Δaα) can be large for α near 0 (π/2).

Inequality conditions, Eqs (24) and (25), are generalizations of Eq (17) to the case of an

additional off-axis point. Similarly, Δaα and Δbα are generalisations of Δa0.

Regardless of alternative, a pair of inequalities is to be satisfied simultaneously, which thus

establishes allowed values of both α and R (not just R). The greater number of possibilities

allowed through Eqs (24) and (25) is due to the added degree of freedom introduced with a

nonzero α. Thus, as in the preceding case of an on-axis supplementary point, the above

inequalities indicate that point additions cannot be made arbitrarily, but provided the points

satisfy intuitive conditions they will lead to an improved fit.

In Fig 4 we show results of ΔS as a function of continuously varying R for different values

of α for the Type 3 scenario. The plots clearly show ΔS to be positive for a large range of R val-

ues especially for small values of α. Hence, strategically introducing replicate points in the

regions occupied by high eccentricity data points will improve the fit of an ellipse. This fact is

reinforced by the empirical exercise in the following section.

Results and discussion

In this section we demonstrate the improvement achieved by the application of our data aug-

mentation algorithm. We do so first by a quantitative evaluation of the error incurred in fit-

ting. A second demonstration is by means of a visual improvement in an application of 3D

reconstruction of root architecture for plant root phenotyping wherein ellipse fitting is a criti-

cal intermediate step to decipher camera parameters.

Quantitative analysis of improved ellipse fitting

To evaluate the efficacy of our augmentation method we repeated the experiment described in

Subsection Empirical evidence of increasing error with increasing eccentricity, with a second pass

of the five different ellipse fitting methods. The RMSE values of the new fits are listed in

Table 2 for an ellipse of eccentricity 0.9474. Zero-mean, Gaussian noise with a normalized

standard deviation of 0.2 has again been added to each data point. The RMSE values before

and after application of data augmentation for the case of PAMI-1999 [23] were 18.1445 and

11.9947, respectively, the method thus showing the largest overall improvement of 6.1597 (first

column in Table 2) over the other methods, followed closely by PAMI-1991 [39], which
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Table 2. Average RMSE per data point in the different sectors for an ellipse of eccentricity 0.947418 with white noise of σ = 0.2. After pre-processing the data points

with the data interjection algorithm proposed here. The RMSE over each sector has gone down compared to the results of RMSE per data point in Table 1 for the same

sectors.

Ellipse fitting methods Average eccentricity of data points �x in different sectors and corresponding angle ranges of the sectors

0.792539 0.872694 0.909291 0.926683 0.936820

range1 range2 range3 range4 range5

CGIP-1979 3.723994 4.115117 4.479227 4.586599 4.613332

PAMI-1991 10.730208 12.684557 14.408411 14.904043 15.026683

PAMI-1999 11.994722 14.178519 16.104849 16.658706 16.795754

WSCG-1998 8.846329 10.450755 11.866656 12.273833 12.374592

ECCV-2012 10.249949 13.144765 13.543470 13.642364 13.672400,

https://doi.org/10.1371/journal.pone.0196902.t002

Fig 4. Plots of error ΔS verses R as a function of angle α for the Type 3 case, for an ellipse of eccentricity 0.99.

https://doi.org/10.1371/journal.pone.0196902.g004
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showed a slightly lower improvement of 6.1205. In contrast, the RMSE improvement for the

CGIP-1979 [38] method was not (as) significant, being only 0.0508, with the pre- and post-

augmentation RMSE values being only 3.7748 and 3.7240, respectively. It is clear that little

improvement can be expected in this case since this fitting procedure, even in its fundamental

form, is able to capture the more eccentric points better than the other methods. Nevertheless,

we can legitimately conclude that all five ellipse fitting methods showed improvement follow-

ing pre-processing using the proposed algorithm.

In plots of Figs 5 and 6, we present a more extensive comparison between fits prior to and

following data augmentation as a function of data point noise level. Five different levels of

noise were considered: σ = 0.1, 0.2, 0.3, 0.4, and 0.5. The curves in Figs 5 and 6 give the RMSE

values (and their variances) following 250 repeats of random addition of noise to the data

points followed by the fitting exercise. The RMSE values shown have been normalized,

Fig 5. RMSE vs increasing noise level σ plot for CGIP-1979 in black, PAMI-1991 in blue and WSCG-1998 in green. The dashed line shows RMSE values prior to

application of our pre-processing method while the solid line shows the RMSE values after application. The RMSE after application of the pre-processor to the data is

lower than before in almost all cases.

https://doi.org/10.1371/journal.pone.0196902.g005
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respectively, by the maximum RMSE values obtained by each fitting method. This shifts the

focus to the relative improvement in the fit brought about by the proposed data augmentation

algorithm, and suppresses the differences in absolute performance of the different algorithms.

The RMSE values of the fits before application of the proposed algorithm are shown by dashed

lines, while the outcomes following pre-processing are represented by solid lines. We note first

that adding increasing levels of zero-mean, Gaussian noise to the data generally increases the

RMSE, on average. However, in all cases of low magnitude noise (small σ), the pre-processing

algorithm helps improve the quality of the fit as shown by the reduced RMSE values (Figs 5

and 6). The improvement is consistent at all levels of noise, σ, except for the high noise case of

CGIP-1979 [38]. This may be due to the high noise sensitivity of this algorithm. However, as

mentioned, at very high noise levels, the behavior of the fitting algorithms generally becomes

of poorer quality.

Fig 6. RMSE vs increasing noise level σ plot for PAMI-1999 in black and ECCV-2012 in blue. The dashed line shows RMSE values prior to application of our pre-

processing method while the solid line shows the RMSE values after application. The RMSE after application of the pre-processor to the data is lower than before in all

cases.

https://doi.org/10.1371/journal.pone.0196902.g006
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As with the comparison between the results in Tables 1 and 2, from these plots we can

unequivocally conclude that the data pre-processing algorithm improves the performance of

all fitting methods.

Application to a root phenotyping data set

We applied the ellipse data pre-processing algorithm to a root phenotyping exercise. Corn

plants were grown in a transparent gellan gum medium and imaged on a turntable platform.

For analysis, 72 images of the root architecture were taken across a 360˚ rotation range.

Viewed along the rotation axis, the rotation of a given root tip traces out a circle. However, in

the image plane perspective of the camera system the trajectory appears as a highly eccentric

ellipse. Ellipse fitting was applied to a series of such root tip trajectories in order to self-cali-

brate the camera system; the best camera calibration is achieved with the most accurate ellipse

fits. Subsequently, a 3D reconstruction of the root system was performed using the foreground

information derived from the image sequence. Of particular significance in the present context

is the fact that a more accurate 3D reconstruction of the root architecture for quantitative phe-

notyping purposes is achieved with better camera calibration (and thus of better ellipse fitting).

Between 9 and 15 ellipse fits were carried out for a given turntable image sequence.

Fig 7 shows an image of the plant root system at 14 day. Overlaid, firstly, are two discrete

point sets (black symbols) of locations of two root tips (identified as the roots with tips touch-

ing the blue ellipses) that have been tracked through a 360˚ rotation of a turntable and imaged

72 times. Note that in each case some of the 72 data points are absent. Although tangential to

the point of discussion, this incomplete data sets result (in this application) in each case from a

single instance of occlusion of that particular tip by another root during the tracking of the for-

mer tip through the sequence of 72 images. Once the tracking process is unable to locate that

particular tip in an image, all tip location data in subsequent images is lost. Although this tech-

nical problem can be resolved, the current method fortuitously provided us with incomplete

sets for analysis. Also superimposed on the image are red ellipses which have been obtained

using the PAMI-1999 algorithm applied to the raw data sets. It is clear that the method pro-

duces an exaggerated ellipse extending well beyond the range of the data in the lower set (dis-

regarding the high curvature turnaround at the ends of the data set), and an ellipse that

underestimates the data set in the upper set. In contrast, the ellipses in blue, obtained by fitting

with the same method PAMI-1999 after pre-processing of the data with the proposed data aug-

mentation algorithm faithfully follow the respective point sets. Visually it is clear that ellipse

fitting to pre-processed data produces better results. This leads to a better 3D reconstruction of

the root system architecture.

We remark that, depending on distance to the axis of rotation, occlusion can occur any-

where along the trajectory (including the high curvature regions at the ends). However, as evi-

denced by the present example, the data augmentation procedure remains effective provided

there exist a sufficient number of data points in the vicinity of at least one of the two extremes

of the major axis of the ellipse (where symmetry can be utilized to compensate for missing

data at the other extreme). We may comment that the incomplete data sets shown in Fig 7 are

comparable to the partial data considered by Fitzgibbon et al. [23], although the eccentricities

of the implied ellipses here are considerably higher than supposed in their study.

Fig 8(a) shows the result of a 3D reconstruction of the root system without application of

the ellipse data pre-processing algorithm, while Fig 8(b) shows the greatly improved 3D recon-

struction following the application of our data augmentation method. Fig 8(b) clearly shows a

more complete root system, which would allow the observer to more precisely determine spe-

cific geometric and anatomical features for plant characterization.
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Conclusion

In this paper we proposed augmenting point data based on a new eccentricity function of the

data points to improve the solution to the ellipse fitting problem. The method is somewhat

analogous to the re-sampling method for Monte Carlo simulations as the method strategically

adds data points in problematic regions of high eccentricity. Significant improvement was

found by incorporating the procedure as a pre-processing step in five different, well-estab-

lished algorithms. A strictly theoretical study undertaken to confirm that improvement can

indeed be achieved in principle, shows that data augmentation is conditional for improvement.

Guided by this analysis we argue that the data augmentation method proposed here can

improve ellipse fitting of a realistic data set (an example of which is included for demonstra-

tion purposes), even an incomplete set arising, say, from partial occlusion of data points, pro-

vided a sufficient number of high eccentricity points can be found at one end of the major

axis.

Fig 7. Sample image of a corn plant grown in a transparent medium of gellan gum at day 14. The black symbols depict

incomplete data sets of captured locations of two root tips (identified as the tips in contact with the blue ellipses in the image centre)

during a 360˚ rotation of turntable and 72 image acquisition procedure. The superimposed ellipses are results of ellipse fitting of the

discrete data sets using the PAMI-1999 algorithm before (red curve) and after (blue curve) pre-processing of the data using the data

augmentation algorithm proposed here.

https://doi.org/10.1371/journal.pone.0196902.g007
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Fig 8. Image (a) shows a 3D reconstruction of a root system (using a visual hull algorithm) where the ellipse fitting

step has been carried out without application of the data augmentation algorithm. Image (b), on the other hand, shows

an improved 3D reconstruction as a consequence of the data augmentation algorithm in the ellipse fitting step.

https://doi.org/10.1371/journal.pone.0196902.g008
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The concept we have introduced of data point eccentricity and the subsequent data aug-

mentation procedure we have proposed can be adapted naturally to other fitting problems

where there is provision for assigning non-uniform weights to data points and then re-sam-

pling according to these weights. The results suggest that the proposed method would likely

result in improved quality of fit when integrated within other ellipse fitting algorithms.

The method has here been applied to an ellipse fitting problem involving a realistic data set

arising in a root phenotyping exercise where occlusion of data points is an inherent possibility.

The procedure was shown to result in significant improvement in the quality of 3D reconstruc-

tion of the root system architecture. We anticipate that the method could be integrated quite

readily in multiple ellipse fitting procedures [40], which we aim to demonstrate in a future

publication which explores this possibility and its applications.
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