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Clinical trials for HIV prevention can require knowledge of infection times to
subsequently determine protective drug levels. Yet, infection timing is difficult
when study visits are sparse. Using population nonlinear mixed-effects
(pNLME) statistical inference and viral loads from 46 RV217 study partici-
pants, we developed a relatively simple HIV primary infection model that
achieved an excellent fit to all data. We also discovered that Aptima assay
values from the study strongly correlatedwith viral loads, enabling imputation
of very early viral loads for 28/46participants. Estimated times between infect-
ing exposures and first positives were generally longer than prior estimates
(average of two weeks) and were robust to missing viral upslope data. On
simulateddata,we found that tighter samplingbefore diagnosis improved esti-
mation more than tighter sampling after diagnosis. Sampling weekly before
andmonthly after diagnosis was a pragmatic design for good timing accuracy.
Our pNLME timing approach is widely applicable to other infections with
existing mathematical models. The present model could be used to simulate
futureHIV trials andmayhelp estimate protective thresholds from the recently
completed antibody-mediated prevention trials.
1. Introduction
Akey challenge forHIV prevention trials is dating the exposure that ultimately led
to breakthrough infection. The estimation of infection time subsequently allows
the inference of the concentration of the protective agent at exposure,which is criti-
cal to understanding why HIV acquisition was not prevented. Early infection is
difficult to study in practice; even if prospective sampling were available, HIV
RNA is not detectable in blood during early HIV infection and not all participants
can accurately point to potential recent exposure events. Therefore, to estimate the
time of infection—or the eclipse phase, the period between HIV acquisition and
first detectable viral load—a model or inference technique is required.

Estimation techniques have been described previously. Several use viral
sequence data and evolutionary models to trace time back to the founder sequence
[1–4]. Others use viral load data prior to viral peak and retrace using log-linear
regression (average or maximum upslope) [3]. Mathematical models of viral load
have also been used for timing HIV infection [5] (and SARS-CoV-2 [5]). Still other
approaches apply diagnostic windows leveraging Fiebig staging [6] and prior
knowledge of eclipse-phase duration [7,8]. Finally, combinations of some of these
approaches have been integrated into a comprehensive statistical framework [9].

Population nonlinear mixed-effects (pNLME) modelling is a powerful
tool to estimate mechanistic model parameters from longitudinal data across
individuals [10,11]. It has been used extensively in pharmacokinetic modelling
[12,13] and, in recent years, increasingly applied to viral dynamics [14–19].
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Figure 1. Schematic of modelling definitions. The time between infecting
exposure and first positive viral load can be described in three phases.
First, we recognize the possibility of an unknown but probably brief
‘black-box’ period describing localized biology that exists immediately after
infecting exposure. Second, a stochastic process governs early viral expansion,
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The RV217 study [20] comprehensively observed HIV
primary infection: 3173 individuals from four countries
(Kenya, Tanzania, Thailand andUganda)whowere uninfected
but at high risk for acquiring HIV were enrolled. A total of 155
acute HIV-1 infections were diagnosed during the study, of
which we consider the data from 46. Antiretroviral therapy
was not initiated immediately, and individuals were followed
for up to 5 years after diagnosis.

Here, we take the pNLME approach and use this unique
dataset to test 30 formulations of HIV primary infection
models. By information criterion, we identify the most parsi-
monious model and use it for timing estimation, which
includes a stochastic formulation of the model informed by
previous stochastic viral dynamics [5,21]. An exploration of
the robustness of themodel shows that substantial information
is gained from the whole viral load trajectory, such that the
infection time from individuals with sparse data (missing
upslopes) can still be estimated. Finally, the model is used to
explore ideal clinical sampling schemes to balance practicality
and a reasonable level of certainty in timing estimates.
starting with one or a few infected cells initiating systemic infection in the
new host—and concluding when viral load reaches the deterministic
threshold ðtstoÞ. Third, a deterministic model ðtdetÞ proceeds, describing
the observed viral dynamics. By combining estimates for these phases, we
finalize our estimate of t0, the time between infecting exposure and first
positive viral load, sometimes referred to as the eclipse period.

20210314
2. Results
2.1. A framework for estimating infection time using

viral dynamics
We assumed that HIV infection begins with an infecting
exposure, which is the target time of estimation.Our estimation
framework then assumed three main conceptual phases from
infecting exposure through primary infection: (i) black box,
(ii) stochastic, and (iii) deterministic (figure 1). We applied a
separate mathematical approach to the stochastic and
deterministic phases (equations and details in Methods).

The black-box phase immediately following the infecting
exposure encompasses relatively unknown biology. This
could include virus diffusion across mucosal barriers, cre-
ation/extinction of infection foci, target-cell trafficking to
the infection site and/or viral dissemination to draining
lymph nodes. Animal challenge studies and human cases
where infecting exposure is well documented suggest the
black-box phase is brief, from a few hours to 1 day [22–27].
Thus, we did not include a mathematical model of this
period but noted this fundamental uncertainty.

Next, a few infected cells begin the process of viral replica-
tion in a stochastic phasewith duration tsto. The stochastic phase
entirely comprises viral loads below the limit of detection
(20 copies ml−1) and permits viral extinction. Thus, a stochastic
model of discrete cell/virus populations was used. Once viral
loads cross the deterministic threshold (tdet), their kinetics are
approximately exponential and extinction is practically imposs-
ible. Thus, a deterministic model was used for this deterministic
phase. We combine the results of these two models to estimate
the time t0 between infecting exposure and first positive viral
load, sometimes referred to as the eclipse phase [5,7].

2.2. Experimental viral load data with statistical
imputation from Aptima

We used viral load observations from the RV217 study [20],
including 46 individuals out of 155 total diagnosed acute
HIV-1 infections in the study. Individuals had twice-weekly
HIV tests before diagnosis using the Aptima HIV-1 RNA
Qualitative Assay (Hologic)—a fingerstick device testing
small blood collection (0.5 ml). Once diagnosed (two
Aptima-positive visits), quantitative polymerase chain reac-
tion was used to quantify HIV RNA twice weekly in those
individuals who did not initiate antiretroviral treatment
(ART) and had approximately 10 study visits in the first
month after diagnosis. From this cohort, we assembled viral
loads from Thai and Ugandan men, women and transgender
individuals. Only individuals with more than three
detectable longitudinal viral load observations were included.

We found that, during acute infection, Aptima and viral
load were strongly correlated (figure 2a) and Aptimameasure-
ments could be used to impute viral load at diagnosis times for
individuals without measured viral loads (figure 2b). Using
this relationship, we imputed viral load at Aptima diagnosis
for 28 participants (electronic supplementary material, figure
S8), which adjusted the first positive viral load by a few days.

Several individuals were not diagnosed until later acute
infection, meaning that the peak and upslope of viral
load are not obviously detected. We do not exclude these
individuals, instead relying on our population modelling
approach and borrowing strength across the cohort to make
estimates. These estimates are particularly useful because
such datasets provide significant challenges to other timing
estimation approaches.

2.3. Inference of tdet from a parsimonious model of the
RV217 cohort data

The first step in estimating tdet was developing a model
that best described the observed data. Thus, we selected
four distinct and previously applied mechanistic models
of HIV primary infection and varied their population para-
metrizations (the number and type of parameters
estimated). This resulted in a total of 30 models (see electronic
supplementary material, table S1). The four mechanistic
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Figure 2. Correlation plot between Aptima measurements and viral load. (a) A strong linear correlation (Pearson r = 0.83) was found between Aptima and viral
load (log10 HIV RNA copies per ml) at the first positive viral load (black dots). If positive samples beyond the first positive (grey dots) were included, and at higher
measurements of either outcome, Aptima was less correlated to viral load. (b) We used diagnostic Aptima measurements prior to the first positive viral load to
impute additional viral load values. Here, the filled circles indicate observed viral load measurements, the open circle indicates an Aptima imputed value and the
times symbol indicates the last negative measurement.
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models included the canonical viral dynamics model [28],
two models recently fitted to simian–human immunodefi-
ciency virus (SHIV)/simian immunodeficiency virus (SIV)
viral dynamics [29,30] and our own simplified model based
upon Holte et al. [31]. We found that the most parsimonious
model of the RV217 cohort data (electronic supplementary
material, figure S1 and table S1) includes susceptible target
cells (S) that are born and die naturally and virus (V ) that
infects these cells and creates productively infected cells that
produce viable virus (I). The infected cell death rate depends
on their own density powered by an exponent (h). This term
coarsely encapsulates natural cytopathic cell death during
viral production, as well as innate or acquired immunity
against HIV-infected cells that escalates as the number of
infected cells increases (figure 3a; see also Methods and
equation (4.1)). In this way, an explicit immune effector com-
partment is not needed, and the model is simplified
substantially.

The model output is congruent with previous data for
other model compartments. For example, it predicts a suscep-
tible cell drop between 40% and 80% [32] (which may relate
to the CD4+ T-cell depletion during peak viraemia [20]) and
allows for the large observed inter-participant variation of
viral peak (electronic supplementary material, figure S2a).
The model also estimates that susceptible CD4+ T cells are
long-lived and have a pool of 105–106 cells µl−1, which may
include cells from the lymphoid tissue.

The best-fit model for each individual is displayed in
figure 3b. We used pNLME modelling to estimate parameters,
such that each individual has their own estimated parameters,
but these estimates are constrained to be drawn from popu-
lation distributions of each parameter; the population
distribution is simultaneously estimated. All distributions of
parameter estimates are shown in figure 3c and electronic sup-
plementary material, table S2 and values are quoted for each
individual in electronic supplementary material, table S3.
Across all 46 participants, the estimated deterministic time
was a median of 10 days (range: 2.5–32.6). We also verified
that models with comparable Akaike information criterion
(AIC) (less than 10 difference from the best model AIC score)
admitted similar individual values for tdet. Summary statistics
of viral load (peak and set point)were not correlatedwith deter-
ministic time tdet; rather they were strongly correlated with
estimated infectivity ðbÞ, viral production rate ðpÞ and the non-
linear death exponent ðhÞ (electronic supplementary material,
figure S2b). The magnitude of the first positive viral load was
significantly, but not strongly, correlated with tdet (electronic
supplementary material, figure S3). These results suggest that
other estimated parameters are mostly independent of infection
timing and that the model predictions are informative beyond
upslope regression—i.e. nonlinear estimation enhances our
predictive power.

2.4. Stochastic simulations up to the deterministic
threshold

Evidence from modelling other viruses suggests that early
stochastic events are linked to later deterministic kinetics [33].
For example, for cytomegalovirus (CMV) infection, extinction
probabilities, duration and magnitude of transient stochastic
infections are consistent with primary infection mathematical
model parameters [34]. Therefore, based on the individual
best-fit parameter sets, we performed stochastic simulations
to determine the time window between the introduction of a
single infected cell and the deterministic threshold ðtstoÞ. Simu-
lations were initialized with a single infected cell per microlitre
I(0) ¼ 1 and at the viral-free equilibrium between susceptible
cell birth and death S(0) ¼ vol� aS=dS. Scaling up to realistic
volumes allows for a discretized stochastic simulation; vol
was chosen to be 5 × 108 µl, or 5 l, of blood (typical for an
adult human) at approximately 100-fold concentration based
on the finding that the majority of lymphocytes reside in
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Figure 3. The optimal mathematical model recapitulating RV217 viral load kinetics. (a) We tested 30 models, which included four mechanistic models with many
statistical models for each, and found that the optimal model was a variant of the canonical viral dynamics model where infected cells have a nonlinear death rate
(equation (4.1)). (b) This model captures diverse viral load kinetics in the RV217 human study. For each individual ( panel), we show viral load data (blue dots), best
individual fit (black line), limit of detection (grey dashed line, 20 copies ml−1) and last negative visit (red square, included as censored data for fitting). By borrow-
ing strength through the population fitting approach, the model infers peak and upslope even when those data are missing (see participant ID 40139 and 40700, for
example). Imputed Aptima data are applied and one individual (last panel, 40737) had a first positive viral load shifted substantially. (c) Distributions of the six
estimated parameters including the deterministic time.
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lymphoid tissues where infection is assumed to initiate before
spilling over into blood [26,35].

Foreach individual, thebest-fit parametersof thedeterminis-
ticmodelwereused to conduct 100 stochastic simulationsvia the
tau-leap method [36]. Because HIV transmission is a rare per
coital event [37] and we are interested in infection time esti-
mation, we conditioned upon successful infection [5] by only
using simulations from stochastic runs that did not go extinct.

We estimated the deterministic threshold through repeated
stochastic simulations, finding that a value of 0.01 copies ml−1

was low enough to permit rapid simulation and to sufficiently
satisfy two criteria: (i) the slope of stochastic viral loads were
nearly log-linear and (ii) there was effectively no chance of sto-
chastic burn out. The simulations were halted when viral load
crossed the deterministic threshold and the time to reach that
viral level ðtstoÞ was recorded. Simulated viral loads from a
single stochastic simulation of each individual are shown in
figure 4a. The distribution of stochastic times ðtstoÞ is visualized
above the viral load panel, indicating a slightly asymmetric
time to crossing the deterministic threshold with a median of
approximately 5 days in this single stochastic simulation.
There is substantial variability in the slope of these viral load
trajectories based on the range of parameters inferred from
the deterministic model for each individual. We also
performed replicate simulations for single individuals (10
replicates for participant 10428 are shown in figure 4b). In
this case, viral load slopes are nearly identical by the time the
deterministic threshold is crossed, but the early stochastic
events introduce some variability in tsto. For this individual,
themedian time between infection and deterministic threshold
was 5 days, with a total range between 3 and 5 days in these 10
simulations. In summary, viral load upslope varies highly
across subjects butminimallywithin subjects. Variability intro-
duced by the stochastic phase is predominantly a shift, rather
than a scaling of infection time. This agrees with modelling
of barcoded virus data early in infection [38].

An important parameter for these simulations is the initial
number of infected cells. We show that estimates of tsto are
inversely correlated with I(0). For example, as I(0) was
increased from 1, 10, 100 to 1000, the median estimate of
tsto across individuals decreased from 5 days to 1 day (elec-
tronic supplementary material, figure S4). As a result, this
difficult-to-measure biological variable contributes roughly
four additional days of uncertainty over three orders of mag-
nitude. On the other hand, the variance of tsto across
individuals decreases as the initial number of infected cells
increases, such that population estimates are more consistent
in this regime.
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2.5. Combining the stochastic and deterministic phases
to estimate infection time

Next, we integrated the stochastic and deterministic timing
estimates to complete the estimation of t0, the time between
infecting exposure and first positive viral load or the
eclipse phase. As an example, we present this procedure for
participant 10066 (figure 5). First, we used the best-fit par-
ameters and performed 100 replicate stochastic simulations
to estimate a distribution of tsto; the mean was approximately
6 days, and the distribution was skewed, with a 95% uncer-
tainty interval ranging between 4 and 9 days. Second, we
drew 100 values of tdet from a constructed conditional distri-
bution using Markov chain Monte Carlo (MCMC), given the
population and random effect estimates of tdet (mean 10, 95%
uncertainty interval between 7 and 13 days). The infection
time, t0, and its associated 95% uncertainty interval were
then calculated by creating all 100 × 100 combinations of the
sum of tsto and tdet from respective distributions. Estimates
of tsto, tdet and t0 for this individual are presented in figure 5;
we estimated that this individual’s infection occurred 16 days
prior to first positive viral load with the 95% uncertainty
interval ranging between 12 and 20 days. This procedure
was performed for all individuals.
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2.6. Direct comparison with previously applied infection
timing estimation tools

Rolland et al. [3] used several viral load and phylogenetic infer-
ence techniques to estimate infection times using the RV217
data. These methods included the maximum slope of any
two points on the upslope (max upslope), the best log-linear
regression slope (linear model), self-reported entries from
trial participants (self-report), Bayesian phylogenetic inference
of median time to most recent common ancestor (BEAST) [39]
and Poisson fitter [1] (PFitter) diversity estimator based on
envelope sequences sampled at three time points in the first
six months of infection. We compared all methods against
one another and against our viral dynamics pNLME estimates
(both full and deterministic ‘_det’; figure 6). In general, our
deterministic estimateswere in the same range as the other esti-
mates. However, concordance between methods was fairly
weak: concordance correlation coefficients (CCC), which
score how closely data lie to the line y = x, are presented in
figure 6a. The lack of concordance is driven by the fact that
our full estimate finds infection time to be earlier than other
estimates. Adjusting the initial number of infected cells from
1 to 1000 (see electronic supplementary material, figure S4),
or removing the stochastic phase moves our estimates closer
to previous estimates. Finally, we show correlation between
full and deterministic-only pNLME (final panel in figure 6a)
to illustrate that their estimates are not linearly related. Pre-
vious approaches were not strongly predictive of one another
either (figure 6b). Hierarchical clustering by the Spearman cor-
relation grouped sequence-based estimators (BEAST, PFitter)
and viral dynamics estimators (max slope, linear model) with
self-report diary entries falling roughly in between. pNLME
was more akin to other viral dynamics approaches.

The pNLME approach had several qualitative advantages.
It provided estimates for all individuals, including those with
missing upslopes. It did not produce large outliers and never
estimated the time of infection to be at or within a day of first
positive, as max slope, BEAST and PFitter did in a few cases.
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Konrad et al. [5] applied mathematical modelling and
maximum upslope estimators on a different dataset to esti-
mate the eclipse period between exposure and detection as
8–10 days. We did not compare directly with this approach,
but their estimates agree generally with those of Rolland
et al. [3]. For the same reasons, our results estimate a possible
earlier time of infection.

2.7. Insensitivity of pNLME to multi-founder infections
pNLME was not strongly sensitive to multiple-founder infec-
tions (which can complicate sequence-based estimation). For
example, Rolland et al. [3] identified some individuals in this
cohort infected with multiple-founder viruses; for those infec-
tions, naive estimates of time to most recent common ancestor
admitted estimates preceding the date of last negative test
by many months (reflecting divergence in the transmitting
partner rather than divergence after transmission).

Infection with multiple founders has been associated with
higher set-point viral loads [40]. Therefore, we tested to see if
our model parameter estimates were different in single versus
multi-founder infections (electronic supplementary material,
figure S6). We observed no obvious patterns distinguishing
single and multi-founder participants and found no significant
differences among our parameters (Mann–Whitney p > 0.1) but
note the limited sample size with these data (n = 9 multiple
founders in this set). Importantly, the deterministic time was
not affected by the distinction of multiple founders.

2.8. Robustness to sparse data and missing viral load
upslopes

An analysis of the deterministic time estimates in individuals
for whom viral load upslope was not detected showed that
model parameter estimates were different in these individ-
uals (electronic supplementary material, figure S7). Since
missing upslope intuitively suggests that infection was earlier
before the first positive viral load, this analysis validated that
pNLME does not simply predict the population average.
Importantly, information was gained from post-peak kinetics
that helps estimate infection time in individuals with missing
upslopes.

We also validated that leaving out a participant’s upslope
observations did not substantially alter their timing estimate.
We identified 15 participants who had at least three obser-
vations during the viral load upslope. One at a time, each of
the 15 was left out (so their data did not influence the popu-
lation estimate), and then the population fit from all other
(n = 45) individuals was used to fit a modified dataset for the
left-out participant with removed upslope observations
(figure 7). The modified fits were reasonably similar by
visual assessment (figure 7a). The median deterministic time
for these 15 participants decreased from 7.5 to 6.5 days, mean-
ing that estimated tdet in individuals lacking upslope data tends
to be a slight underestimation (figure 7b). The individual errors
(differences in pairs from figure 7b) indicated a loss of precision
(range: −5 to 2 days; interquartile range: −2 to 0 days) and a
median bias of −1 day (figure 7c).

2.9. Additional sources of uncertainty
In our model timing schematic (figure 1), we consider the
possibility of non-mechanistic delays in viral load captured
by the black-box period. This period between exposure
and viral dynamics has not been explored in detail in the
human model. Macaque models of SIV and SHIV suggest
less than 1 day between exposure and viral replication kinetics
[22,24,25,41]; however, in addition to possible differences
between HIV and SIV/SHIV biology, these experiments often
have large inoculum sizes that couldmake comparison difficult
[42,43]. With that in mind, we assume that time increases from
non-mechanistic processes like anatomic distribution areminor
relative to the approximately 6 day tsto period predicted
through our approach.

Another consideration is that infected cells do not immedi-
ately produce virus. An additional 1 day ‘cellular eclipse phase’
is included in someHIV viral dynamics models [44] (including
that of Konrad et al. [5]). Therefore, we performed an analysis
estimating tsto using amodel with cellular eclipse, a 1 daywait-
ing period before infected cells becomeproductively infectious.
Intuitively, this process roughly shifted the distribution of tsto
by 1 day (see electronic supplementary material, figure S5).

2.10. Proof-of-concept study on synthetic data with
realistic study protocols

To assess how sampling intervals affect the accuracy of
pNLME timing estimates, we performed a simulation
study. We simulated viral loads from 20 randomly chosen
RV217 participants and sampled these viral loads with five
different theoretical protocols. We refer to ‘gold’ as daily,
‘tight’ as weekly and ‘sparse’ as monthly sampling visits
(every four weeks). Infection was assumed to occur uni-
formly (no relation to study visits). If viral load was above
20 copies ml−1 at a visit the first positive (or diagnosis) was
recorded and measurements occurred subsequently. In
figure 8a, we illustrate an example of each protocol with
tight and sparse samplings before and after diagnosis. We
estimated infection timing on these synthetic data by assum-
ing that each synthetic dataset was a new individual whose
parameters could be drawn from the population distributions
derived from the RV217-trained model. Their newly specified
parameters were applied to the stochastic modelling step to
complete the timing estimate.

Figure 8b shows the absolute error (days difference
between truth from the synthetic data and inferred t0 from
pNLME applied to those data) and the per cent error:
(true− inferred)/true × 100%. Gold and tight/tight sampling
predictably admitted the lowest errors. Error was generally
negative (with some exceptions for sparse post), meaning
that true simulated infection time was closer to first positive
than estimated.

All schemes other than gold had an obvious bias. Absol-
ute and per cent error were higher in individuals for whom
true infection time was earlier. This means that uncertainty
rises with estimation time further from first positive. Put
another way, our confidence decreases as the estimator pro-
jects further into the past—an intuitively satisfying, albeit
challenging, finding. The linearity of the bias hints that it
might be corrected. However, it may be an artefact of our
synthetic data exercise, so we opted not to follow through
with any correction. Rather, we focus on individuals who
appear to have been infected within 20 days since first posi-
tive. For all sampling schemes, error on these estimates has
a median of ±10 days. An important result is that sparse
sampling after diagnosis was less detrimental than sparse
sampling before diagnosis, because of the growing
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uncertainty with time and the likelihood of missing upslope,
peak and downslope.
3. Discussion
Estimating infection time is critical for infection-prevention
trials. Determination of drug concentration at the precise
time of breakthrough infections is a key step to defining pro-
tective levels. Here, we have developed an approach to
estimate HIV infection time using a viral dynamics modelling
framework applied to data from the RV217 cohort, an acute
HIV infection study with exquisitely fine viral load sampling.

Through extensive information-theoretic model selection
using pNLME models, we discovered a relatively simple
mechanistic model that accurately fits to all viral loads. This
model was used in a deterministic and stochastic framework
to estimate the infection time of all study participants. This
model could additionally be used in a more general setting
to simulate future trials.

In relation to other previously used timing methods, our
approach has several advantages. It allows estimation in indi-
viduals without observed viral upslope or even viral peaks.
It is relatively insensitive to multiple-founder infections, a
possible challenge for sequence-based methods.

Although individual estimates were not highly concor-
dant with previous estimates for the same dataset, averages
agreed between other methods and our deterministic esti-
mate. However, our additional stochastic component drives
our estimates to be earlier, extending the eclipse time. Concor-
dance of our model was strongest against estimates using
other viral load approaches (at best CCC were approx. 0.4),
intermediate against self-report diaries and weakest against
estimates using sequence-based approaches. Therefore, a
mosaic approach may be optimal, developing uncertainty
intervals across all methods. A future solution would be to
model sequences and sequence evolution explicitly and
apply both types of data [45].

While the true time of infection cannot be known other than
in challenge experiments, we verified that our framework is
self-consistent. That is, it accurately estimates infection time
on simulated data from the same mechanistic model. The
‘sparse/sparse’ case was chosen because it represents a com-
parable (though slightly sparser) sampling scheme to that of
the broadly neutralizing antibody-mediated prevention
(AMP) studies [46,47]. In that study, drug infusions occur
every eight weeks and diagnostic visits occur every four
weeks; after first positive viral load (week 0) visits occur at
weeks 2, 4, 8, 12 and 24 [46,48,49]. Thus, given the additional
assumption that HIV dynamics in participants in the AMP
study are comparable to participants in RV217, we expect
that our approach would provide reasonably accurate esti-
mates for individuals who appear to have been infected
within three weeks of the first positive visit (95% uncertainty
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interval approx. 5 days). Estimates become worse for earlier
infections, but fortunately earlier infections should be less
likely as drug concentrations are higher. In any case, this chal-
lenge is not unique to our approach. We do show that tighter
sampling after diagnosis does not drastically improve accu-
racy. Indeed, two important implications for trial design are
that (i) timing accuracy is more improved by tighter sampling
prior to rather than post diagnosis and (ii) high-sensitivity (e.g.
Aptima) testing is crucial to avoid the challenging situation
when a recently infected individual is not diagnosed at a
study visit. We found the Aptima assay measurements adver-
tised as qualitativewere highly correlatedwith viral loads such
that missing early viral loads may be imputed from Aptima
with relatively high confidence.

There are several open questions for the framework’s val-
idity. First, it remains unknown, and will be extremely hard
to test, whether early HIV dynamics can be described by the
samemechanisticmodel as deterministic viral dynamics. How-
ever, in CMV transmission, the probability of infection has
been related to post-infection viral kinetics, suggesting that sto-
chastic behaviours may be linked to subsequent deterministic
kinetics [34]. Second, acute HIV infection probably encom-
passes localized exposure and viral transport/diffusion
through anatomical barriers before initiating systemic infection
[50]. The duration of this period is unknown but is likely to be
short [26] and it could be modelled as an additional source of
uncertainty. It is not clear if any timing method can directly
account for this period; for example, what is ultimately deter-
mined as a founder sequence may be a virion that has
already passed through this step. Third, our choice of the initial
simulation conditions I(0) does inversely correlate with the
time of infection. That is, if we assume viral infection begins
at a lower level, our estimates of infection time are pushed ear-
lier. However, across what we consider to be a plausible range
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of 1–1000 infected cells initiating infection, the median esti-
mation varies by 4 days (electronic supplementary material,
figure S4). Interestingly, Rolland et al. [3] found that an initial
viral load of 1 copy ml−1 gave the best estimates for a log-
linear regression model of non-human primate infection
where the date of infection was known perfectly. One might,
therefore, choose this value for the deterministic threshold,
but the translation of this estimate is complicated by the chal-
lenge virus and the animal inoculation process—typically a
high viral load inoculation is used to ensure ultimate infection.
Therefore, this experimental set-upmay require a higher initial
condition for a mathematical model than a typical human
exposure, which is known to not always cause infection.

Viral dynamics models exist for many viruses [51,52] and,
thus, our approach is immediately applicable. Recently, a simi-
lar method was applied to estimate the time of SARS-COV-2
infection [53]. In future work, we plan to explore modifications
due to preventive interventions, such that infection timing,
and, therefore, protective levels, can be better estimated for
AMP and other coming HIV prevention trials.
20210314
4. Methods
4.1. Model selection
We explored four main different mechanistic models. Three have
previously been used to model primary HIV infection viral loads
and the other was inspired by a previously used model for HIV
decay after ART initiation. For each mechanistic model, we
varied assumptions about the fixed and estimated parameters,
leading to a total of 30 models tested against the RV217 viral
load data. To determine the most parsimonious model, we fitted
each model to the data and used an information criterion to rank
their support from the data [54]. For each of the 30 models,
we performed 15 repeated optimizations of model fit using
the stochastic approximation expectation-maximization (SAEM)
algorithm. From each optimization, we calculated the log-
likelihood (logL) to quantify model fit. Then, we computed the
AIC and Bayesian information criteria (BIC) for the model with
highest likelihood ðLmaxÞ among the 15 assessments:
AIC ¼ �2 logLmax þ 2m, BIC ¼ �2 logLmax þ log(n)m, where m
is the number of parameters estimated and n is the total number
of data points. Two models were considered similarly supported
by the data if the difference between their AIC and/or BIC was
less than 2 [54]. Electronic supplementary material, table S1 con-
tains the equations for each mechanistic model, the statistical
assumptions and the AIC and BIC values. Electronic supplemen-
tary material, figure S1 shows the distribution of likelihoods
from the repeated stochastic optimizations, as well as the median
and best AIC value.

4.2. Population nonlinear mixed-effects model fitting
We modelled the plasma viral load using a nonlinear mixed-
effects approach (pNLME). In this approach, an observed
plasma viral load for individual i at time j is modelled as
log10 Vij ¼ fV(tij,ui)þ eV . Here, fV is the log10 viral load from
the solution of the selected mechanistic model (see equation
(4.1)). ui is the m-length vector of parameters for each study par-
ticipant and eV � N (0,s2

V) is the estimated measurement error
for the viral load with standard deviation sV . Note this implies
that viral load noise is lognormally distributed. The pNLME
approach assumes that each individual-specific parameter uik is
drawn from a probability distribution with the median or fixed
effects u

pop
k and random effects hik � N (0,V), where V ¼ Vkl is

the covariance matrix (admitting the parameter variance when
k ¼ l and the covariance among parameters when k = l).
Because they are extremely sensitive parameters and potentially
logarithmically different among individuals, we modelled
parameters b and p as log10 uik ¼ u

pop
k þ hik. The remaining

parameters were modelled as uik ¼ u
pop
k expðhikÞ.

For each model, we obtained the maximum-likelihood esti-
mation (MLE) of the measurement error standard deviation sV ,
the fixed effects vector upop and the elements of matrix V using
the SAEM algorithm embedded in the Monolix software
(www.lixoft.eu). For all model fits, we assumed tij ¼ 0 as the
time of the first positive viral load. However, we defined the
initial value as the time �tdet when V(�tdet) ¼ 0:01 copies ml−1.
We fixed other initial values as S(tdet) ¼ ðas=dSÞ cells µl−1 and
I(tdet) ¼ ðgVð�tdetÞÞ=p cells µl−1. As per Ramratnam et al. [55],
we fixed parameter g ¼ 23 day�1. We estimated the remaining
parameters of the mechanistic model including tdet. Individual
parameters were selected using the mode of the conditional
distribution pðuijVij; u

pop
MLE,VMLEÞ constructed by the MCMC

algorithm in the Monolix software. The conditional distribution
of tdet for each study participant was used to compute the time
of infection t0 (see figure 5).
4.3. Most parsimonious mathematical model
The set of ordinary differential equations for the model that was
selected by this approach was the Holte/Cardozo model (model
2 h in electronic supplementary material, table S1). This is a
slightly modified basic viral dynamics model that uses a non-
linear death term and tracks the concentration (cells ml−1) of
HIV-susceptible cells S, infected cells I and plasma viral load V
(viral RNA copies ml−1). The equations are written

@tS ¼ aS � dSS� bSV,

@tI ¼ bSV � kIhþ1

and @tV ¼ pI � gV � bSV, ð4:1Þ
where @t denotes the time derivative. This model requires eight
free parameters ui ¼ (aS,dS,b,k,h,p,g, tdet). The parameters are aS

(cells μl−1 d−1) the constant growth rate of susceptible cells, dS
(day−1) the death rate of susceptible cells and b (μl virus−1 d−1) a
mass-action viral infectivity. The viral production rate is p

(virions cell−1 d−1), and g (day−1) is the clearance rate of virus.
The death and killing of infected cells is governed by the rate of
k (cells−h d−1), with the exponential factor h adjusting the
density-dependent death rate. This approach coarsely approxi-
mates adaptive immunity such that higher numbers of infected
cells engender faster killing.
4.4. Stochastic simulation scheme
We adapted the ordinary differential equation system equation
(4.1) to a stochastic simulation [49]. Our implementation in
Python, which employs the τ-leap approach [36], is publicly avail-
able. A time interval Dt = 0.0001 days is chosen for step size, in
which a Poisson number of each transition type occurs. Initial con-
ditions are changed to discrete values bymultiplying by a volume.
We choose volume v ¼ 108 µl based on the observation that there is
approximately 1–10 l of blood in an adult human and that there
are approximately 10–100 times more T cells in lymph tissue
than in blood. A single infected cell I(0) ¼ 1 is assumed to initiate
infection (see sensitivity analyses in electronic supplementary
material, figure S4 for varying this assumption). No viral particles
are present V(0) ¼ 0 but are produced rapidly after starting the
simulation. The initial number of susceptible cells is calculated
from the viral-free equilibrium S(0) ¼ aSv=dS.

We write the rules of the stochastic system to illustrate the
transitions in each state variable (arrows), given the rate of that

http://www.lixoft.eu


royalsocietypublishing.org/journal/rsif
J.R.Soc.Interface

18:20210314

11
transition (denoted above the arrow):

S!aSv Sþ 1,

S!dSS S� 1,

S,V���!bSV=v
S� 1, I þ 1, V � 1,

I ���!kI(I=v)h
I � 1,

I!pI I � 1,V þ 1

and V!gV V � 1: ð4:2Þ

4.5. Leave-one-out analysis
To assess the robustness of pNLME estimation to missing viral
upslope data, we performed a leave-one-out analysis predicting
infection time on participants with and without inclusion of viral
load data prior to peak (upslope). We identified 15 participants
with at least three measurements in the upslope. For each, we cre-
ated a modified dataset by removing all pre-peak viral load
measurements—leaving last negative and measurement starting
at peak viral load. For each modified participant’s viral load, the
model was refitted (leading to 15 refits of the model to data with-
out a viral upslope). Then, each refitted model was used to predict
each participant’s infection time. Population-level fixed effects
were compared between the full data model and the leave-one-
out models to showmodel robustness to individuals with upslope
data. Individual-level estimates of tdet were then compared to
identify bias that may be introduced by missing upslope data.

4.6. Aptima and viral load correlation analysis
TheAptimaHIV-1 RNAQualitative Assay is an in vitro nucleic acid
assay for detectingHIV inhumanplasma and serum. Itwas used as
the primary diagnostic assay in the RV217 study [20]. Although the
Aptima assay is advertised as ‘qualitative’, we found a strong
relationship between Aptima value and viral load (figure 2).
Linear regression was used to predict first positive viral load
(log10 copies ml−1) with concurrent Aptima. Both untransformed
and log-transformed Aptima values were tested (electronic sup-
plementary material, figure S8a). One participant was removed
from the model because of an Aptimameasurement of 3, an outlier
more than twofold lower than the next lowest value. The
relationship was less clear at high values of Aptima, suggesting a
saturation effect where quantitative agreement with viral load dis-
appears. Thus, we repeated linear regression with different upper
bounds ofAptima and determined the optimumvalue byminimiz-
ing residual mean square error of viral load prediction (electronic
supplementary material, figure S8b). We found the best model
used raw Aptima measurements as the input with an upper
bound of 34 (electronic supplementary material, figure S8b,c).
Thismodel was applied to the data to impute first positives for par-
ticipants where Aptima was measured for diagnosis without viral
load (electronic supplementary material, figure S8d).
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