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Abstract
Purpose: Prenatal infection during pregnancy is a risk factor for schizophrenia, as well as for other 
developmental psychiatric disorders, such as autism and bipolar disorder. Schizophrenia patients 
were reported to have altered brain metabolism and neuroinflammation. However, the link between 
prenatal infection, altered brain inflammation and metabolism, and schizophrenia remains unclear. 
In this project, we aimed to evaluate whether there are changes in brain glucose consumption and 
microglia activation in the offspring of pregnant rats exposed to maternal immune activation (MIA), 
and if so, whether these changes occur before or after the initiation of schizophrenia-like behaviour.
Procedures: Pregnant rats were treated with the viral mimic polyinosinic-polycytidylic acid (MIA group) 
or saline (control group) on gestational day 15. Static PET scans of the male offspring were acquired 
on postnatal day (PND) 21, 60, and 90, using [11C]-PK11195 and deoxy-2-[18F]fluoro-D-glucose ([18F]-
FDG) as tracers to measure TSPO expression in activated microglia and brain glucose consumption, 
respectively. On PND60 and PND90, anxiety-like behaviour, recognition memory, and sensorimotor 
gating were measured using the open field test (OFT), novel object recognition test (NOR), and pre-
pulse inhibition test (PPI).
Results: [18F]-FDG PET demonstrated that MIA offspring displayed higher brain glucose consumption 
in the whole brain after weaning (p = 0.017), and in the frontal cortex during late adolescence (p = 0.001) 
and adulthood (p = 0.037) than control rats. [11C]-PK11195 PET did not reveal any changes in TSPO 
expression in MIA offspring. Prenatal infection induced age-related behavioural alterations. Adolescent 
MIA offspring displayed a more anxious state in the OFT than controls (p = 0.042). Adult MIA offspring 
showed recognition memory deficits in the NOR (p = 0.003). Our study did not show any PPI deficits.
Conclusions: Our results suggest that prenatal immune activation changed neurodevelopment, 
resulting in increased brain glucose consumption, but not in microglia activation. The increased brain 
glucose consumption in the frontal cortex of MIA offspring remained until adulthood and was associ-
ated with increased anxiety-like behaviour during adolescence and recognition memory deficits in 
adulthood.
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Furthermore, we also wanted to determine whether the 
changes in brain glucose consumption and microglial acti-
vation occur before or after the initial development of behav-
ioural alterations induced by MIA. To do so, we performed 
PET imaging at different time points using the PET tracers 
[18F]-FDG and [11C]-PK11195 for measuring brain glucose 
consumption and translocator protein (TSPO) levels specific 
aspects of metabolism and neuroinflammation respectively, in 
offspring from pregnant rats exposed to poly-I:C. We selected 
PPI, NOR and OFT tests to measure sensorimotor gating, 
recognition memory and anxiety-like behaviour, symptoms 
observed in schizophrenia and other neurodevelopmental 
disorders such as autism and bipolar disorders. These tests 
allow measurement of the positive, cognitive, and negative 
domains of schizophrenia and were performed for validation 
of the MIA model and to determine possible association with 
the PET imaging. These tests were performed in adolescence 
and adulthood.

Materials and Methods
Animals

All procedures described in the present study were performed 
according to European Directive 20,100/63/EU and the law 
on animal experiments in the Netherlands. Eight 3-month old 
pregnant female Wistar rats (gestational day 7) were obtained 
from Harlan, The Netherlands, and were individually housed 
with ad libitum access to food and water. After arrival, the 
rats were acclimatized for at least seven days. Housing rooms 
were humidity-controlled and thermo-regulated (21 ± 2 oC), 
with a 12:12-h light:dark cycle (lights on at 7 a.m.). Only 
males were included to prevent oestrous cycle variation, 
which was previously shown to affect the outcome of [18F]-
FDG PET [26].

Prenatal Immune Activation

On the gestational day (GD) 15, 8 pregnant dams were anaes-
thetized with 5% isoflurane in oxygen and intravenously 
injected with either 4 mg/kg poly-I:C in saline (MIA) or 
saline (control). Prenatal immune challenge in late gesta-
tion (GD15) using 4 mg/kg of poly-I:C is a timing and dos-
age commonly reported in rats [27] that corresponds to the 
migration of cortical neurons, myelination, neurogenesis and 
synaptogenesis [28]. Poly-I:C (sodium salt; Sigma-Aldrich, 
Schnelldorf, Germany) was dissolved in 0.9% NaCl solution 
to yield a final concentration of 2 mg/ml. All solutions were 
freshly prepared on the day of administration. Once awake, 
all animals were returned to their home cages. A guideline 
checklist for the methodological details regarding the MIA 
model can be found in the supplemental materials [29]. To 
reduce the litter effect, two male offspring per litter were 
used.

Introduction
Schizophrenia is a major psychiatric disorder affecting about 
1% of the world population [1]. The aetiology of schizophre-
nia is poorly understood and comprise a combination of 
genetic vulnerability, and environmental risk factors [2, 3]. 
Prenatal infection during pregnancy is an environmental risk 
factor for schizophrenia [4] as well as for other neurodevel-
opmental disorders, including bipolar disorder and autism 
[5, 6]. However, the underlying mechanisms linking prena-
tal infection with the development of schizophrenia remain 
unclear.

Schizophrenia is associated with brain alterations, such as 
altered brain glucose metabolism and microglial activation. 
Positron emission tomography (PET) using the tracer deoxy-
2-[18F]fluoro-D-glucose ([18F]-FDG) demonstrated that cer-
ebral glucose uptake is modified in patients with schizophre-
nia [7, 8]. Post-mortem and PET imaging studies reported 
glial alterations in the frontotemporal, parietal and hippocam-
pal brain regions [9–11] and increased expression of brain 
and peripheral inflammatory markers, such as cytokines, in 
schizophrenia patients [12, 13]. However, none of these stud-
ies could provide a direct link between prenatal infection, 
microglial activation, altered brain glucose metabolism, and 
schizophrenia. It also remains unclear whether alterations in 
brain glucose metabolism and microglial activation are the 
cause or consequence of the development of schizophrenia. 
To elucidate the relationship between prenatal infection and 
schizophrenic behaviour, rodent models could be used.

Rodent models of maternal immune activation (MIA) 
offer a strong face, construct, and predictive validity of, 
among other neurodevelopmental disorders, schizophrenia 
[14]. MIA can be achieved by injecting the viral mimic pol-
yinosinic: polycytidylic acid (poly-I:C) in pregnant rats [14]. 
Imaging studies observed that offspring from rats injected 
with poly-I:C during pregnancy displayed an altered brain 
glucose consumption, as measured by [18F]-FDG PET, 
in the amygdala, hippocampus, and prefrontal cortex [15, 
16], and higher translocator protein (TSPO) levels in the 
prefrontal cortex and hippocampus of MIA offspring using 
[11C]-PK11195 PET, indicative of the presence of neuroin-
flammation [17]. The offspring of MIA rats display altered 
behavioural phenotypes relevant to the positive, cognitive, 
and negative domains of schizophrenia [18–22]. Notably, 
studies observed that MIA offspring have impaired prepulse 
inhibition (PPI), a measure of sensorimotor gating [23]. In 
addition, MIA offspring show impaired recognition memory 
in the novel object recognition (NOR) test [24, 25]. Lastly, 
anxiety-like behaviour in the open field test (OFT) and ele-
vated-plus maze test [19, 21] is observed in MIA offspring. 
However, whether the behavioural alterations in the MIA off-
spring are related to changes in brain glucose consumption 
and glial activation remains unclear.

In this study, we aimed to evaluate whether there are 
changes in brain glucose consumption and microglial acti-
vation in the offspring of pregnant rats exposed to MIA. 
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Study Design

Sixteen male offspring were randomly divided into two 
groups: (1) offspring from pregnant dams injected with vehi-
cle (control), (2) offspring from pregnant dams injected with 
poly-I:C (MIA). Male offspring were weaned on PND21 and 
animals from the same litter were group-housed. Behavioural 
tests to measure anxiety, memory, and sensorimotor gating 
were performed on PND58-59 and PND88-89 (Fig. 1). PET 
scans to measure brain glucose consumption were performed 
on PND21, 60 and 90 and PET scans to measure microglial 
activation on PND60 and 90.

Open Field Test

The open field test (OFT) was performed on PND58 and 
88 to measure anxiety-like behaviour and locomotion. Rats 
were allowed to acclimatize to the experimental room for 
2 h before being placed in an ellipsoid arena (126*88 cm) 
for 5 min. The time spent in the centre (an ellipsoid area 
at ≥ 20 cm from the wall) was measured to determine the 
level of anxiety-like behaviour. Behaviour was recorded on 
video and analysed offline using Ethovision XT 8.5 (Noldus 
Information Technology, Wageningen, The Netherlands). 
The arena was cleaned with 70% ethanol solution after each 
session.

Novel Object Recognition Test

Short-term recognition memory was assessed with the novel 
object recognition test (NOR). Rats were allowed to acclima-
tize to the experimental room for 2 h. The test consisted of 
three phases: the habituation, familiarization, and test phases. 
In the habituation phase, the rat was placed in an open arena 
(50*50*50 cm) and allowed to habituate for 10 min. In the 
familiarization phase, the rat was permitted to freely explore 
two identical objects in the same arena, before being returned 

to its home cage for 2 h. In the test phase, the rat was put back 
into the arena for 5 min, but one of the objects was replaced 
by a novel object. Behaviour was video recorded and the time 
exploring each object was manually analysed. A discrimina-
tion index was calculated by dividing the time spent with 
the novel object by the total time spent investigating both 
objects. The arena was cleaned with 70% ethanol solution 
after each session. Rats that stayed immobile for more than 
180 s were excluded. On PND58, 2 control and 3 MIA rats 
were excluded for this reason. On PND88, 3 control and 1 
MIA rats were excluded.

Prepulse Inhibition Test

A prepulse inhibition test was performed to measure altera-
tions in sensorimotor gating. The principle of this test is that 
a weaker pre-stimulus (prepulse) inhibits the reaction to a 
subsequent stimulus (pulse). The test was performed in an 
acoustic startle chamber mounted with a piezoelectric accel-
erometer to detect whole-body startle response (TSE systems, 
Germany). First, the rat was placed in the startle box to accli-
matize for 5 min with a background noise of 70 dB (white 
noise). The background noise was present during the entire 
session. The habituation phase consisted of 3 startle pulses 
alone to allow the rat to get familiar with the sound of the 
pulse. After habituation, the test session consisted of 8 × 4 
trials in random order: (1) only pre-pulse, 85 dB sound for 
20 ms; (2) only startle pulse, 120 dB sound for 40 ms; (3) pre-
pulse and startle pulse, 85 dB pre-pulse for 20 ms followed 
100 ms later by 120 dB sound for 40 ms; (4) no sound, only 
70 dB background noise.

PET Imaging

Small animal PET (microPET Focus 220, Siemens) was 
used to measure brain glucose consumption on PND21, 60 
and 90 and TSPO levels following microglial activation on 

Fig. 1.  Study design. Pregnant dams were intravenously injected with either saline or poly-I:C on gestational day (GD) 15. Male off-
spring were weaned on postnatal day (PND) 21. Open field test (OFT) and novel object recognition test (NOR) were performed on 
PND58 and 88. Prepulse inhibition (PPI) measurements were performed on PND59 and 89. [18F]-FDG PET scans were performed on 
PND21, 60, and 90. [11C]-PK11195 PET scans were performed on PND60 and 90.
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PND60 and 90. Rats were either intraperitoneally injected 
with [18F]-FDG (13.9 ± 5.6 MBq) or briefly anaesthetized 
with 5% isoflurane in medical air for an intravenous injection 
of [11C]-PK11195 (9.3 ± 5.6) in the tail vein. There was no 
difference in injected tracer dose between groups. After tracer 
injection, rats were placed back in their home cage. About 
35 min after tracer injection, rats were anaesthetized with 
isoflurane (induction 5% and maintenance 2%, in medical 
air) and positioned into the PET camera for a transmission 
scan of 10 min followed by an emission scan of 30 min, start-
ing at 45 min after tracer injection. The body temperature 
of the rat was maintained with heating pads, blood oxygen 
levels were monitored, and an eye salve was applied to pre-
vent dehydration. After the scan, rats were placed back into 
their home cage to recover. After the last scan on PND90, the 
rats were terminated under deep anaesthesia by heart extirpa-
tion. [11C]-PK11195 PET was carried out in the morning and 
[18F]-FDG PET in the afternoon.

PET scans were iteratively reconstructed (OSEM2D, 
4 iterations, 16 subsets) into a single frame, resulting 
in images with a 128 × 128x95 matrix, a pixel width 
of 0.632 mm, and a slice thickness of 0.762 mm. PET 
images were automatically co-registered to a functional 
[18F]-FDG or [11C]-PK11195 template [30], which was 
spatially aligned with a stereotaxic T2-weighted MRI 
template in Paxinos space [31]. The co-registered images 
were resliced into cubic voxels (0.2 mm) and converted 
into standardized uptake value (SUV) images, assuming 
a tissue density of 1 g/ml (SUV = [tissue activity con-
centration (MBq/ml) x body weight (g)]/ [injected dose 
(MBq)]). Tracer uptake was calculated in volumes-of-
interest (VOI) representing specific brain regions. Due 
to the limited resolution of the small animal PET scanner 
(1.4 mm) [32], small brain regions were excluded [33].

Statistical Analysis

Statistical analysis of body weight, behaviour, and PET data 
was performed using SPSS (IBM SPSS Statistics, Version 
22.0). A generalized estimating equation (GEE) analysis, 
using ‘maternal infection’ and ‘time’ as factors, was per-
formed for the statistical analyses of longitudinal data, as 
this analysis can account for missing data. Data are presented 
as mean ± standard deviation (SD).

Results
MIA Decreased Body Weight at Weaning

The bodyweight of both control and MIA rats increased over 
time (p < 0.0001, Fig. 2A). At PND21, the bodyweight of 
MIA offspring was significantly lower when compared to 

controls (-9.1%, p = 0.014), but this difference was no longer 
present on PND60 (p = 0.104) and PND90 (p = 0.467).

MIA Caused Recognition Memory Deficits on 
PND90

The discrimination index in the NOR test was used to assess 
recognition memory (Fig.  2B). Offspring from mothers 
exposed to MIA displayed a significantly lower discrimina-
tion index than controls on PND 90 (-38%, p = 0.003), but not 
on PND60 (p = 0.10).

MIA Caused Anxiety-like Behaviour on PND60 
but did not Affect Locomotion

The total distance travelled in the OFT and the percentage 
of time spent in the centre of the arena were used to assess 
locomotion (Fig. 2C) and anxiety-like behaviour (Fig. 2D), 
respectively. The distance travelled decreased over time 
in both groups (p = 0.004) but did not significantly differ 
between groups on PND60 (p = 0.16) or PND90 (p = 0.26). 
MIA rats spent significantly less time spent in the centre of 
the arena than controls on PND60 (-60%, p = 0.042), but not 
PND90 (p = 0.61).

MIA did not Modify PPI

The percentage of PPI was used as an indicator of sensori-
motor gating (Fig. 2E). We observed no main effect of time 
within groups (p = 0.731). There was no difference in PPI 
between MIA and control offspring on PND60 (p = 0.56) or 
PND90 (p = 0.65).

MIA did not Induce Microglial Activation

To determine the effect of MIA on microglial activation, 
[11C]-PK11195 PET was performed to measure TSPO 
expression on PND60 and PND90 (Fig. 3A and B). There 
was no significant difference between MIA and control 
offspring in tracer uptake in any brain region at PND60 or 
PND90 (supplementary table 1). Moreover, no significant 
within-group differences between time points were observed.

MIA Induced an Increase in Brain Glucose 
Consumption

To determine the effect of MIA on brain glucose metab-
olism, [18F]-FDG PET was performed on PND21, 
PND60 and PND90 (Figs.  3C, D  and Fig.  4). A sig-
nificant main effect of time was observed in all brain 
regions (p < 0.0001, Table 1), and a main effect of MIA 
in all brain regions (p < 0.05), except the entorhinal 
cortex (p = 0.052) and occipital cortex (p = 0.20). On 
PND21, MIA offspring had significantly higher tracer 
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uptake in amygdala (p = 0.0001), BNST (p = 0.007), 
cerebellum (p = 0.0001), medial prefrontal cor tex 
(p = 0.041), whole-brain (p = 0.016), frontal cortex 
(p = 0.048), thalamus (p = 0.037), brainstem (p = 0.007), 
basal ganglia (p = 0.027) and forebrain (p = 0.031) than 
control animals. On PND60, MIA offspring only had 
significantly higher tracer uptake in frontal association 
(p = 0.001) and frontal cortex (p = 0.045) than controls. 
On PND90, only the significant increase in tracer uptake 
in the frontal association cortex persisted (p = 0.037).

Discussion
In this study, we found that prenatal immune activation 
increased brain glucose consumption and did not affect 
microglia activation. The increased glucose consump-
tion in the frontal cortex of MIA offspring remained 
until adulthood and was associated with increased anx-
iety-like behaviour during adolescence and recognition 
memory deficits in adulthood.

Fig. 2.  Bodyweight and behavioural changes. A. Bodyweight (control: n = 8, MIA: n = 6.) B. Recognition memory (PND60: control n = 6, 
MIA: n = 3, PND90: control: n = 5, MIA: n = 5). C. Locomotion (control: n = 8, MIA: n = 6). D. Anxiety-like behaviour (control: n = 8, MIA: 
n = 6). E. Prepulse inhibition (PND: control: n = 12, MIA: n = 10, PND90: control: n = 19, MIA: n = 13). PND = postnatal day. Values represent 
mean ± SD. Statistically significant differences between groups are indicated by asterisks: *P < 0.05, **P < 0.01, ***P < 0.001. Significant 
differences between time points are not shown.
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Abnormal glucose metabolism is believed to be an 
indicator of underlying pathology. On PND21, MIA off-
spring displayed a higher glucose consumption, a specific 
aspect of metabolism, in the whole brain. Similarly, an 
[18F]-FDG PET study observed a shift in the increase in 
brain glucose consumption from PND18 to PND21 in the 
offspring of female rats exposed to the toxin methylmer-
cury [34]. This suggests that MIA had a similar effect 
and delayed brain development. MIA may have induced a 
subtle change in the number and activity of microglia and 
increased activity of the complement system which could 
have resulted in altered neurodevelopmental processes, 
such as synaptogenesis, myelination, and synaptic prun-
ing [35]. MIA was indeed shown to alter synaptic den-
sity in the offspring, which could be restored if an anti-
inflammatory treatment was applied [36]. We, therefore, 
hypothesize that the increased brain glucose consumption 
observed on PND21 is a sign of altered neurodevelop-
ment, which may have contributed to the development of 
behavioural alterations later in life.

MIA exposure is a validated experimental model that 
affects the negative, cognitive, and positive domains in 
rodents. In the negative domain, MIA offspring display 
anxiety-like behaviour as indicated by a reduced time 

spent in the open arms in the elevated-plus maze test 
or in the centre of the open field arena (OFT) [19, 21]. 
In our study, we found that MIA induced similar anxi-
ety-like behaviour in the OFT. Regarding the cognitive 
domain and in accordance with previous studies [24, 
25], we found that MIA induced recognition memory 
deficits during adulthood (PND90), as indicated by a 
reduced discrimination index in the NOR test. These 
results are consistent with clinical data indicating anxi-
ety and impaired recognition memory in schizophrenia 
[37, 38] and other neurodevelopmental disorders such 
as autism [39, 40], and bipolar disorder [41, 42]. These 
behavioural changes were associated with increased 
brain glucose consumption in the frontal cortex. The 
frontal cortex is involved in the regulation of anxiety-
like behaviour [43] and recognition memory as dysregu-
lation of the connectivity between the frontal cortex and 
the hippocampus or basolateral amygdala results in anxi-
ety [44, 45] and recognition memory deficits [46]. The 
frontal cortex is also crucial for other cognitive tasks, 
such as spatial discrimination memory, fear condition-
ing, and working memory; tasks shown to be impaired 
by prenatal immune activation [47–51]. Interestingly, 
in our study anxiety-like behaviour occurred before the 

Fig. 3.  Effect of MIA on brain TSPO expression and cerebral glucose consumption. A. TSPO expression in the whole brain and the B. 
frontal association cortex (PND60: control: n = 6, MIA n = 8, PND90: control n = 6, MIA n = 6). C. Glucose consumption in the whole brain 
and the D. frontal association cortex (PND21: control: n = 7, MIA n = 4, PND60: control: n = 4, MIA n = 6, PND90: control n = 8, MIA n = 6). 
Values represent mean ± SD. Statistically significant differences between groups are indicated by asterisks: *P < 0.05, **P < 0.01. Signifi-
cant differences between time points are not shown.
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cognitive deficits. It has been proposed that anxiety can 
further alter the frontal cortex, which in turn could dete-
riorate cognitive processes [52]. In the positive domain, 
prepulse inhibition, a measure of sensorimotor gating, is 
impaired in patients with neurodevelopmental disorders, 
such as schizophrenia [53], bipolar disorder [54], and 
autism [55]. Current literature is inconsistent as some 
studies observed PPI deficits in MIA offspring [18, 23, 
56], while others did not [57, 58]. Ours results are in 
accordance with the latter as we did not observe change 
in PPI. The discrepancy between this study and others 
can be explained by the differences in dose and timing 
of the prenatal inflammatory challenge in different ani-
mal strains as these are known to affect the behavioural 
outcome [19, 59].

Other [18F]-FDG PET studies observed that MIA off-
spring displayed an increase in glucose consumption in 
the thalamus (PND35-100), globus pallidus (PND35-100), 
amygdala (PND100), and nucleus accumbens (PND100), and 
reduced brain glucose consumption in the ventral hippocam-
pus and prefrontal cortex (PND35-100) [15, 16]. The most 
striking difference between our and other studies is the oppo-
site direction of the change in glucose consumption in the 
frontal cortex. The discrepancy between our and other studies 
is unlikely to be due to a difference in the MIA protocol and 
species used as we intravenously injected a similar poly-I:C 
dose (4 mg/kg) in the same rat species and at the same gesta-
tional day (GD15). Possible explanations for the discrepancy 
are that the timepoint and analysis of the [18F]-FDG PET 
scans were different. While we measured absolute differences 
between groups using the SUV, other studies measured rela-
tive differences in tracer uptake using voxel-by-voxel com-
parisons after normalization to the average tracer uptake in 
the brain. Normalization of tracer uptake may have obscured 
group differences. Interestingly, similar discrepancies are 
also observed in clinical studies. Some clinical studies using 
[18F]-FDG PET, observed that unmedicated schizophrenia 
patients displaying positive symptoms had a hypermetabolic 
status in brain regions, such as the frontal cortex, thalamus, 
striatum, and temporal lobe [8, 60]. Such a hypermetabolic 
state could also be observed using [18F]-FDG PET in the 
psilocybin model of psychosis or following the injection of 
ketamine [61, 62]. On the other hand, other studies reported 
a decreased [18F]-FDG uptake in brain areas, such as the 
frontal cortex, in schizophrenia patients, which was associ-
ated with the negative symptoms of schizophrenia [7, 63, 
64]. Thus, in schizophrenia patients, the positive and negative 
symptoms may be associated with increased and decreased 
brain glucose consumption, respectively.

Prenatal infection is believed to increase the risk of schizo-
phrenia via priming of immune cells or causing neuroinflam-
mation [65]. In our study, [11C]-PK11195 PET did not reveal 
changes in TSPO, a protein observed in reactive microglia 
and known to be involved in neuroinflammation on PND60 
and PND90 in MIA offspring. Possibly MIA induced a subtle 
change in microglia activity, which could not be detected due 
to a lack of sensitivity of the [11C]-PK11195 PET tracer. 
Perhaps MIA primed, rather than activated the immune sys-
tem, which would be in line with another study showing that 
exposure to an additional stressor during late adolescence in 
MIA offspring was necessary for inducing an inflammatory 
response [44]. Another possibility is that we did not scan at 
the correct timepoint. As the largest increase in [18F]-FDG 
uptake was on PND21, a similar increase could perhaps also 
have been observed using [11C]-PK11195 PET. However, 
this timepoint was not measured to avoid another challenging 
i.v. injection and anaesthesia in young animals and to reduce 
animal burden. The preclinical data on microglial changes in 
MIA offspring is contradictory. While some studies reported 
no change in microglial density and morphology [17, 58], 
others reported an increase in density of reactive microglia 

Fig. 4.  [18F]-FDG PET scan of a representative control and MIA 
rat on PND 21, 60, and 90.
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[66, 67] or even a decrease in reactivity in some brain regions 
[17, 66]. Many factors may explain such differences, includ-
ing differences in the day of poly-I:C injection, injected dose, 
time of evaluation and strains used. A previous PET imaging 
study observed higher [11C]-PK11195 uptake in the prefron-
tal cortex and hippocampus in MIA offspring than in control 
rats [67]. They used the uptake ratio relative to the cerebel-
lum as outcome parameter, and thus assumed no inflamma-
tory changes in the cerebellum. A limitation of using the 
uptake ratio is that it does not show if an effect is caused 
by the target region or the reference region. Clinical imag-
ing studies in schizophrenia patients observed either a light 
increase or no differences in microglial activation depending 
on the outcome parameter used [11].

Limitations of this study include a limited sample size in 
some of the [18F]-FDG imaging and behavioural tests, which 
may have prevented the observation of clear correlations 
between imaging and behavioural parameters in this dataset. 
However, despite not observing significant correlations, we 
observed a clear increase in brain glucose consumption on 
PND21, 60 and 90, anxiety-like behaviour on PND60, and 
recognition memory deficits on PND90. Another limitation 
is that we did not correct for multiple comparisons, therefore, 
the data should be interpreted with caution.

Conclusion
Overall, this study suggests that prenatal immune activation 
changed early neurodevelopmental processes, eventually 
resulting in behavioural alterations later in life. These changes 
were accompanied by increased brain glucose consumption, 
but not reactive glial cells, from early life and throughout 
adolescence and adulthood. This increased brain glucose 
consumption was associated with alterations in anxiety-like 
behaviour and recognition memory during adolescence and 
adulthood, respectively.

Supplementary Information The online version contains supplementary 
material available at https:// doi. org/ 10. 1007/ s11307- 022- 01723-3.
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Table 1.  [18F]-FDG PET: tracer uptake in the brain of control animals (control), and animals from mothers exposed to poly-I:C injection (MIA). Tracer 
uptake (SUV) is presented for different brain areas. Data are shown as mean ± SD. Statistically significant differences between MIA and control animals on the 
same day are indicated in bold and with an asterisk: *p < 0.05; **p < 0.01, ***p < 0.01

Brain regions Main effect MIA
(p-value)

PND21 PND60 PND90

Control MIA Control MIA Control MIA

Amygdala 0.015 1.02 ± 0.16 1.31 ± 0.12*** 2.19 ± 0.19 2.45 ± 0.49 2.17 ± 0.53 2.61 ± 0.44
BNST 0.001 1.31 ± 0.26 1.75 ± 0.31** 2.49 ± 0.25 2.98 ± 0.62 2.51 ± 0.62 3.08 ± 0.57
Cerebellum 0.026 1.01 ± 0.18 1.40 ± 0.13*** 2.31 ± 0.15 2.55 ± 0.41 2.31 ± 0.54 2.59 ± 0.39
Corpus callosum 0.038 1.42 ± 0.32 1.77 ± 0.40 2.97 ± 0.28 3.33 ± 0.67 3.01 ± 0.77 3.45 ± 0.66
Entorhinal cortex 0.052 1.03 ± 0.17 1.22 ± 0.25 2.37 ± 0.21 2.68 ± 0.50 2.42 ± 0.59 2.81 ± 0.51
Frontal association cortex 0.001 1.01 ± 0.15 1.15 ± 0.33 1.9 ± 0.12 2.47 ± 0.39** 2.07 ± 0.30 2.50 ± 0.47*
Insular cortex 0.013 1.19 ± 0.20 1.50 ± 0.10 2.61 ± 0.25 3.01 ± 0.53 2.84 ± 0.63 3.41 ± 0.73
Medial prefrontal cortex 0.027 1.39 ± 0.30 1.82 ± 0.41* 3.03 ± 0.37 3.55 ± 0.71 3.19 ± 0.80 3.67 ± 0.78
Orbitofrontal 0.011 1.42 ± 0.29 1.76 ± 0.41 2.94 ± 0.29 3.55 ± 0.61 3.22 ± 0.72 3.74 ± 0.75
Occipital cortex 0.201 1.07 ± 0.22 1.24 ± 0.26 2.31 ± 0.18 2.47 ± 0.44 2.30 ± 0.57 2.53 ± 0.49
Nucleus accumbens 0.014 1.29 ± 0.23 1.64 ± 0.37 2.87 ± 0.29 3.28 ± 0.65 2.90 ± 0.76 3.46 ± 0.68
Striatum 0.011 1.43 ± 0.30 1.82 ± 0.42 2.87 ± 0.26 3.44 ± 0.70 3.04 ± 0.79 3.62 ± 0.71
Hippocampus 0.010 1.31 ± 0.29 1.59 ± 0.37 2.66 ± 0.25 3.07 ± 0.61 2.63 ± 0.64 3.17 ± 0.57
Whole brain 0.017 1.19 ± 0.23 1.51 ± 0.24* 2.51 ± 0.21 2.84 ± 0.51 2.56 ± 0.61 2.98 ± 0.54
Temporal cortex 0.028 1.12 ± 0.20 1.36 ± 0.27 2.45 ± 0.21 2.81 ± 0.49 2.60 ± 0.61 3.04 ± 0.58
Frontal cortex 0.010 1.12 ± 0.20 1.39 ± 0.27* 2.36 ± 0.20 2.7 ± 0.45* 2.44 ± 0.52 2.84 ± 0.54
Parietal cortex 0.044 1.14 ± 0.23 1.43 ± 0.30 2.46 ± 0.22 2.68 ± 0.44 2.53 ± 0.59 2.86 ± 0.54
thalamus 0.002 1.25 ± 0.26 1.63 ± 0.36* 2.50 ± 0.23 2.94 ± 0.59 2.57 ± 0.63 3.1 ± 0.55
midbrain 0.006 1.45 ± 0.33 1.81 ± 0.41 2.72 ± 0.26 3.07 ± 0.63 2.7 ± 0.64 3.2 ± 0.58
Brainstem 0.020 1.28 ± 0.28 1.64 ± 0.20* 2.54 ± 0.23 2.82 ± 0.53 2.52 ± 0.59 2.92 ± 0.46
Basal ganglia 0.003 1.25 ± 0.23 1.60 ± 0.31* 2.47 ± 0.20 2.93 ± 0.60 2.53 ± 0.65 3.07 ± 0.61
forebrain 0.002 1.26 ± 0.26 1.63 ± 0.35* 2.49 ± 0.22 2.93 ± 0.59 2.54 ± 0.63 3.08 ± 0.55
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