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Abstract

Available DNA microarray time series that record gene expression along the developmental stages of multicellular
eukaryotes, or in unicellular organisms subject to external perturbations such as stress and diauxie, are analyzed. By pairwise
comparison of the gene expression profiles on the basis of a translation-invariant and scale-invariant distance measure
corresponding to least-rectangle regression, it is shown that peaks in the average distance values are noticeable and are
localized around specific time points. These points systematically coincide with the transition points between
developmental phases or just follow the external perturbations. This approach can thus be used to identify automatically,
from microarray time series alone, the presence of external perturbations or the succession of developmental stages in
arbitrary cell systems. Moreover, our results show that there is a striking similarity between the gene expression responses
to these a priori very different phenomena. In contrast, the cell cycle does not involve a perturbation-like phase, but rather
continuous gene expression remodeling. Similar analyses were conducted using three other standard distance measures,
showing that the one we introduced was superior. Based on these findings, we set up an adapted clustering method that
uses this distance measure and classifies the genes on the basis of their expression profiles within each developmental
stage or between perturbation phases.
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Introduction

In higher eukaryotes, the life span is separated into discrete

developmental phases that start from the embryonic phase and

end with the adult phase, and are in some organisms separated by

other stages such as larval and pupal stages. On the other hand,

the gene expression levels of an organism evolve with time and this

time evolution can be inferred from appropriate DNA microarray

time series. The question we ask here is: can we infer the limits of

the developmental phases from the gene expression profiles alone,

in other words, is there a sudden change in behavior that is

discernable in the profiles?

Furthermore, both unicellular and multicellular organisms may

be subject to external perturbations, which trigger a specific gene

expression response. Abrupt temperature changes, oxidative stress

or the addition of particular molecules are examples of such

perturbations. A change in the amount of nutrients is another

example. Bacteria for instance are usually able to grow on different

(usually two) kinds of sugars, but need to exhaust their preferred

sugar before using the others, in a phenomenon called diauxie.

The second question we ask here is whether we can also infer

solely from the gene expression profiles the exact time point where

the cells are subject to such external perturbations. The corollary

question is whether this response appears to be different than for

successive developmental stages.

The possibility of detecting the limits of the developmental

stages of higher eukaryotes from the gene expression profiles is

analyzed here on the basis of model organisms for which long

enough microarray time series are available, i.e. sea squirt, vinegar

fly, silkworm and mouse. The detection of external perturbations is

performed on several E. coli DNA time series subject to heat, cold

and oxidative stress and to glucose-lactose diauxie. The approach

is simple: the shapes of the gene expression profiles are compared

over a few successive time points, and regions of large changes are

identified as regions where developmental stage modifications or

external perturbations occur.

This approach leads us to design an appropriate clustering

procedure, which consists of dividing profiles into subprofiles at

the time points where sudden changes in the expression levels

occur, and to group genes in the same class when they have similar

subprofiles.

Methods

1. Gene expression profiles
1.a Measured profiles. DNA microarray time series yield

the concentrations of all or a subset of the RNAs that are present

in a given cell sample at N different time points ti (i = 1,..N). These

RNAs, labeled by m, may be mRNAs or miRNAs. Their

concentrations are estimated by converting them into cRNAs or
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cDNAs, labeling these by fluorophores and measuring the

fluorescence intensities Im(t) emitted when they are hybridized

to their complementary sequence attached to a microarray. These

intensities are often given relative to a reference intensity I
m
R, which

depends on the RNA but not on the time, and is measured from

an unperturbed sample or a mixture of several samples. As the

measures come from different hybridizations, they must be

normalized to correct for different effects including the unequal

quantities of starting RNA, differences in labeling or detection

efficiencies between the fluorescent dyes used, and systematic

biases in the measured expression levels [1–2]. The gene

expression profiles ~XX m(t) we consider here are defined as a

function of the normalized intensities ~II as:

~XX m(t)~~IIm(t) or ~XX m(t)~
~IIm(t)

~IIm
R

, ð1Þ

depending on the available data. We made here the common

assumption that the RNA concentrations and the normalized

fluorescence intensities are proportional [3]. In what follows, the

index m will refer indistinguishably to the RNA or the gene from

which it is transcribed.

1.b Development of multicellular eukaryotes. DNA

microarray time series that monitor the different developmental

stages of multicellular eukaryotes and possess a sufficient number

of time points per stage are available for the vinegar fly Drosophila

melanogaster, the urochordate Ciona intestinalis, the silkworm Bombyx

mori and the mouse Mus musculus.

The Drosophila melanogaster DNA microarray time series [4] yields

the expression levels of 4,028 genes across all four developmental

phases. Among the 67 time points, 31 are in the embryonic phase

(covering 24 hours; the first 14 points are taken every half hour,

and the last 17, every hour; the measuring period is equal to one

hour, so that the former 14 measures overlap), 10 are in the larval

phase (spanning 81 hours in approximately 9 hour intervals), 18 in

the pupal phase (96 hours; 7 points every 2 hours, 3 points every

4 hours, 4 points every 6 hours, 2 points every 12 hours, one point

after 8 hours, and one point after 16 hours), and 8 in the adult

phase (30 days; 3 points every 2 days, 5 points every 5 days). Each

of these 67 samples was compared with a unique reference sample,

consisting of a standard mixture of all samples of the series. Only

the time series for male flies was considered in this paper.

However, we also tested the female flies’ time series and obtained

very similar results; the only differences lie in the adult phase. A

subset of 20 genes has been shown to be related to muscle

development [5] and has been analyzed separately.

The Ciona intestinalis DNA microarray time series [6] monitors

the expression levels of 21,938 genes during the life cycle. It

contains a total of 18 time points: 13 in the embryonic phase

(17 hours), 1 in the larval phase, and 4 in the adult phase (4

months). All these expression levels were given relative to the same

reference sample, corresponding to fertilization, except the latter

four points, which were each given relative to the previous point.

To obtain meaningful profiles from these time points, we chose the

first (fertilization) point as a reference, and multiplied the

expression levels at the four time points corresponding to the

adult stage by the expression level of the previous point. We hence

obtained a series of 18 time points with a unique reference sample.

Two oligonucleotide-based DNA microarray time series of the

mouse Mus musculus were considered. The first [7] reveals the

expression pattern of 6,579 genes throughout the morphologic

stages of lung development. It consists of a total of 11 time points,

4 in the embryonic stage, 6 in the postnatal stage and 1 in the adult

stage. The other time series [8] is focused on the mammary gland

development. It monitors the expression of 12,488 genes over 18

time points, covering the virgin (3 points), pregnancy (7 points),

lactation (3 points), and involution (5 points) stages. In the

involution stage, the mammary gland undergoes complex

processes of controlled apoptosis and tissue remodeling. The data

used here corresponds to the average over 3 replicas.

The silkworm Bombyx mori undergoes four distinctive main

developmental stages, defined as embryo, larva, pupa, and adult

moth, which are monitored by a DNA microarray series of 41–42

time points [9]: 8 in the embryonic stage, 20 in the larval stage, 1

in the prepupal stage, 10 in the pupal stage and 2 or 3 in the adult

stage. Two replicas are analyzed and their average is taken.

Female and male worms are considered separately, from the end

of the larval stage. In contrast to all other series considered in this

paper, which measure mRNA concentrations, this series profiles

miRNA expression. A total of 106 miRNAs are considered.

Note that in several of the above listed series the cell samples

were taken indistinguishably from any part of the organism and

thus represent an average of the gene expression levels in the

different tissues. In these cases, the measurements thus mix the

dependencies of the expression levels on the organism’s develop-

mental stage and on the cell’s host tissue.

1.c External perturbation of unicellular systems. DNA

microarray time series that monitor the response of gene

expression levels upon perturbations have been considered for

Escherichia coli.

A first kind of external perturbation is glucose–lactose diauxie,

which is monitored in E. coli through a whole-genome DNA array

time series [10]. A total of 4,289 genes and 17 time points were

considered, 3 before the diauxic lag, 10 during the growth on

lactose and 4 after lactose exhaustion. There are thus two different

phases of growth arrest, a transient one after depletion of glucose,

during the diauxic lag, and another after depletion of lactose.

Other kinds of environmental fluctuations, in particular cold,

heat and oxidative stress, were studied by DNA microarray time

series in Escherichia coli monitoring the expression profiles of 4,400

genes [11]. A total of 12 time points was considered for oxidative

stress and 8 time points for cold and heat stress, covering the

periods before stress, during growth arrest due to the stress, and

during growth resumption. The last period corresponding to the

stationary phase was considered after oxidative stress. For each of

these perturbations 3 replicas were considered and their average

was taken.

1.d Cell cycle. The gene expression levels along the cell cycle

have been monitored in the yeast Saccharomyces cerevisiae by three

DNA microarray time series, in which the cells were synchronized

by three independent methods: a factor arrest, elutriation, and

arrest of a cdc15 temperature-sensitive mutant [12]. These series

cover two to three successive cell cycles (16 time points for

elutriation, 18 time points for a factor arrest, and 25 time points

for cdc15), and profile more than 6,000 genes.

2. Detection of perturbation points in expression profiles
The hypothesis we test here is that the limits of the

developmental stages of higher eukaryotes appear in the gene

expression profiles as regions where the expression levels undergo

some kind of change. Similarly, the expression levels are also

expected to undergo modifications in response to stress or other

external perturbations. The kind of change that is expected to

occur in such particular regions is not obvious a priori. Expression

levels generally vary over time (except in stationary phases), often

even in the absence of perturbations of any kind. We therefore do

not search for changes in the expression levels of each gene

Detection of Perturbation and Developmental Stages
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individually. Rather, we choose to compare the profiles of the

different genes, and detect time intervals where the variety of

profiles is larger than on the average. Such a phenomenon could

indeed be indicative of an uncoordinated response of the

expression patterns to some general perturbation.

To detect such a response, an appropriate distance measure

between segments of gene profiles must be defined. An important

point is that this measure must be insensitive to the sampling

frequency of time points. Indeed, this frequency depends on the

experimental setup and is generally different according to the

developmental stages. Its effect must thus be overlooked. We test

here four different distances to measure the similarity between

gene profiles, which are all independent of the sampling frequency.

They are described below.

2.a Euclidean distance. The first and simplest measure we

consider is the Euclidean distance DE between two regions X
m
ij and

X n
ij of the expression profiles ~XX m(t) and ~XX n(t) of genes m and n,

which are contained between the time points ti and tj (i,j). It is

given by:

DE(X
m
ij ,X n

ij)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xj

k~i

(x
m
k{xn

k)2

vuut , ð2Þ

where the profiles X
m
ij ~ x

m
i , x

m
iz1, . . . x

m
j

� �
are taken at the n;j-

i+1 successive time points tk. This distance is symmetric, i.e.

DE X
m
ij ,X n

ij

� �
~DE(X n

ij ,X
m
ij ), but is in general dependent on shifts

and scaling factors, i.e. Aa,b[<: DE X
m
ij ,X n

ijzb
� �

=DE(X
m
ij ,X n

ij)

and DE X
m
ij ,a:X n

ij

� �
=DE(X

m
ij ,X n

ij ).

2.b Least-rectangle distance. Two profiles that are

translated with respect to each other and thus present the same

shape but different average expression levels can be assumed to be

identical. Indeed, we search for true modifications in expression

patterns rather than simple relative shifts. Furthermore, two

profiles that are scaled with respect to each other can also be

assumed to be similar. This is justified by the fact that expression

levels are generally defined relative to a gene-dependent but time-

independent reference expression level ~IIm
R, as shown in eq. (1). The

scaling factor between two profiles may thus simply be due to the

different reference expression levels, and lacks intrinsic meaning.

We thus define a new distance, noted DR, as the Euclidean

distance between the profile region X n
ij of gene n and the

equivalent region for gene m, X
m
ij , translated by bmn

ij and scaled by

amn
ij . However, this distance is not symmetric. To obtain a

symmetric expression, satisfying DR X
m
ij ,X n

ij

� �
~DR(X n

ij ,X
m
ij ), this

new distance is defined as:

DR(X
m
ij ,X n

ij )~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xj

k~i

x
m
k{

xn
k{bnm

ij

anm
ij

�����
����� xn

k{anm
ij x

m
k{bnm

ij

��� ���
vuut , ð3Þ

with amn
ij ,bmn

ij [<. Negative values of amn
ij correspond to reflections

X
m
ij ?{X

m
ij . The values of these parameters are obtained by

requiring that DR X
m
ij ,X n

ij

� �
is minimum with respect to them, i.e.

L
a

mn
ij

DR X
m
ij ,X n

ij

� �
~0~L

b
mn
ij

DR X
m
ij ,X n

ij

� �
. They are given as a

function of the mean and standard deviation:

�xxm
ij~

1

n

Xj

k~i

x
m
k and sm

ij~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xj

k~i

(x
m
k{�xxm

ij)
2

vuut ð4Þ

as:

amn
ij ~+

sm
ij

sn
ij

and bmn
ij ~�xxm

ij+
sm

ij

sn
ij

�xxn
ij , ð5Þ

where the sign that minimizes the distance is chosen. Inserting

these values in eq. (3) yields:

DR(X
m
ij ,X n

ij)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sm

ijs
n
ij

n

Xj

k~i

x
m
k{�xxm

ij

sm
ij

+
xn

k{�xxn
ij

sn
ij

 !2

:

vuut ð6Þ

This distance has the following geometrical interpretation. Consider

the n points of coordinates x
m
k,xn

k

� �
(i#k#j, n = j-i+1) in a plane with

Cartesian coordinate system xm,xn
� �

. The equation

xn~anm
ij xmzbnm

ij corresponds to the least-rectangle regression line

for these points, which minimizes the deviations of both coordinates

x
m
k and xn

k to the regression line. It is thus a symmetrized version of

the least-square regression line, which only minimizes the deviation

of xn
k coordinates. We therefore call the distance defined by eq. (6)

the least-rectangle distance. It is insensitive to translations and

reflections, i.e. Vb[<: DR X
m
ij ,X n

ijzb
� �

~DR(X
m
ij ,X n

ij) and

DR X
m
ij ,{X n

ij

� �
~DR(X

m
ij ,X n

ij ). It is moreover scale-invariant with

scaling dimension 1/2, i.e. Va[<: DR X
m
ij ,a:X n

ij

� �
~

ffiffiffi
a
p

DR(X
m
ij ,X n

ij).

Note that, due to translation and scaling which define the

superposition of the profiles, the least-rectangle distance values are

always smaller than (or equal to) the corresponding Euclidean

distance values.

A C-function that allows the computation of this distance within

the software environment R [13], as well as example programs to

compute the distance between profiles or the average distance

between profile segments, can be downloaded at the address: http://

babylone.ulb.ac.be/pubs/suppmat/least-rectangle-distance/.

2.c Scaling-insensitive variant of the least-rectangle

distance. A distance that is scale-invariant with scaling

dimension zero, and is thus insensitive to the value of the scaling

factor, i.e. Va[<: DR X
m
ij ,a:X n

ij

� �
~DR(X

m
ij ,X n

ij), can easily be

obtained from the least-rectangle distance. It reads as:

DS(X
m
ij ,X n

ij)~

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xj

k~i

x
m
k{�xxm

ij

sm
ij

+
xn

k{�xxn
ij

sn
ij

 !2

:

vuut ð7Þ

This distance is symmetric, translation-, scale- and reflection-

invariant, and insensitive to the value of the scaling factor.

2.d Pearson correlation distance. An often-used distance

to measure the similarity in shape between two profiles is the

Pearson correlation distance, defined as:

DP(X
m
ij ,X n

ij)~1{
1

n

Xj

k~i

x
m
k{�xxm

ij

sm
ij

 !
xn

k{�xxn
ij

sn
ij

 !
: ð8Þ

This distance is symmetric and translation-invariant. It is scale-

invariant for positive scaling factors, with scaling dimension equal
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to zero, i.e. Va[<z
: DP X

m
ij ,a:X n

ij

� �
~DP(X

m
ij ,X n

ij). It is not

invariant with respect to negative scaling factors, and thus under

reflections.

2.e Mean distance between profile regions. To detect if

some sudden changes occur in the expression profiles of M genes,

we compute the pairwise distance between the expression profiles

of any two genes m and n, contained between the time points ti and

tj, for fixed values of n;j-i+1, using one of the four distances DE,

DR, DS and DP defined above. We then compute the average over

all genes. This yields:

�DDkn~
2

M(M{1)

XM{1

m~1

XM
n~mz1

D(X
m
ij ,X n

ij) with

n:j{iz1 and k~
izj

2
:

ð9Þ

We consider here distances between expression profile regions

counting between 3 and 6 time points, i.e. n = 3,…6. Time points tk
where �DDkn undergoes a sudden change indicate perturbation

points.

Results

1. Detection of developmental and perturbation phases
in gene expression profiles

1.a Selection of the distance measure. In view of

investigating whether the limits of the developmental stages in

higher eukaryotes and of the perturbation phases in cellular

systems can be detected from the gene expression profiles, the

mean distance between profile regions �DDkn defined in eq. (9), with

the four distance measures DE, DR, DS and DP given in eqs

(2,6,7,8), is computed for all DNA microarray time series

considered here (described in sections 1.b–d of Methods).

The comparison of the four distance measures gives very similar

results for all time series. Therefore, only the results for the series

monitoring the Drosophila development are shown for all distances

(Fig. 1a–c and Fig. 2a). When the average segment distance �DDkn is

computed with the Pearson correlation distance DP or with the

scale-insensitive variant of the least-rectangle distance DS, no peaks

are observed at all (Figs. 1a–b). Rather, �DDkn is almost constant with

some noise-like fluctuations. These two distances are thus to be

rejected, as they are unable to detect any transitions between

different phases.

In contrast, the Euclidean distance DE and the least-rectangle

distance DR present very clear peaks (Figs. 1c and 2a). In the case

of the Euclidean distance, one peak appears between the pupal

and adult stages, and another between the embryonic and larval

stages. However, no peak appears at the transition between larval

and pupal stages, and a clear peak appears some time after the

beginning of the embryonic stage. This distance thus yields mixed

results. In the other time series considered, the results obtained

with the Euclidean distance are mixed too: peaks appear often but

not always where expected. In particular, Fig. 1d shows the results

on unstressed E. coli, where no peaks are expected to occur, as well

as on E. coli subject to heat and cold stress, where peaks are

expected after the stress. Contrary to the expectations, there are no

peaks in the region of the perturbation; the highest values of the

mean segment distance �DDkn appear much before the stress.

Moreover, for unstressed E. coli, which may be considered as a

control series, no peaks appear but a constant increase is visible,

which seems meaningless. The Euclidean distance DE is thus more

informative than the Pearson correlation distance DP and the

scale-insensitive variant of the least-rectangle distance DS, but is far

from perfect and will not be further considered.

In the case of the least-rectangle distance DR, much clearer

peaks appear at each transition between perturbation phases or

development stages, for all time series, as shown in Fig. 2 and

discussed in detail in the next section. Moreover no peaks and no

increase are visible in the absence of such transitions, in particular

in the control series describing unstressed E. coli (Fig. 2i). This

distance is thus adequate to detect transitions from gene expression

data, and will be analyzed further.

1.b Development of multicellular eukaryotes. For the

Drosophila development, monitored by the expression levels of

either 4,028 genes (Fig. 2a) or a subset of 20 genes related to

muscles (Fig. 2b), the results are very clear: peaks in the average

segment distance �DDkn appear between the embryonic to larval, the

larval to pupal and the pupal to adult stages. These peaks appear

for all values of profile segment length n from 3 to 6. The last two

peaks are particularly prominent. Smaller peaks appear within the

embryonic stage, where the organism is known to change a lot and

to pass through several substages. The largest peak of the

embryonic stage is localized near time points 17–18,

corresponding to about 12 hours after fertilization, at the end of

the dorsal closure and the beginning of head involution [14]. This

peak is even larger for the muscle profiles. This can be linked to

the fact that 12 hours corresponds to the end of an important

substage for muscle development, that is, the end of the

development of muscle fibers presenting already the

characteristics of the mature larval muscles [15].

For the Cione (Fig. 2c), one large peak in the average segment

distance �DDkn is visible, which encompasses the single time point in

the larval stage, and is maximum at the very beginning of the adult

stage. Here too, this distance measure allows the detection of the

developmental phases. Note that, if several time points were

available in the larval stage, this phase would probably be detected

independently of the adult phase.

In the case of the mouse mammary gland development (Fig. 2d),

a large peak is observed between the lactation and involution

stages. In the latter stage, the mammary gland is known to

undergo complex processes of controlled apoptosis and tissue

remodeling. It is thus this important and sudden modification in

the expression levels that our method detects. A small peak is also

observed between the pregnancy and lactation stages for the

profile segment length n = 3, but is much less significant. This

indicates that the expression levels in the mouse mammary gland

do not undergo sudden changes when passing from the virgin to

pregnancy stage, undergo a small change from the pregnancy to

lactation stage, and a very large change from the lactation to

involution phase.

A very large peak in the average segment distance �DDkn is

observed at the very end of the embryonic stage, just before the

postnatal stage, in the lung development in mouse (Fig. 2e).

Moreover, a second peak starts at the end of the postnatal stage,

but is not complete as there is only one time point in the adult

stage. The limits of the known lung developmental stages are thus

well detected by our method.

The last time series monitoring development is that of the

silkworm (Fig. 2f). The first peak in �DDkn is observed between the

embryonic and larval stages, and the second between the larval

and prepupal/pupal stages. Not enough time points are available

in the adult stage to see what happens at the beginning of this

stage. Note that the peak between (pre)pupal and adult stages

occurs earlier for the female than for the male silkworms. Other

experiments are needed to determine whether this is a general

phenomenon.

Detection of Perturbation and Developmental Stages
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1.c External perturbation of unicellular systems. In the

E. coli glucose-lactose diauxie time series (Fig. 2g), two clear peaks

in the average segment distance �DDkn are observed: one after the

exhaustion of glucose, and one after the exhaustion of lactose. The

change in transcription network caused by these nutrient changes

is very similar to that observed between developmental stages,

when monitored by �DDkn.

Similar behaviors are observed for E. coli subject to stress. In the

case of oxidative stress (Fig. 2h), a peak in the average segment

distance �DDkn appears just after the stress, a second peak is observed

just before the growth resumption, and a third one at the

beginning of the stationary phase.

For heatstress (Fig. 2i), there is a very clear peak in �DDkn after the

stress. The value of the distance increases again at the end of the

time series, where growth starts to be recovered. For coldstress, the

peak is much less pronounced, indicating that the transcription

network is less modified. This means that passing from 37uC to

45uC requires more rewiring of the network than passing from

37uC to 16uC for E. coli. Note that the behavior of unstressed E.

coli is also depicted in Fig. 1i as a control, and that in this case the

average segment distance �DDkn remains practically constant, as

expected.

1.d Cell cycle. The question was addressed whether sudden

changes in expression levels occur within or at the end of cell

cycles. To answer this, a time series covering several successive

cycles in yeast was analyzed. As shown in Fig. 2j, no brusque

changes in the average segment distance �DDkn are observed. The

distance values remain constant with small fluctuations that start to

grow during the second and third cell cycles, where the cells start

to be less well synchronized. So, no abrupt transcription network

rewiring occurs during or after each cell cycle. Rather, continuous

network remodeling is observed, where the expression level of

different genes change at different times in the cycle, in agreement

with earlier findings [16].

2. Stage-dependent clustering method
The gene expression profiles undergo sudden changes near the

transition points between developmental stages and upon external

Figure 1. Average distance �DDnk between profile segments of length n, as a function of the time points k, for gene expression profiles
obtained from DNA microarray experiments. The values of n are indicated on the figures, as well as the developmental phases. Note that the
values of the distances appear sometimes very different in the different graphs; this is due to the fact that some gene expression profiles ~XX m(t)
borrowed from the literature are scaled and/or expressed relative to a reference sample and others not (see eq. (1)). Different distance measure are
used to compute �DDnk : (a) scaling-insensitive variant of the least-rectangle distance DS; (b) Pearson distance DP; (c, d) Euclidean distance DE. These
distances are computed on the DNA microarray time series monitoring: (a–c) Drosophila development; (d) unstressed E. coli (used as a control).
doi:10.1371/journal.pone.0027948.g001
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perturbation. We are thus led to divide the profiles into

subprofiles, each subprofile corresponding to a separate develop-

ment or perturbation phase defined by the peaks in the �DDkn

distances, and to cluster these subprofiles separately. The

clustering is performed on the basis of the least-rectangle distance

DR between subprofiles, defined in eq. (6). The clustering

algorithm used is a simple hierarchical, tree-like, algorithm. It

starts by considering each gene as a class on its own. It then joins,

at each step, the two classes for which the average distance DR

between any pairs of subprofiles from the two classes is minimum.

It stops when all genes are in the same class. This clustering tree is

then cut at a certain level by putting a threshold on the maximum

number of classes, or on the average distance DR in the newly

created class, so as to obtain an optimal number of clusters. The

threshold has to ensure that the distances between subprofiles

within each cluster are sufficiently low, and that the distances

between subprofiles of different clusters are sufficiently high.

To illustrate this method, we apply it to the embryonic, larval

and pupal stages of Drosophila. We chose the number of classes

within each stage to be equal to 10. Two of the clusters for each of

these three stages are depicted in Fig. 3. As can be seen on these

figures, the profiles in the same cluster exhibit a relatively small

deviation from the average curve, owing to the translation- and

scale-invariance of the distance DR. This is also visible from the

values of the average distances between subprofiles within each

cluster, ,DR.intra, given in Table 1. Moreover, the average

distance values between subprofiles of different clusters, noted as

,DR.inter, are significantly higher than the corresponding

,DR.intra, which indicates the reliability of the clustering. Note

that the smaller values for the larval stage are due to the fact that

the profiles in this stage exhibit much smaller variations.

This classification leads us to describe the expression profile of

each gene as a succession of representative subprofiles, one for

each development stage or period between successive perturbation

phases. Each representative subprofile represents a given cluster

and corresponds to the average of all members of the cluster (see

Fig. 3). This allows the description of the gene expression profiles

that can sometimes be very complex as a series of quite simple

curves, while keeping the trace of all the specificities and relevant

peculiarities occurring in each stage. This classification also leads

to the possibility of modeling the time evolution of gene expression

separately in each stage, by considering different clusters in the

different stages and connecting them at the perturbation points or

between development phases.

Discussion

The least-rectangle distance between expression profile seg-

ments, which is given by eqs (3–6) and is translation-invariant and

scale-invariant with scaling dimension 1/2, appears to be a

relevant measure for detecting perturbation or developmental

phases from expression profiles. It allows the identification, on the

basis of raw expression data alone, of time points where important

phenomena take place, which lead to drastic rewiring of the gene

expression network. Note that these expression data may involve

all the genes in a system or a relevant subset, correspond to mRNA

or miRNA, and come from cells of a specific tissue or a mixture of

different cell types.

Other distance measures have been tested, but turned out to be

unable to detect developmental and perturbation stages. In

particular, the Pearson distance and a variant of the least-

rectangle distance with scaling dimension zero yielded basically

constant values of the average segment distance �DDkn, without any

visible peaks. The Euclidean distance yielded �DDkn profiles with

some clear peaks, but not always at the right position. It clearly

contains some information, but is not the most adequate distance

to detect transitions between perturbation phases or developmen-

tal stages. Only the least-rectangle distance gave the desired

results. This distance is translation-invariant and scale-invariant,

whereas the Euclidean distance is not. The other two distances

exhibit both invariances but with scaling dimension zero, which

makes them insensitive to the value of the scaling factor. This

suggests that the translation invariance of the least-rectangle

distance as well as its scale invariance with a scaling dimension of

1/2, are the relevant properties that allow the correct detection of

transition points.

We tested yet other approaches, but without success. These

include the estimation of parameters that measure the changes in

each gene profile separately, such as the maximum difference in

expression level at neighboring time points, and the sum of the

Euclidean distance between the expression levels at successive time

points in an interval [ti, tj] divided by the distance between the

expression levels at ti and tj. Note that measures that even

implicitly depend on the sampling frequency can sometimes

appear to be very efficient for detecting the limits of development

stages. However, they have to be rejected, as they just demonstrate

that the sampling frequency is often different in the different

development stages. Another approach that we have tested consists

of approximating the profiles by P polynomials of a fixed degree d,

where P is equal to the number of stages and d is chosen between 1

and 5. Requiring that they do not overlap, cover the complete

profile and present a minimal deviation from the profile identifies

the optimal connection points between the P polynomials. These

points are then compared with the changes in development stages

or with the perturbation points. All these methods sometimes give

positive results for certain systems and for certain stages, but never

systematically.

Our method, based on the average segment distance �DDkn

computed with the least-rectangle distance DR, appears thus as the

only one suited to identify automatically, without prior knowledge,

the time points where abrupt transcription network rewiring

occurs, which corresponds to the passage to the next develop-

mental stage or to a strong external perturbation. Note that for our

method to be applicable, a sufficient number of time points must

be available for each phase. Note also that the optimal length n of

the profile segments that allows the best detection of the transitions

between the phases depends on the number of time points. When

many time points are available for each phase, the peaks appear

Figure 2. Average distance �DDnk between profile segments of length n, as a function of the time points k, for gene expression profiles
obtained from DNA microarray experiments. These average distances are computed with the least-rectangle distance measure DR. The values
of n are indicated on the figures, as well as the developmental phases and perturbation points. Note that the values of the distances appear
sometimes very different in the different graphs; this is due to the fact that some gene expression profiles ~XX m(t) borrowed from the literature are
scaled and/or expressed relative to a reference sample and others not (see eq. (1)). (a) Drosophila development; (b) Drosophila muscle development;
(c) Cione development; (d) Mouse mammary gland development; (e) Mouse lung development; (f) Silkworm development; the vertical dotted line
indicates the time point were males and females start to be distinguished; (g) E. coli subject to glucose-lactose diauxie; (h) E. coli subject to oxidative
stress; (i) E. coli subject to cold- and heatstress, and to no stress; (j) S. cerevisae cell cycles.
doi:10.1371/journal.pone.0027948.g002
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more clearly for values of n equal to 5 or 6, as seen in Figure 2. In

contrast, for phases with few time points, the peaks are averaged

out and disappear for n = 5–6. In such cases, n-values of 3 or 4

must be considered.

An interesting result is that we cannot distinguish, from the

DNA microarray expression data, the response to an external

perturbation from the succession of developmental stages. The

only difference that can be noted is that the distance peak follows

the perturbation whereas it usually occurs at the same time as, or

slightly before, the changes in developmental stage.

These results are consistent with the idea that some (unknown)

external or internal perturbation affects the gene expression

network at the end of each developmental stage, and triggers it

towards the next stage. It has been argued that a cell system

approaches a fixed point, a limit cycle or another type of attractor

at specific moments of its life [16–17]. This could be the case at the

end of each developmental stage. In the adult stage, the approach

to an attractor certainly appears as a reasonable hypothesis, since

the expression profiles become almost stationary in the absence of

external stimuli. The careful observation of the expression profiles

leads us to think that this might also be true at the end of each

developmental phase, but more precise data should be available to

Figure 3. Examples of gene expression profiles ~XX m(t) belonging to the same cluster, after suitable translation and dilatation to
minimize the distance DR. The average profiles are indicated in gray. (a) Cluster of the embryonic stage, with 150 elements and ,Dintra. = 0.41; (b)
Cluster of the embryonic stage, with 294 elements and ,Dintra. = 0.40; (c) Cluster of the larval stage, with 473 elements and ,Dintra. = 0.26; (d)
Cluster of the larval stage, with 271 elements and ,Dintra. = 0.26; (e) Cluster of the pupal stage, with 97 elements and ,Dintra. = 0.40; (f) Cluster of
the pupal stage, with 256 elements and ,Dintra. = 0.37.
doi:10.1371/journal.pone.0027948.g003

Table 1. Average distances DR (in Å) between subprofiles
within each cluster (,DR.intra) and between subprofiles of
different clusters (,DR.inter) for the embryonic, larval and
pupal stages of Drosophila.

Developmental stage ,DR.intra ,DR.inter

Embryo 0.41 0.56

Larva 0.25 0.33

Pupa 0.39 0.48

doi:10.1371/journal.pone.0027948.t001
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deepen this hypothesis. If this vision were true, it would provide a

fair and simple explanation of the extreme robustness of cell

systems with respect to stochastic perturbations of all kinds. Only

when the system is perturbed in a specific way does it evolve to

another attractor. Note, however, that a system is never totally

robust. It can always undergo specific perturbations that lead it

towards unwanted attractors, which could for example be the

origin of cancer-like diseases.
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