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Systems biology is in an exponential development stage in recent years and has been widely utilized in biomedicine to better
understand the molecular basis of human disease and the mechanism of drug action. Here, we discuss the fundamental concept
of systems biology and its two computational methods that have been commonly used, that is, network analysis and dynamical
modeling.The applications of systems biology in elucidating human disease are highlighted, consisting of human disease networks,
treatment response prediction, investigation of diseasemechanisms, and disease-associated gene prediction. In addition, important
advances in drug discovery, to which systems biology makes significant contributions, are discussed, including drug-target
networks, prediction of drug-target interactions, investigation of drug adverse effects, drug repositioning, and drug combination
prediction. The systems biology methods and applications covered in this review provide a framework for addressing disease
mechanism and approaching drug discovery, which will facilitate the translation of research findings into clinical benefits such
as novel biomarkers and promising therapies.

1. Introduction

Advances in biological sciences over the past several decades
have led to the generation of a large amount of omics molec-
ular data at the level of genome, transcriptome, proteome,
andmetabolome.While identifying all the genes and proteins
provides a catalog of individual molecular components, it is
not sufficient by itself to understand the complexity inherent
in biological systems. We need to know how individual
components are assembled to form the structure of the
biological systems, how these interacting components can
produce complex system behaviors, and how changes in
conditions may dynamically alter these behaviors. As a
result, systems biology has emerged as an important new
discipline that addresses the current challenge of interpreting
the overwhelming amount of genome-scale data on a systems
level.

Yet remaining in its infancy in many ways, systems biol-
ogy is in an exponential development stage in recent years and
has been widely used in pharmacology to better understand
molecular basis of disease and mechanism of drug action [1].

It has become apparent that many diseases such as cancer
are much more complex than initially anticipated, because
they are often caused by a combination of multiple molecular
abnormalities, which supports a novel network perspective
of complex diseases [2]. In addition, many drug candi-
dates failed clinical phases because the mechanisms of the
cellular pathways they target are incompletely understood.
These have significant implications in the drug discovery
process because the molecular components that need to
be targeted must change from single proteins to entire
cellular pathways [3]. By considering the biological context
of drug target, systems biology provides new opportunities
to address disease mechanisms and approach drug discovery,
which will facilitate the translation of preclinical discoveries
into clinic benefits such as novel biomarkers and therapies
[4].

In the following sections, we will first describe systems
biology methods that have become commonplace; then we
will examine their various applications in drug discovery
and translation medicine; finally brief discussions on future
directions are given.
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2. Systems Biology Methods

Systems biology focuses on developing an understanding
of how the phenotypic behavior of biological system as a
whole emerges from individual molecular components and
their interactions that constitute the biological system [5].
Thus a key feature of systems biology is that interactions
among many components are studied, rather than simply
the characteristics of individual molecules. Another fea-
ture is that systems biology uses a range of computational
approaches to generate predictions that can be tested exper-
imentally. Systems biology thus relies on a combination of
experiments that measure multiple cellular components and
computational approaches that allow the analysis of various
data sets. As an iterative process, computational modeling
is performed to propose nonintuitive hypotheses that can
subsequently be experimentally validated, and the newly
acquired quantitative experimental data can then be used
to refine the computational model that recapitulated the
biological system of interest.

In general, two complementary computational ap-
proaches are used in systems biology, namely, data-driven
and hypothesis-driven methodologies (also called top-
down and bottom-up modeling) [6]. The data-driven
approaches involve the gathering of large-scale omics
data sets and subsequent analyses of these data using
statistical modeling techniques. Network modeling, one of
the most frequently used data-driven approaches, provides
insights into the interactions among hundreds or even
thousands of molecular components. On the other hand,
the hypothesis-driven approaches are generally applied to
relatively small systems with fewer molecular components.
A major challenge to this approach is that the quantitative
details of the interactions are unknown and so it is necessary
to hypothesize relevant forms of the equations that govern
the interactions and estimate the values of the associated
parameters [6]. Dynamical modeling, the major hypothesis-
driven approach, can be employed to characterize the
quantitative relations between molecular components and
the emergent behaviors that arise from their interactions.
Choosing the appropriate modeling approaches depends on
the nature of the data and the level of understanding of the
studied biological system.

3. Network Modeling in Biological Systems

A “network” refers to a collection of “nodes” and a collection
of “edges” that connect pairs of nodes. Network represen-
tation of biological molecular systems typically considers
molecular components as nodes and their interactions or
relationships as edges. In biological networks, molecular
components can be genes, proteins, metabolites, drugs, or
even diseases and phenotypes; interactions can be direct
physical interactions,metabolic coupling, and transcriptional
activation. Different types of biological networks can be
constructed, such as protein-protein interaction networks,
cellular signaling networks, gene regulatory networks, disease
gene interaction networks, and drug interaction networks
[7, 8].

Network analysis of biological systems is increasingly
gaining acceptance as a useful method for data integration
and analysis. Assembling a network to represent the complex-
ity of biological systems is just recognized as the beginning of
the analysis. A series of advances in graph-based theory are
also relied on to provide insights into the topology properties
and organizational principles of biological networks, which
include information about the properties of nodes and edges,
global (i.e., the entire network) topological properties, hubs,
motifs, and modules [2, 7]. Properties of nodes include
degree (also called connectivity degree), node betweenness
centrality, closeness centrality, and eigenvector centrality.
Properties of edges include edge betweenness centrality,
relationship types (i.e., activation or inhibition), and edge
directionality. Global topological characteristics of networks
include connectivity distribution, characteristic path length,
clustering coefficient, grid coefficient, network diameter, and
assortativity [7].

The degree of a node is the number of edges that
connect to it; for example, the degree of a protein could
represent the number of proteins with which it interacts.
An important realization is that networks in biological
systems, including protein-protein interaction andmetabolic
networks, are scale-free, which means that the degree dis-
tribution (i.e., the fraction of nodes with a given degree)
has a power-law tail. By contrast, for a random network,
most nodes have approximately the same number of edges
(i.e., fits a Poisson distribution). The scale-free architec-
ture makes biological networks robust to random failures
[7].

Network motifs are recurring small subnetworks com-
posed of a few nodes and their edges, and the topology types
of these subnetworks appear in biological networks much
more frequently than expected by chance [8]. Somemotifs are
particularly important because they are likely to be associated
with some optimized biological function; examples include
negative feedback loops, positive feed-forward loops, bifans,
or oscillators. Another characteristic of networks is their
modularity (i.e., network clustering), implying the existence
of ‘modules’, which are network neighbourhoods with locally
dense connectivity segregated by regions of low connectivity
[8]. In biological networks, a module could correspond to a
group of molecules that tend to interact with each other to
achieve some closely related cellular functions.

Highly connected nodes in a network are called hubs.
The biological role of hubs allows for their classification into
“party” hubs and “date” hubs [2]. Party hubs, also called
intramodule hubs, are highly coexpressed with their inter-
acting molecules and preferentially function inside modules.
While date hubs, also called intermodule hubs, appear to
be more dynamically regulated relative to their interact-
ing molecules and preferentially link different functional
modules to each other. For example, Chang et al. have
recently identified modules enriched in closely connected
“party hubs” that all participate in the same biological process
“ribosome biogenesis and assembly” [9]. Whereas CDC28,
predicted as a “date hub,” serves as an intermodule coordi-
nator and performs important functions in the regulation of
both “cell cycle” and “DNA damage” [9].
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4. Dynamical Modeling in Biological Systems

Dynamicalmodeling, also namedmechanisticmodeling, can
be viewed as translations of familiar pathway maps into
mathematical form [10]. Equations in dynamical models,
derived from established physicochemical theory (e.g., the
law of mass action and Michaelis-Menten kinetics), seek
to describe biomolecular processes (such as intermolecular
association, catalysis and covalentmodification, and intracel-
lular localization). Kinetic parameters in dynamical models
have physicochemical interpretations that define the reaction
rate and binding affinity.

Provided that reasonable values for kinetic parameters
and initial concentrations of cellular components can be
obtained, simulation of the dynamical models yields the con-
centrations of each component at subsequent times, thereby
facilitating comparison of simulated and experimental time
courses [5]. Thus dynamical modeling uses prior knowledge
to make specific predictions and works best with pathways
in which components and connectivity are relatively well
established. Used appropriately, dynamical modeling is much
more powerful in analyzing molecular events in a cellular
context, revealing the principles of biological systems, and
generating novel and useful hypotheses.

The correct mathematical form for a dynamical model
depends on the properties of the systembeing studied and the
goals of the modeling effort. Ordinary differential equations
(ODEs) and partial differential equations (PDEs) are the
most commonly used forms. ODEs represent the rates of
production and consumption of individual biomolecular
component in terms of mass action kinetics, which is an
empirical law stating that rates of a reaction are proportional
to the concentrations of the reacting components [11]. Each
biochemical transformation is therefore represented by an
elementary reaction with forward and reverse rate constants.
One fundamental assumption of ODEs is that the cellular
compartment is well mixed; that is, the concentration of each
component is high and transports instantaneously within a
compartment [12]. If this assumption is not satisfied, then it
is necessary to use PDEs to explicitly simulate the changes
in component concentrations with respect to space. Defining
a PDEs model requires assigning components and reactions
to the appropriate cellular compartment where they occur,
diffusion rules and constants governing the transfer of com-
ponents among different compartments, and the boundary
constraints of each compartment [12].

Dynamical systems can be in either deterministic or
stochastic form [5]. A dynamical system is deterministic
if its trajectory is uniquely determined by the initial state
and a given parameter set, while a stochastic dynamical
model can go to different states with different probabilities
even at a given initial state. Stochastic simulations include
effects arising from random fluctuation around the average
behavior, such as small molecules number of given com-
ponent, sufficiently low elementary reactions, or cell-to-cell
variability due to intrinsic noise.

To develop a dynamical model, there are approximately
four steps. (1) Model design: one of the initial stages is to
specify the model scope and establish the reaction scheme of

all of the molecular components of interest. This may involve
a connectivity diagram listing all of the components (includ-
ing their biochemically modified versions), their connections
(such as stimulatory or inhibitory connections and physical
interactions), and their appropriate subcellular location [12].
(2) Model construction: according to the physicochemical
theory, the connectivity diagram must be converted into
appropriate biochemical reactions, which are mathematically
represented by differential equations [13]. Once these reac-
tions have been established, the experimental data needed
for the kinetic parameters and initial concentrations are
implemented [12]. (3)Model calibration also known asmodel
regression, is the process by which unknown kinetic param-
eter values in a model are estimated so as to match model
performance to experimental measurements. The parameter
estimation is generally based on data-fitting techniques that
involve an iterative process of adjusting kinetic parameter
values to minimize the difference between the model pre-
dicted value and the corresponding experimental data [14].
(4)Model validation is the process of evaluating the goodness
of a calibrated model. This includes making predictions that
can be subjected to experimental test. If the simulation results
of the dynamical model recapitulate experimentally defined
input-output relations, then the model can be considered
to be accurate. The input-output relations may be time-
course and dose-response experimental data in the presence
or absence of additional perturbations [13].

For many biological systems, there are insufficient kinetic
parameters for the biochemical reactions, which have posed
an obstacle for the application of quantitative dynamical
models based on ODEs or PDEs. To address this issue,
discrete dynamical modeling has been used to provide an
alternative way to qualitatively describe complex biological
systems with many unknown kinetic parameters. In these
models, the states of the cellular components are qualitative,
and the time variable is often considered to be discrete. The
main types of discrete dynamical models include Boolean
networks and Petri nets [15]. Boolean networks, whose node
is described by only two qualitative states (i.e., ON and OFF),
have been successfully applied in modeling gene regulatory
networks and signaling networks [16, 17]. Petri nets, which
contain two types of nodes representing the cellular compo-
nents and the biochemical reactions, are particularly suited
for modeling metabolic networks and analyzing metabolic
disorders [18].

5. Systems Biology Methods to
Human Disease

Compared with traditional reductionist approach that
attempts to explain complex diseases by studying individual
gene, systems biology is characterized by the view that the
underlying mechanism of complex diseases is likely to be the
dysregulation of multiple interconnected cellular pathways.
Therefore, biological network analyses and dynamical
modeling have been increasingly used to underlie the
genotype-phenotype relationships in human disease [8].
Here, we attempt to cover four recent advances in this area:
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(1) studies of global relationships between human disease
and associated genes, (2) predictions of treatment response,
(3) investigations of the underlying mechanism of diseases,
and (4) predictions of new disease-associated genes.

5.1. Human Disease Networks. Most previous studies have
focused on the association between a single gene and a single
disease, whereas systems biology approaches using network-
based tools enable a better understanding of the relationships
among multiple genes and diseases. Goh et al. used the
collected gene-disease associations to build the first human
disease network by linking diseases that share one or more
disease genes, and it shows that similar pathophenotypes have
a higher likelihood of sharing genes than do pathophenotypes
that belong to different disease classes [19]. They also found
that most disease genes are nonessential and are not encoded
by hub proteins. Linghu et al. explored the relationships
between diverse diseases and disclosed hidden associations
between disease pairs having dissimilar phenotypes [20].
Suthram et al. present an integrated network approach to
identify significant similarities between diseases and reveal
common disease-state modules significantly enriched for
drug targets [21]. Such systematic approaches have also
provided a foundation for a genome-scale network analysis
of complex diseases, such as cancer [22], neurodegenerative
disease [23], inflammatory disease [24], and also pathogen
responses [25].

5.2. Treatment Response Prediction. An important area in
which systems biology approaches have been applied is
biomarker discovery. Several groups have begun to integrate
gene and protein expression profiles with system-wide maps
of the pathways to identify biomarkers able to diagnose
disease severity and predict disease outcomes. A recent study
illustrated how the network-based approach that identifies
subnetworks with coherent expression patterns can be used
to identify novel markers for breast cancer metastasis [26].
The subnetwork-based analysis of gene expression profiles
has also successfully been used to predict the relative risk
for disease progression and patient survivability [27–30]. In
all cases, the goal is to identify biomarkers not as lists of
individual genes or proteins but as functionally related groups
of genes or proteins whose aggregate properties account for
the phenotypic differences between the different populations
of patients [31]. Unlike conventional expression diagnostic
markers based on individual genes, these network-based
diagnostic markers should be inherently more reliable since
they provide the biological interpretation for the association
between the subnetwork biomarker and the particular type of
disease [32].

5.3. Investigation of Disease Mechanisms. Based on the con-
struction of gene regulatory networks from large-scale
molecular profiles, systems biology approaches have been
valuable for elucidating themechanisms of both physiological
regulation [33] and pathological processes in complex dis-
eases [32]. Recent observations have shown that the wiring
of biological networks can change from healthy to diseased

states. For instance, inflammatory and immune signaling
pathways show different functional wiring when compar-
ing normal and transformed hepatocytes [34]. Rozenblatt-
Rosen et al. systematically examined host interactome and
transcriptome network perturbations caused by DNA tumor
virus proteins [35].The resulting integrated viral perturbation
data reflects rewiring of the host biological networks and
highlights pathways, such as Notch signaling and apoptosis,
that go wrong in cancer. Zhang et al. constructed gene regu-
latory networks to characterize molecular systems associated
with Alzheimer’s disease [36]. Their network-based integra-
tive analysis not only highlighted the strong association of
immune pathways with the pathophysiology of the disease
but also identified the key network regulators that may serve
as effective targets for therapeutic intervention. Another
thrust in systems biology involves combining dynamical
modeling of regulatory pathways with molecular and cellular
experiments as a means to understand the precise regulatory
mechanisms of networks that are altered in diseases [37–39].

5.4. Disease-Associated Gene Prediction. The search for
disease-causing genes is a long-standing goal of biomedical
researches. Systems biology is playing an increasing role in
this area through the computational integration of multiple
genome-scale measurements. It is assumed that if biological
networks underlie genotype-phenotype relationships, then
network properties should be able to predict unidentified
human disease-associated genes. In an early example, net-
work modeling strategies have been successfully used in
tumor research. Starting with known genes encoding tumor
suppressors of breast cancer, Pujana et al. generate a network
containing genes linked by potential functional associations,
and the analysis of this network permitted identification of
novel genes potentially associated with higher risk of breast
cancer [40].Mani et al. introduce a systems biology approach,
based on the analysis of the network ofmolecular interactions
that become dysregulated in specific tumors, to decipher the
human B-lymphocyte interactome, which helped to identify
causal oncogenic lesions in several B-cell lymphomas [41].
Similar network-based computational frameworks have been
proposed to reliably predict disease-associated genes [42, 43].
It is thus suggested that studying dysregulation at a biological
network level, rather than in a “gene centric” manner, can
provide a highly efficientmethod for addressing the problems
of identifications of genes playing a role in human disease.

6. Systems Biology Methods in Drug Discovery

Systems biology approaches have long been used in phar-
macology to understand drug action. The application of
computational and experimental systems biology methods
to pharmacology allows us to introduce the definition of
“systems pharmacology” [44], which describes a field of
research that provides us with a comprehensive view of
drug action rooted in molecular interactions between drugs
and their targets in a human cellular context. Advances in
systems pharmacology will, in the long term, assist in the
development of new drugs and more effective therapies for
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patient treatment management. There are several important
clinically motivated applications in drug discovery to which
systems biology approaches make significant contributions.
Here, we attempt to discuss five recent advances in this
field: (1) drug-target networks, (2) predictions of drug-
target interactions, (3) investigations of the adverse effects
of drugs, (4) drug repositioning, and (5) predictions of drug
combination.

6.1. Drug-Target Networks. Analysis of drug-target networks
in a systematic manner shows a rich pattern of interac-
tions among drugs and their targets in which drugs often
bind to multiple rather than single molecular targets—
a phenomenon known as “polypharmacology” [45, 46].
Topological analyses of this network quantitatively showed
an overabundance of “follow-on” drugs, that is, drugs that
target already-targeted proteins. Likewise, many proteins are
targeted by more than one drug containing distinct chemical
structures. This new appreciation of the role of polyphar-
macology has significant implications for drug development.
Although the single-target approach remains the main strat-
egy presently, some remarkable efforts are being put into
the development of “promiscuous” drugs (also called “dirty
drugs”) that can bind to multiple targets.

Integrating systems biology and polypharmacology holds
the promise of expanding the current opportunities to
improve clinical efficacy and decrease side effects and tox-
icity. Advances in these areas are creating the foundation
of the next paradigm in drug discovery, that is, “net-
work pharmacology” [47]. Keiser et al. related receptors to
each other quantitatively based on the chemical similarity
among their ligands [48]. They have shown that targets
that have no obvious sequence or structure similarity are
linked quantitatively based on their bioactive ligands. The
unexpected relationships between drug targets could be used
to predict their biological function. Li et al. developed a
computational framework to build disease-specific drug-
protein network, which can help study molecular signature
differences between different classes of drugs in specific
disease contexts [49].

6.2. Predictions of Drug-Target Interactions. In recent years,
the observation of polypharmacology that drugs often bind
to more than one molecular target has gained attention.
To fully understand the actions of a drug, knowledge
of its polypharmacology is clearly essential. Keiser et al.
report a computational tool that generates predictions of
the pharmacological profile of drugs [50]. Unlike conven-
tional approaches based on sequence or structural similarity
between targets, the “similarity ensemble approach” defines
each target by its set of known ligands, searches for drugs
with chemical structure similar to the known ligands, and
then predicts new drug-target associations. Campillos et al.
used phenotypic side-effect similarities to infer whether two
drugs share a therapeutic target. Applied to marketed drugs,
a network of side-effect-driven drug-drug relations became
apparent. Several unexpected drug-drug relations are formed
by chemically dissimilar drugs from different therapeutic

indications, which implies new drug-target relations [51].
Integrating side-effect and pharmacogenomic similarities,
Takarabe et al. made a comprehensive prediction and sug-
gested many potential drug-target interactions that were not
predicted by previous approaches [52]. Cheng et al. compared
three supervised inference methods and found that network-
based inference performed best on prediction of drug-target
interactions [53].

6.3. Investigations of Drug Adverse Effects. Accurate predic-
tion of the safety and toxicology of drugs in the early stage of
drug development pipelines is one of the major challenges in
the pharmaceutical industry. Integrating biological data and
systems biology approaches could introduce a fundamental
change in the way drug candidates are assessed. Lounkine
et al. use a similarity ensemble approach, which calculates
whether a drug will bind to a target based on the chemical
features it shares with those of known ligands, to predict
the activity of marketed drugs on unintended “side-effect”
targets [54]. Approximately half of their predictions were
confirmed by experimental assays. An associationmetric was
developed to prioritize those new off-targets that explained
side effects better than any known target of a given drug,
creating a drug-target-adverse drug reaction network. Kuhn
et al. recently report a large-scale analysis to systematically
predict and characterize proteins that cause drug side effects
[55]. They integrated clinical phenotypic data with known
drug-target interactions to identify overrepresented protein-
side effect relations. The results show that a large fraction of
complex drug side effects aremediated by individual proteins.
Yang et al. have constructed an in silico chemical-protein
interactome, which mimics the interactions between drugs
known to cause at least one type of serious adverse effects
and a panel of human proteins [56, 57]. It is revealed that
drugs sharing the same adverse effects possess similarities in
their chemical-protein interactome profiles. By investigating
the associations between drug and off-targets, their research
has explored the molecular basis of several adverse events.
Other studies that integrate systems biology with structural
or chemoinformatics analysis have also been conducted to
successfully predict drug adverse effects [58, 59].

6.4. Drug Repositioning. Drug repositioning, also called drug
repurposing, is a potential alternative for drug discovery by
identifying new therapeutic applications for existing drugs.
The main advantage of drug repositioning is that it should
drastically reduce the risks of drug development and facilitate
repositioned drugs to enter clinical phases more rapidly. As
one example of this utility, Iorio et al. developed an approach
that exploits similarity in molecular activity signatures of
all drugs to compute pair-wise similarities in drug effect
and mode of action [60]. Drugs were organized into a
network using the resulting similarity scores. Network theory
was then applied to partition drugs into groups of densely
interconnected nodes (i.e., communities). The resulting drug
communities are significantly enriched for compounds with
similar mode of action, which often shared the same targets
and pathways. Through this approach, drug repositioning is
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revealed by colocation of drugs within the network com-
munities, which predicts a shared molecular activity with
other drugs in the drug communities. Gottlieb et al. proposed
“PREDICT” algorithm that can handle both approved drugs
and novel compounds [61]. This new method is based on
the observation that similar drugs are indicated for sim-
ilar diseases and utilizes the chemical similarity of drugs
and disease-disease similarity measures for the prediction
of novel drug indications. Furthermore, numerous systems
biology approaches based on gene expression data for in silico
drug repositioning have been published [62, 63]. Iskar et al.
identified a large set of drug-induced transcriptionalmodules
from genome-wide microarray data of drug-treated human
cell lines [64].The identifiedmodules reveal the conservation
of transcriptional responses towards drugs, thereby providing
a starting point for drug repositioning.

6.5. Predictions of Drug Combination. Combination thera-
pies, which modulate multiple targets simultaneously, are
essential to achieve greater therapeutic benefit than using
a single drug [65]. Systems biology methods have been
applied to explain and predict potential drug combina-
tions [66]. Computational approaches utilizing dynamical
modeling have already been used to simulate the effect
of drug combinations and generate experimentally testable
interventions [67, 68]. But due to the incomplete knowledge
about the kinetic values of biochemical reactions, these
dynamical models are currently restricted to a small scale
and only suitable for investigating the action mechanisms
of drug combination. Considering target information which
is usually accessible, the combination effect of drugs might
be evaluated by analyzing the interaction pattern of their
targets from a network perspective [69]. Lehár et al. used
large-scale simulations of bacterial metabolism to simulate
the inhibitory effects of drug combinations and provided
evidence that synergistic combinations are generally more
specific to particular cellular phenotypes than are single
agents [70]. Kwong et al. recently explored a gated signaling
model that offers a new framework to identify nonobvious
synergistic drug combination in NRAS-mutant melanomas
[71]. Lee et al. reveal how the progressive rewiring of
oncogenic signaling networks over time following EGFR
inhibition leaves breast tumors vulnerable to a second and
later hit with DNA-damaging drugs, demonstrating that
time- and order-dependent drug combinations can be more
efficacious in killing cancer cells [72].

7. Perspective

Systems biology is dramatically advancing our mechanistic
understanding of disease progression and the discovery of
novel therapeutics. Its continued success will depend on
critical progress in both experimental and computational
techniques. No single technique is sufficient to uncover the
whole spectrum of gene-disease and drug-target relations
in the context of biological systems. The main challenges
that systems biology will confront over the next decade are
the incompleteness of the available interactome data and the

limitation of the existing computational tools. Our vision is
that integrating the interactomewith genome, transcriptome,
proteome, and metabolome might offer a direction for the
future advance of systems biology. New methodologies are
also required to integrate diverse tools from systems biology,
heterogeneous omics studies, chemoinformatics and bioin-
formatics. An integrated network that completely describes
the underlying global paradigm of a cellular network should
provide us with a deeper understanding of biological system.
Clearly, there is much to do before systems biology can
adequately demonstrate its usefulness in drug discovery and
translational biomedicine, but the examples discussed here
have provided a glimpse of the potential of systems biology.
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