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Haploidentical stem cell transplantation (haplo-SCT), an alternative donor source, offers a
curative therapy for patients with acute myeloid leukemia (AML) who are transplant
candidates. Advances in transplantation techniques, such as donor selection, conditioning
regimenmodification, and graft-versus-host disease prophylaxis, have successfully improved
the outcomes of AML patients receiving haplo-SCT and extended the haploidentical
transplant indictions for AML. Presently, treating de novo AML, secondary AML, therapy-
related AML and refractory and relapsed AML with haplo-SCT can achieve comparable
outcomes to those of human leukocyte antigen (HLA)-matched sibling donor transplantation
(MSDT), unrelated donor transplantation or umbilical cord blood transplantation. For some
subgroups of AML subjects, such as patients with positive pretransplantation minimal/
measurable residual disease, recent studies suggest that haplo-SCT might be superior to
MSDT in decreasing relapse and improving survival. Unfortunately, for patients with AML after
haplo-SCT, relapse and infections remain the causes of death that restrict further
improvement in clinical outcomes. In this review, we discuss the recent advances and
challenges in haplo-SCT for AML treatment, mainly focusing on unmanipulated haplo-SCT
protocols. We provide an outlook on future prospects and suggest that relapse prophylaxis,
intervention, and treatment, as well as infection prevention and therapy, are areas of active
research in AML patients who receive haploidentical allografts.

Keywords: acute myeloid leukemia, haploidentical stem cell transplantation, relapse, infection, graft-versus-
leukemia-effect
INTRODUCTION

Allogeneic stem cell transplantation (allo-SCT) remains a curative therapy for patients with acute
myeloid leukemia (AML) (1–19). However, the lack of human leukocyte antigen (HLA)-matched
sibling donors (MSDs) restricts the wide use of allo-SCT in the clinic (20–22). To overcome the
deficiency of donors, many efforts have been made to search for alternative donors (4, 6, 9, 23–27),
including haploidentical donors (HIDs), HLA-matched unrelated donors (MUDs), and umbilical cord
blood. Among these alternative donors, haploidentical allografts are the most attractive because
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successful application of haploidentical transplantation will ensure
that almost every allograft candidate has a donor (4, 6, 9, 24–26).
In the 1970s and 1980s, the clinical outcomes after bone marrow
transplantation from HLA-mismatched family donors using a
conditioning regimen similar to HLA-matched sibling donor
transplantation (MSDT) in treating patients with AML were not
acceptable because the long-term survival rate was less than 20%
(28). In the 1990s, the introduction of a T-cell depletion (TCD)
strategy followed by a myeloablative conditioning regimen
improved the outcomes of haploidentical SCT (haplo-SCT) in
the treatment of AML (29, 30). After 2000, the successful
application of haplo-SCT based on immune tolerance induced
by granulocyte colony-stimulating factor (G-CSF) and anti-
thymocyte globulin (ATG, The Beijing Protocol) and haplo-SCT
based on immune tolerance induced by posttransplant
cyclophosphamide (PTCy, The Baltimore Protocol) in transplant
candidates with hematological diseases (21, 31–36), such as
patients with AML, allowed haploidentical allografts to be used
worldwide, and it is a reality that almost everyone has a donor
(Figure 1). The detailed history perspective and the biological
differences of the abovementioned three haplo-SCT protocols has
been extensively reviewed by others and by us elsewhere (22,
37–39).

In the past two decades, advances in the establishment of
algorithms for best haploidentical donor selection (40–42),
optimization of conditioning regimens (43–45), shifts from
TCD grafts to unmanipulated bone marrow and/or peripheral
blood harvests (3, 5, 21, 46, 47), enhancement of hematopoietic
recovery through endothelial cell-directed N-acetyl-L-cysteine
intervention and/or donor-specific antibody desensization (34,
48, 49), biomarker-directed graft-versus-host disease (GVHD)
prophylaxis (50–52), minimal/measurable residual disease
(MRD)-directed relapse intervention (7, 53), and approaches
for enhancing immunologic recovery (54–56) have successfully
improved the outcomes of patients with hematological
malignancies, especially those with AML receiving haplo-SCT.
Unfortunately, for subjects with AML who underwent
haploidentical allografts, relapse and infections remain the
causes of death that restrict further improvement in clinical
outcomes (57, 58). In this review, we discussed the current
therapies and challenges in haplo-SCT for AML treatment,
mainly focusing on unmanipulated haploidentical transplant
protocols. We provide an outlook on future prospects and
suggest that relapse prophylaxis, intervention, and treatment,
as well as infection prevention and therapy, are areas of active
research in AML patients who receive haploidentical allografts.
CURRENT THERAPIES FOR AML WITH
HAPLOIDENTICAL ALLOGRAFTS

Extension of Haploidentical Transplant
Indications for AML
The indications of AML for haploidentical protocols were
significantly extended from adverse subjects to high-risk
subgroup cases of favorable ones in the past two decades (5,
Frontiers in Oncology | www.frontiersin.org 2
11, 13, 22, 59–61). First, for inter/high-risk de novo AML patients
in complete remission 1 (CR1), our group demonstrated that for
both adults and pediatric patients (5, 59, 60), haplo-SCT as
postremission therapy achieved a lower CIR and superior
survival in both MRD-negative and MRD-positive groups
compared with those of patients treated with chemotherapy
alone. Second, for favorable de novo AML cases in CR1, haplo-
SCT could be used to improve outcomes in the following
subgroup patients: i) t(8;21) AML cases who did not achieve
major molecular remission (MMR)/MRD negativity, which were
defined as >3-log reduction in RUNX1/RUNX1T1 transcripts
(<0.4%) compared with the pretreatment baseline of 388% in
Peking University Institute of Hematology, after the second
consolidation therapy or those exhibiting the loss of MMR
(defined as RUNX1/RUNX1T1 transcript levels >0.4% in
MMR patients) within 6 months of achieving MMR (7, 61). ii)
AML patients with NPM1mutations (NPM1m) failed to achieve
a >4-log reduction in peripheral blood MRD after induction
therapy (11). iii) For NPM1 wild-type standard-risk AML cases,
those who were MRD-positive after second course induction
(13). iv) CBFB-MYH11-positive AML patients with CBFB-
MYH11/ABL levels >0.1% after two cycles of consolidation
therapy (62). Third, other indications include secondary AML,
therapy-related AML, and relapsed or refractory AML (R/R
AML) (63, 66–75) (Tables 1–3).

The extension of indications promotes the use of
haploidentical allografts in patients with AML worldwide (76,
77). According to the data of the Chinese Blood and Marrow
Transplantation Register Group (CBMTRG) (76), haploidentical
donors have been the first donor source for AML since 2013. The
number of AML patients who received haplo-SCT reached
nearly 2000 in 2015. In a recent survey by the European
Society for Blood and Marrow Transplantation (EBMT) (77),
the number of haplo-SCTs in Europe 2019 (n=1813) was listed as
the third transplant modality for AML. In 2019, the number of
haplo-SCTs was more than two thousand and comparable to that
of MSDT according to the report of the Center for International
and Marrow Transplant Research (CIBMTR), although fewer
than 700 AML patients received haplo-SCT (78).
OUTCOME COMPARISON
BETWEEN HAPLO-SCT AND OTHER
TRANSPLANT MODALITIES

In 2006, our group demonstrated for the first time that treating
leukemia patients with haplo-SCT achieved comparable 2-year
nonrelapse mortality (NRM), cumulative incidence of relapse
(CIR), and 2-year probabilities of leukemia-free survival (LFS)
and overall survival (OS) to those of MSDT (31), suggesting that
haplo-SCT is a feasible approach with acceptable outcomes.
Since then, a series of retrospective or prospective studies
reported by others (4, 10, 26, 64–70, 74, 75, 79–87) and us (6,
88–90) compared the outcomes of AML patients who either
received haplo-SCT or other allografts, including MSDT, HLA-
matched unrelated donor transplantation (MUDT) and
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FIGURE 1 | Summary of historical perspective and conditioning regimens of different haploidentical stem cell transplantation modalities for AML. (A) The historical
perspective of haplo-SCT for AML. (B) University of Perugia: myeloablative conditioning and ex vivo TCD with “megadose” CD34+ cell allografts. (C) Peking
University: myeloablative conditioning based on immune tolerance induced by G-CSF and ATG. (D) Johns Hopkins University: nonmyeloablative conditioning with
high-dose PT/Cy. Panels (B–D) were adapted from Aversa et al. (Blood, 1994), Luznik et al. and Cieri et al. (Biol Blood Marrow Transplant,2008; Biol Blood Marrow
Transplant,2015), and Huang et al. (Bone Marrow Transplant,2006), respectively. AML, acute myeloid leukemia; Haplo-SCT, haploidentical stem cell transplantation;
Tregs, regulatory T cells; Tcon, conventional T cells; MSDT, human leukocyte antigen (HLA)-matched sibling donor transplantation; G-CSF, granulocyte colony-
stimulating factor; ATG, anti-thymocyte globulin; PTCy, posttransplantation cyclophosphamide; TBI, Total body irradiation; SS-BM, steady-state bone marrow; G-PB,
G-CSF mobilized peripheral stem cells; GVHD, graft-versus-host disease; MMF, mycophenolate mofetil; G-BM, G-CSF-stimulated bone marrow harvests; MTX,
Methotrexate; Bu, Busulfan; CSA, Cyclosporin A *Subcutaneous injection starting on Day 4 and continuing until recovery of neutrophils to >1000/ml for 3 days.
#Tacrolimus was initiated at a dose of 1 mg i.v. daily, adjusted to achieve a therapeutic level of 5–15 ng/mL, and then converted to oral form until discontinuation. If
there was no active GVHD, tacrolimus was tapered off by Day 180. **Sirolimus (orally, monitored 2 times each week to maintain a target therapeutic plasma level of 8
to 14 ng/mL during the first 2 months after transplantation, thereafter of 5 to 8 ng/mL until discontinuation). ##Patients 50 years old or older were conditioned with
the same regimen as in (D), except for lower dosages of Bu (6–8 mg/kg) and Cy (1.0 g/m2/d).
Frontiers in Oncology | www.frontiersin.org October 2021 | Volume 11 | Article 7585123

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


TABLE 1 | Recent studies comparing the outcomes of AML patients between haplo-SCT and other transplantation modalities.

cGVHD Relapse NRM LFS OS GRFS

30%/34% at 3 yr 44%/58% at 3 yr 14%/9% at 3 yr NA 45%/46% at 3 yr NA
53%/52% at 3 yr 39%/42% at 3 yr 20%/23% at 3 yr NA 50%/44% at 3 yr NA
42% at 1yr** 15% at 3 yr 13% at 3 yr 76% at 3 yr 79% at 3 yr NA
15% at 1yr 15% at 3 yr 8% at 3 yr 80% at 3 yr 82% at 3 yr NA
29% at 2yr — — 32% at 2yr — NA
24% at 2yr HR=0.95 HR=1.16 38% at 2yr HR=0.78 NA
35% at 2yr 32% at 2yr† 15% at 2yr 53% at 2yr 59% at 2yr NA
30% at 2yr 27% at 2yr 20% at 2yr 53% at 2yr 59% at 2yr NA
28% at 2yr 31% at 2yr 24% at 2yr 44% at 2yr 49% at 2yr NA
19% at 2yr 30% at 2yr 29% at 2yr 41% at 2yr 44% at 2yr†† NA
29% at 2yr 22% at 2yr 26% at 2yr 52% at 2yr 57% at 2yr NA
27% at 1yr 28% at 1yr 38% at 1yr 35% at 1yr 39% at 1yr 30% at 1yr
41% at 1yr 32% at 1yr 28% at 1yr 40% at 1yr 42% at 1yr 25% at 1yr
50% at 2 yr 32% at 2 yr 13% at 2 yr 54% at 2 yr 59% at 2 yr 29% at 2 yr
51% at 2 yr 30% at 2 yr 20% at 2 yr 50% at 2 yr 56% at 2 yr 23% at 2 yr
30% at 2 yr 34% at 2 yr 22% at 2 yr 50% at 2 yr 53% at 2 yr 37% at 2 yr
28% at 2 yr 34% at 2 yr 16% at 2 yr 44% at 2 yr 43% at 2 yr 39% at 2 yr
33% at 2 yr 19% at 2 yr 23% at 2 yr‡ 58% at 2 yr‡ 68% at 2 yr‡ 47% at 2 yr
35% at 2 yr 24% at 2 yr 10% at 2 yr 67% at 2 yr 76% at 2 yr 50% at 2 yr
26% at 3yr 38% at 3yr 19% at 3yr 43% at 3yr 48% at 3yr NA
56% at 3yr 38% at 3yr 14% at 3yr 48% at 3yr 55% at 3yr NA
26% at 2 yr 33% at 2 yr 41% at 2 yr 26% at 2 yr 29% at 2 yr 17% at 2 yr##

26% at 2 yr 30% at 2 yr 34% at 2 yr 36% at 2 yr 41% at 2 yr 28% at 2 yr
19.30% at 2 yr 52% at 2 yr 25% at 2 yr 23% at 2 yr 29% at 2 yr 16% at 2 yr
25.60% at 2 yr 46.30% at 2 yr 25.70% at 2 yr 28% at 2 yr 34.70% at 2 yr 16% at 2 yr
27.40% at 2 yr 51.10% at 2 yr 26.70% at 2 yr 22.20% at 2 yr 27.60% at 2 yr 16% at 2 yr
34% at 2 yr 33% at 2 yr 10% at 2 yr 57% at 2 yr 64% at 2 yr 45% at 2 yr
32% at 2 yr 25% at 2 yr 14% at 2 yr 62% at 2 yr 68% at 2 yr 42% at 2 yr
30% at 2 yr 23% at 2 yr 23% at 2 yr 54% at 2 yr 61% at 2 yr 46% at 2 yr
27% at 2 yr 50% at 2 yr 31% at 2 yr 19% at 2 yr 25% at 2 yr 18% at 2 yr
42% at 2 yr 51% at 2 yr 22% at 2 yr 27% at 2 yr 32% at 2 yr 26% at 2 yr
22% at 2 yr 48% at 2 yr 27% at 2 yr 29% at 2 yr 29% at 2 yr 19% at 2 yr
32% at 2 yr 56% at 2 yr 26% at 2 yr 25% at 2 yr 31% at 2 yr 21% at 2 yr
31% at 3 yr 20% at 3 yr 25% at 3 yr 56% at 3 yr 59% at 3 yr 48% at 3 yr
37% at 3 yr 22% at 3 yr 21% at 3 yr 58% at 3 yr 59% at 3 yr 43% at 3 yr

cell transplantation; GVHD, graft-versus-host disease; aGVHD, acute GVHD; cGVHD, chronic GVHD; NRM, nonrelapse
plete remission 2; MUDT, human leukocyte antigen (HLA)-matched unrelated donor transplantation; yr, year; MSDT, HLA-
mismatched MUDT; d, day.

001) or the UCB group (P<0.0001).
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Authors Pros Pt. N. Age* Remission status SCT type 2–4 aGVHD

Ciurea SO, et al. (4) No 192 NA CR2 (20%/35%)/Rel (34%/16%) Haplo-SCT 16%/19%
1982 NA CR2 (20%/25%)/Rel (17%/22%) MUDT 33%/28%

Wang Y, et al. (6) Yes 231 28 Inter- or high-risk AML in CR1 Haplo-SCT 36%
219 40 Inter- or high-risk AML in CR1 MSDT 13%

Ruggeri A, et al. (64) No 360 44 ≧CR2 (28%)/AD (38%)# Haplo-SCT 27%
558 45 ≧CR2 (36%)/AD (19%) UCBT 31%

Versluis J, et al. (65)@ No 3511 50 Later CR (28%) MSDT 22%
1959 54 Later CR (22%) MUDT (10/10) 26%
549 52 Later CR (26%) MUDT (9/10) 28%
333 48 Later CR (24%) UCBT 30%
193 51 Later CR (25%) Haplo-SCT 25%

Santoro N, et al. (66) No 250 65 ≧CR2 (18%)/AD (44%)# Haplo-SCT 31%
2589 64.8 ≧CR2 (17%)/AD (30%) MUDT 33%

Baron F, et al. (62) No 701 58 CR2 (14%) MSDT 19%
611 62 CR2 (20%) MUDT 30%
112 58 CR2 (34%) Haplo-SCT 31%
291 55 CR2 (39%) UCBT 38%

Salvatore D, et al. (67) No 185 50 Inter (66%)/High (34%) Haplo-SCT 31%
2469 50 Inter (76%)/High (24%) MSDT 21%

Rashidi A, et al. (61) No 336 NA Secondary (27%) Haplo-SCT 31%
869 NA Secondary (24%) MSDT 26%

Ruggeri A, et al. (64) No 163 56 CR1 (56%) UCBT 33%
246 60 CR1 (44%) Haplo-SCT 23%

Brissot E, et al. (68) No 199 51.9 Refractory (41%)/relapse (59%) Haplo-SCT 28.20%
1111 52.4 Refractory (45%)/relapse (55%) MUDT 30.60%
383 51.7 Refractory (37%)/relapse (63%) MMUDT 36.30%

Sanz J, et al. (69) No 215 48 Inter (70%)/high (22%) MSDT 17%
235 47 Inter (60%)/high (34%) MUDT 28%
789 54 Inter (66%)/high (29%) Haplo-SCT 26%

Battipaglia G, et al. (63) No 389 52 Refractory (42%)/relapse (58%) Haplo-SCT 28%
1654 52 Refractory (56%)/relapse (44%) MSDT 27%

Kharfan-Dabaja MA, et al. (70) No 135 44 ≧CR2(45%)/Rel(55%) Haplo-SCT 27% at 180d
320 46 ≧CR2(50%)/Rel(50%) MUDT 30% at 180d

Konuma T, et al. (22) No 1102 51 CR1(76%)/≧CR2(24%) UCBT 39%
211 47 CR1(76%)/≧CR2(24%) Haplo-SCT 30%

AML, acute myeloid leukemia; haplo-SCT, haploidentical stem cell transplantation; Pros, prospective; Pt., patient; N, number; SCT, stem
mortality; LFS, leukemia-free survival; OS, overall survival; GRFS, GVHD and relapse-free survival; NA, not available; Rel, relapse; CR2, com
matched sibling donor transplantation; AD, advanced disease; UCBT, umbilical cord blood transplantation; HR, hazard ratio; MMUDT,
*the median age of patients.
**indicates P<0.001 compared with that of MSDT.
@indicates that patients with poor-risk AML were enrolled in this study.
†indicates that haplo-SCT and MUDT (10/10) had lower CIRs than MSDT (P<0.01 for all).
††indicates that UCBT experienced lower RFS than MUDT (10/10), haplo-SCT and MSDT (P<0.01 for all).
#indicates that the percentages of patients in the haplo-SCT group with ≥CR2 or AD were higher than those of the MUDT group (P<0
‡indicates P<0.01 compared with that of MSDT.
##indicates P=0.02 compared with that of haplo-SCT.
.0
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TABLE 2 | Published PKIU studies comparing haplo-SCT with chemotherapy alone in adult and pediatric AML cases.

status LFS OS Prospective study

4yr 74% at 4yr * 78% at 4yr * Yes
4yr 44% at 4yr 55% at 4yr

62% at 5yr ** 72% at 5yr ** Yes
20% at 5yr 27% at 5yr

3yr 73% at 3 yr # 81% at 3 yr # Yes
3yr 47% at 3 yr 54% at 3 yr
238 87% at 5yr ## 83% at 5yr No
32 62% at 5yr 71% at 5yr

82% at 3yr ‡ 85% at 3yr No
67% at 3yr 86% at 3yr

antigen-m n; Yr, year; Ref., reference; No., number; aGVHD, acute graft-versus-
S, overall s residual disease; Ad, advanced disease; MA, myeloablative; G-PB,
d harvests;
hemotherap
chemothera
chemother
otherapy.

-versus-leu

Trans
mod

relapse NRM LFS OS GRFS

) Haplo-SC 9% at 4 yr* 7% at 4 yr 74% at 4 yr* 83% at 4 yr* NA
) MSDT 5% at 4 yr 12% at 4 yr 33% at 4 yr 38% at 4 yr NA

Haplo-SC % at 2 yr** 8% at 2 yr 63% at 2 yr** 71% at 2 yr** NA
MSDT 5% at 1 yr 0% at 2 yr 33% at 2 yr 35% at 2 yr NA
Haplo-SC 6% at 2 yr 14% at 2 yr 72% at 2 yr# 76% at 2 yr NA

MSDT 1% at 2 yr 14% at 2 yr 51% at 2 yr 63% at 2 yr NA

Haplo-SC 6% at 3 yr## 11% at 3 yr 73 at 3 yr 75 at 3 yr NA
MSDT 9% at 3 yr 0 at 3 yr 61% at 3 yr 73% at 3 yr NA
Haplo-SC 4% at 5 yr† 18% at 5 yr 68% at 5 yr† 70% at 5 yr† NA

MSDT 5% at 5 yr 27% at 5 yr 48% at 5 yr 50% at 5 yr NA

Haplo-SC 4% at 3 yr 15% at 3 yr 71% at 3 yr 72% at 3 yr 63% at 3 yr‡

MSDT 4% at 3 yr 10% at 3 yr 66% at 3 yr 68% at 3 yr 43% at 3 yr

-SCT, haploid rsus-host disease; NRM, nonrelapse mortality; LFS, leukemia-free survival;
splantation m stimulating factor (G-CSF)-mobilized peripheral blood harvests; G-BM, G-

.

.
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Author, Yr, Ref. Pts (No.) Diagnosis Disease

Huang XJ, et al. (5) 58 Inter/high-risk CR1
74 Inter/high-risk CR1

Zhu HH, et al. (7) 40 High-risk CR1
29 High-risk CR1

Lv M, et al. et al. (53) 78 Inter-risk CR1
69 Inter-risk CR1

Hu GH, et al. (55) 27 High-risk CR1
28 High-risk CR1

Xue YJ, et al. (54) 33 Inter-risk CR1
47 Inter-risk CR1

PKIU, Peking University Institute of Hematology; MSDT, human leukocyt
host disease; NRM, nonrelapse mortality; LFS, leukemia-free survival; O
granulocyte colony-stimulating factor (G-CSF)-mobilized peripheral bloo
*P<0.01 for relapse, LFS and OS compared between haplo-SCT and c
**P<0.01 for relapse, LFS and OS compared between haplo-SCT and
#P<0.001 for relapse, LFS and OS compared between haplo-SCT and
##P<0.05 for relapse and LFS compared between haplo-SCT and che
†P=0.059.
‡indicate event-free survival.

TABLE 3 | Studies on haploidentical allografts with superior graft

Author, Yr, Ref. Pts
(No.)

Dagnosis Disease
status

Chang YJ, et al.
(71)

34 AML (pre-MRD+) Inter+Ad (94%
107 AML (pre-MRD+) Inter+Ad (82%

Zhao XS, et al.
(72)

14 FLT3+ AML (pre-MRD+) ≧CR2 (29%)
4 FLT3+ AML (pre-MRD+) ≧CR2 (0)

Zhao XS, et al.
(73)

37 CBFB-MYH11+ AML
(pre-MRD+)

≧CR2 (22%)

9 CBFB-MYH11+ AML
(pre-MRD+)

≧CR2 (22%)

Zheng FM, et al.
(74)

69 AML high-risk ≧CR2 (20.3%
23 AML high-risk ≧CR2 (26.1%

Guo HD, et al.
(21)

87 RUNX1/RUNX1T1+ AML
(pre-MRD+)

≧CR2 (21%)

48 RUNX1/RUNX1T1+ AML
(pre-MRD+)

≧CR2 (4%)&

Yu S, et al. (75) 83 High-risk AML CR1 (100%)
106 High-risk AML CR1 (100%)

MSDT, human leukocyte antigen-matched sibling donor transplantation; haplo
OS, overall survival; GRFS, GVHD and relapse-free survival; pre-MRD, pretran
CSF simulated bone marrow harvests; NA, not available.
*P<0.01 for relapse, LFS and OS compared between haplo-SCT and MSDT
**P<0.05 for relapse, LFS and OS compared between haplo-SCT and MSDT
#P<0.05 for LFS compared between haplo-SCT and MSDT.
##P=0.027 for relapse compared between haplo-SCT and MSDT.
†P<0.05 for relapse, LFS and OS compared between haplo-SCT and MSDT
‡P=0.035 for GRFS compared between haplo-SCT and MSDT.
e

m

)
)

.

eatment modality Conditioning regimen relapse NRM

aplo-SCT MAC 12% at 4yr * 0% at
hemotherapy NA 58% at 4yr 12% a
aplo-SCT MAC 21% at 5yr ** NA
hemotherapy NA 79% at 5yr NA
aplo-SCT MAC 12% at 3 yr # 15% a
hemotherapy NA 49% at 3 yr 3% at
aplo-SCT MAC 18% at 5yr ## HR=0.
hemotherapy NA 50% at 5yr P=0.0
aplo-SCT MAC 15% at 3yr † NA
hemotherapy NA 33% at 3yr NA

hed sibling donor transplantation; haplo-SCT, haploidentical stem cell transplantatio
ival; GRFS, GVHD and relapse-free survival; pre-MRD, pretransplantation minimal
BM, G-CSF simulated bone marrow harvests; NA, not available.

.

ia effects to those of MSDT.

nt
y

Conditioning
regimen

Stem cell source 2–4
aGVHD

Chronic
GVHD

MA (100%) G-PB+G-BM (100%) NA NA 1
MA (100%) G-PB+G-BM (100%) NA NA 5
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umbilical cord blood transplantation (UCBT). Here, we mainly
focused on published studies that compared the outcomes
between HIDs and other donors in the last five years (Table 1).

Clinical Outcomes Between Haplo-SCT
and MSDT
In 2015, researchers from China reported the results of a
multicenter, prospective study that compared the outcomes of
AML patients in CR1 who either underwent haplo-SCT (n=231)
or MSDT (n=219) (6). Wang et al. (6) observed similar 3-year CIR
(HR=1.06, P=0.85), NRM (HR=0.58, P=0.14), LFS (HR=0.83,
P=0.42), and OS (HR=0.83, P=0.42) between the two transplant
modalities. These results, together with other studies (69, 82, 91),
suggest that haplo-SCT based on immune tolerance induced by G-
CSF and ATG is a valid alternative as a postremission treatment of
intermediate- orhigh-riskAMLpatients inCR1 lacking an identical
donor. In 2019, after analyzing data obtained from the CIBMTR
database,Rashidi et al. (79)demonstrated that patientswithAMLin
CR1 who received PT-Cy-based haplo-SCT (n=336) had
comparable outcomes in 3-year CIR (HR=0.88, P=0.27), NRM
(HR=1.26, P=0.16), LFS (HR=1.06, P=0.50), and OS (HR=1.15,
P=0.15) and significantly lower chronic GVHD (HR=0.38, P<0.01)
than those who receivedMSDT (n=869). These results suggest that
haplo-SCT is an alternative source for AML cases inCR1 (Table 1).

Except for the two studies reported by Rashidi et al. and
Wang et al. (6, 79), other scholars also confirmed the similarity
between haplo-SCT and MSDT in treating AML in CR2,
secondary AML, poor-risk AML and refractory/relapsed AML
(Table 1) (64, 70, 80). More recently, in a prospective
multicenter cohort study, Yu et al. (92) showed that treating
high-risk AML in CR1 with haploidentical allografts could
significantly decrease the cumulative incidence of positive
posttransplant MRD (18% vs. 42%, P<0.001) and increase the
probability of 3-year GVHD and relapse-free survival (63% vs.
43%, P=0.035) compared with those who received allografts from
MSDs. These results suggest that haplo-SCT has a stronger graft-
versus-leukemia (GVL) effect than MSDT in high-risk AML
patients in CR1 (92). Thus, increasing evidence supports the
notion that haplo-SCT should be recommended as one of the
optimal postremission therapy choices for transplant candidates
with AML.

In a recent meta-analysis, Yang et al. (93) demonstrated that
haplo-SCT, either the Baltimore protocol or the Beijing protocol,
could achieve comparable 1-year CIR (OR, 0.83; P=0.180) and
NRM (OR, 0.98; P=0.910) to those of MSDT in another meta-
analysis, which included 24 studies and 11,359 cases. Overall, the
literature published thus far (64, 70, 80) suggests that for patients
with AML, MSDs remain the first choice when HIDs are also
available due to the early delayed immune recovery and higher
infection rate following haplo-SCT compared to those withMSDT
(58, 94).

Clinical Outcomes Between Haplo-SCT
and MUDT
In 2009, Huang et al. (81) reported that treating hematological
malignancies with haplo-SCT (n=219) could achieve comparable
Frontiers in Oncology | www.frontiersin.org 6
outcomes, including 2-year chronic GVHD (54% vs. 40%,
P=0.17), CIR (12% vs. 18%, P=0.12), NRM (20% vs. 18%,
P=0.98), LFS (67% vs. 61%, P=0.98) and OS (74% vs. 74%,
P=0.74), to those of MUDT (n=78), although higher grades II
to IV acute GVHD (HR=1.72, P=0.046) were observed in the
haplo-SCT cohort. These preliminary data indicate that haplo-
SCT could be an alternative source for patients with
hematological malignancies who lack MSDs or MUDs (81). In
another retrospective pair-matched comparative study of the
EBMT database with data from the Beijing Protocol, Sun et al.
(10) showed comparable outcomes between haplo-SCT and
MUDT for treating AML patients in CR1, suggesting that
HIDs could be an alternative stem cell source when a fully
matched URD is not available.

For poor-risk AML in CR1, Versluis et al. (70) observed that
haplo-SCT could achieve comparable outcomes to those of 10/10
matched MUDT but superior outcomes to those of 9/10 matched
MUDT. Patients with refractory/relapsed AML who underwent
haploidentical allografts experienced comparable outcomes to
those of patients who received either MUDT or mismatched
unrelated donor transplantation (MMUDT) (85). Ongoing
prospective, randomized studies are performed to validate the
disadvantages and advantages between haploidentical allografts
and MUDT (NCT04067180 and NCT04232241), although
current data (4, 24, 70, 83, 85, 86, 95) suggest that an HID is a
valid option for high-risk AML patients in CR1 or with active
disease as well as R/R AML.

Based on the results of the meta-analysis, Arcuri et al. (96)
observed that treating hematological malignancies with PTCy-
based haplo-SCT could achieve a similar OS rate (HR, 0.98) to
MUDT. However, the incidence of all forms of GVHD (2–4
aGVHD, HR, 0.52; cGVHD, HR, 0.25) and NRM (HR, 0.85) was
lower after haplo-SCT than after MUDT. Gagelmann et al. (97)
showed that, compared with MMUDT, haplo-SCT with PTCy
was associated with reduced all-cause mortality (OR, 0.75) and
better outcomes (OR, 0.51). Overall, HIDs could be an
alternative stem cell source for treating subjects with AML,
especially poor-risk subjects, who lack MSDs in experienced
centers due to easy access to first and second stem cell harvests,
although the current algorithm suggests that MUDs (10/10)
should be preferred to HIDs (42, 98).

Clinical Outcomes Between Haplo-SCT
and UCBT
In 2011, a 2 parallel multicenter phase 2 trial performed by
Brunstein et al. (99) provided preliminary results indicating that
the outcomes between double UCBT and haplomarrow
transplantation with reduced intensity conditioning (RIC)
regimens in treating leukemia and lymphoma are comparable
to those reported after MUDT. However, from the point of view
of graft acquisition and early direct charges, haplo-SCT may
result in early cost savings over double UCBT and may be
preferred by transplant centers and patients with more limited
resources, as described by Kanate et al. (100)

In 2019, Ruggeri et al. (84) retrospectively analyzed the
outcomes of 409 adults with secondary AML receiving either
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UCBT (n=163) or haplo-SCT (n=246) in EBMT centers. They
observed a higher risk of grade II–IV acute GVHD (HR 1.9,
P=0.009) and lower GHVD-free relapse-free survival (GRFS)
(HR 1.57, P=0.007) after UCBT for subjects with AML compared
to haploidentical allografts. These results indicate that haplo-
SCT is associated with better GRFS and lower acute GVHD than
UCBT in patients with secondary AML. For poor-risk AML
patients, Versluis et al. (70) found that compared with UCBT,
haplo-SCT was associated with higher RFS (52% vs.
41%, P<0.001).

More recently, in 2 parallel phase II trials, 368 patients aged
18 to 70 years with chemotherapy-sensitive lymphoma or acute
leukemia in CR were randomly assigned to the UCBT group
(n=186) or haplo-SCT group (n=182) (65). Prespecified analysis
of secondary end points demonstrated lower 2-year NRM after
haplo-SCT than that of UCBT (11% vs. 18%, P=0.04), which led
to higher OS after haplo-SCT compared with that of UCBT (57%
vs. 46%, P=0.04), but the PFS was comparable (35% vs. 41%,
P=0.41). Fuchs et al. (65) suggested that although both donor
sources extend access to RIC transplantation, analyses of
secondary end points, including OS, favor HIDs.

In a recent meta-analysis, Wu et al. (71) found that haplo-
SCT was associated with a lower NRM (0.72, 95% CI 0.64 to
0.80), leading to superior OS (OR, 0.74, 95% CI, 0.68 to 0.80) and
PFS (0.77, 95% CI 0.72 to 0.83) compared with UCBT. Overall,
the available published literature (65, 70, 84, 100), especially
meta-analyses (71), suggests that haplo-SCT might be better than
UCBT in treating AML.

Overall, the landscape of allografts for hematological
malignancies apparently changed with the position alteration
of haplo-SCT in AML treatment (5, 11, 13, 22, 59–61). Most
scholars agree that for patients with hematological malignancies,
including AML, who lack MSDs and urgent transplantation,
HIDs could be selected first. Impressively, based on the dataset of
the Acute Leukemia Working Party of the EBMT registry,
Dholaria et al. demonstrated that 9/10 MUDT with PTCy may
be preferred over UCBT if a 10/10 matched unrelated donor is
not available (72) (Figure 2A). Currently, a few retrospective
studies compared the clinical outcomes between the Beijing
Protocol and the Baltimore protocol in treating patients with
hematological malignancies (73, 101, 102), however, the results
among different studies remain controversial. Therefore,
prospective, multicenter, randomized studies are needed.
CHALLENGES OF HAPLOIDENTICAL
ALLOGRAFT IN AML TREATMENT

According to the CIBMTR data, relapse remains an important
challenge in AML patients who undergo haploidentical
allografts. Infection is another challenge following haplo-SCT-
based immune tolerance induced either by G-CSF and ATG or
by PTCy (57, 58, 103, 104). Here, we discussed the recent
emerging strategies for relapse or infection intervention or
treatment for AML subjects.
Frontiers in Oncology | www.frontiersin.org 7
Could HIDs Be Selected First for
Subgroup AML Patients to Decrease
the Relapse Rate?
According to the current opinion, MSDs remain the first choice for
transplant candidates with AML, although comparable outcomes
were observed between haplo-SCT andMSDT (42, 105). However,
we found that for all AMLpatients with positive pretransplantation
MRD, haplo-SCT patients experienced a lower CIR and better LFS
and OS thanMDST patients (25, 106–109). These results suggest a
stronger GVL effect of HIDs thanMSDs.We further confirmed the
stronger GVL effects after haplo-SCT than MSDT in AML
subgroups with positive pretransplant MRD, including t(8;21)
AML (25), Flt3 mutation-positive AML (110), and high-risk
AML patients in CR1 (92) (Table 3). Interestingly, the stronger
GVL effect of HIDs compared with MSDs was also confirmed in
ALL patients with positive pre-MRD (111) and lymphoma subjects
(105). More recently, a study from the Acute Leukemia Working
Party of the EBMT showed that ALL patients treated with haplo-
SCT experienced a significantly lower 2-year CIR than those of
patients receiving MSDT (HR=0.63, P=0.002) (112), which
provides new evidence supporting the stronger GVL effect ofHIDs.

More recently, haploidentical and major histocompatibility
(MHC)-matched transplant models were established by Guo et al.
(25) after infusion of leukemia cells that carried the human AML-
ETO or MLL-AF9 fusion gene to investigate the immune cell
dynamic response during leukemia development in vivo. They
showed that haplomatching the MHCs of leukemia cells with
recipient mouse T cells prolonged leukemic mouse survival and
reduced leukemia burden (25). The stronger GVL activity in the
haplo-SCT group was mainly induced by decreased apoptosis and
increased cytotoxic cytokine secretion, including tumor necrosis
factor-a, interferon-g, pore-forming proteins and CD107a secreted
by T cells or natural killer (NK) cells (25).

Overall, in contrast to the traditional notion that MSDs remain
the first choice, recent advances in haploidentical transplantation
settings raise a new idea (92, 105, 107, 108, 110–114): for some
subgroups of AML patients, HIDs might be chosen first (19),
although further research is needed before this could be included
in the donor selection algorithm (115, 116).

Could the Best HIDs Be Selected to
Decrease CIR of AML?
Donor characteristics are important variables for transplant
outcome determination. In haplo-SCT settings, we and other
researchers suggest a donor selection algorithm for which the key
issue is that the younger the better (42, 117, 118). Regarding the
best donor selection in AML patients treated with haplo-SCT,
NK cell alloreactivity (KIR ligand mismatch between recipients
and donors) was associated with better survival in AML patients
who received haplo-SCT with ex vivo TCD. However, in
unmanipulated haplo-SCT settings, KIR ligand mismatch was
not associated with better survival of acute leukemia patients (42,
119, 120). Our group found that, compared to subjects with KIR
ligand mismatch, cases with KIR ligand match were associated
with rapid quantitative and functional NK cell recovery, which
could contribute to lower CIR and better survival of AML cases
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treated with the Beijing Protocol (121). In a recent multicenter
retrospective study, 1270 patients with acute lymphoma,
including AML (n=1019) and ALL (n=251), received haplo-
SCT using a myeloid ablative conditioning regimen or RIC.
Cannani et al. (40) showed that for cases with age >40, donor age
(>40) was correlated with higher NRM and inferior LFS and OS.
Unfortunately, the current algorithm for the best HID selection
is mainly based on the results obtained from the total patient
population (41, 122). Therefore, multicenter, prospective studies
are needed to answer the question of who is the best HID for
AML patients, especially in unmanipulated haplo-SCT settings.

Could We Incorporate Novel Methods With
Haplo-SCT for R/R AML Treatment?
Venetoclax (VEN), a BCL-2 inhibitor, has been approved for
unfit, older patients with AML (123, 124). In a recent study,
sixty-eight patients, including newly diagnosed AML (ND AML)
and R/R AML, were enrolled [phase IB (PIB), 16 (R/R); phase
Frontiers in Oncology | www.frontiersin.org 8
IIA (PIIA), 29 (ND); phase IIB (PIIB), 23 (R/R)]. Fludarabine
(Flu), cytarabine (Ara-C), G-CSF, and idarubicin (IDA) + VEN
(FLAG-IDA+VEN) were administered to all subjects. FLAG-
IDA induction consisted of 28-day cycles of intravenous (iv) Flu
(30 mg/m2) and Ara-c (1.5–2 g/m2 iv) on days (d) 2–6, IDA (iv;
ND-AML: 8 mg/m2 d 4–6; R/R-AML: 6 mg/m2 d 4–5), and G-
CSF (5 mg/kg d1–7). For patients in the PIB arm, VEN was
administered as follows: 200 mg d1–21 (n=8), d1–14 (n=5); 400
mg d1–14 (n=3). For cases in the PIIA and PIIB arms, VEN was
administered at 400 mg D1–14. After induction therapy, 67% of
patients with R/R-AML (including 57% [n=8] subjects receiving
prior allo-SCT) and 83% with sAML, t-AML, or ts-AML attained
a CRc (CR+CRi). Eighteen (46%) R/R-AML cases, including 75%
(n=6) of responding R/R patients who experienced a prior allo-
SCT, were transitioned to allo-SCT. DiNardo et al. (125) further
showed that for cases with R/R-AML, improved OS was observed
in patients with consolidative allo-SCT in CRc versus without
(median OS: NR [14 to not estimated (NE)] v 7 [4 to NE]
A

B

FIGURE 2 | Position of haploidentical stem cell transplantation in the treatment of acute myeloid leukemia. (A) Newly diagnosed AML; (B) refractory or relapsed
AML. AML, acute myeloid leukemia; ELN, European LeukemiaNet; MRD, minimal residual disease; MRDneg, negative MRD; MRDpos, positive MRD; Allo-SCT,
allogeneic stem cell transplantation; R/R, refractory or relapsed; HCR, hematological complete remission; CAR-T, chimeric antigen receptor (CAR) T cell; MSD,
human leukocyte antigen (HLA)-matched sibling donor; MUD, HLA-matched unrelated donor; HID, haploidentical donor; UCB, umbilical cord blood; PTCy, post-
transplant cyclophosphamide; GVL, graft-versus-leukemia; VEN, venetoclax; Haplo-SCT, haploidentical SCT; DLI, donor lymphocyte infusion; NK cell, natural killer
cell. *For intermediate-risk AML patients with MRD negative CR1, controversy remains regarding the selection of chemotherapy alone, autologous SCT or allo-SCT in
patients. #For pre-MRD positive AML cases, haplo-SCT had a stronger GVL effect compared with that of MSDT.
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months; P=0.009). This study provides a promising approach,
combining FLAG-IDA+VEN with allografts, for the treatment of
R/R AML.

To treat a patient with FUS-ERG+AMLwho relapsed after allo-
SCT within 3 months and resisted multiagent chemotherapy and
donor lymphocyte infusion (DLI), Yao et al. (126) used donor-
derived CD123-targeted CAR T cells (CART123) as part of a
conditioning regimen for haplo-SCT. They observed a reduced
blast level in BM within 2 weeks, which coincided with CAR copy
expansion. After achieving full donor chimerism, this patient
achieved CR with incomplete blood count recovery. These results
suggest that CART123 in combination with haplo-SCT could be
used as a therapy for relapsed AML subjects.

Overall, available data suggest that (125, 127–137), several
other novel methods, such as ivosidenib, gilteritinib,
flotetuzumab, quizartinib, CD33/CD3 bispecific T-cell engager
antibody, and CAR- NK cells, could be successfully used for R/R
AML patient therapy either alone or combined with allo-SCT,
including haploidentical allografts (Table 4).

Could We Incorporate Other Approaches
for AML Relapse Treatment and
Prevention After haplo-SCT?
The outcomes of AML patients who relapse after allografts
remain poor, with a 5-year OS of less than 20%, and either
DLI or second allo-SCT is prescribed (138). More recently, Cui
et al. (139) enrolled 6 AML patients who relapsed after
transplantation. The median percentage of CD38 expression
on blasts in the bone marrow of these patients was 95% before
CD38-targeted CAR-T cell (CAR-T-38, 4 from autologous and 2
from donors) treatment. Four of six (66.7%) patients achieved
CR or CR with incomplete count recovery (CRi) 4 weeks after the
initial CAR-T-38 cell therapy. The CIR at 6 months was 50%.
The median times of OS and LFS of these cases were 7.9 and 6.4
months, respectively. One patient who relapsed 117 days after
the first CAR-T-38 treatment achieved remission after the
second CAR-T-38 cell infusion. The side effects of these
patients were manageable. There were no off-target effects on
monocytes and lymphocytes. Although a limited number of cases
and a relatively short follow-up time were presented by Cui et al.
(139), their preliminary data highlight the clinical utility and
safety of CAR-T-38 cell therapy in treating relapsed AML
following allo-SCT. Several trials (NCT02782546, 04024761,
03300492) investigating the feasibility of immunotherapy with
NK cells are ongoing (Table 4).

Considering the poor outcomes of HR-AML, a number of
strategies for relapse prophylaxis or prevention have been used in
the clinic (140). In a phase II, open-label, multicenter,
randomized controlled trial (141), 204 HR-AML subjects with
negative MRD who had received allo-SCT (mainly haplo-SCT,
n=148) 60–100 days before were randomly (1:1) assigned to
either no intervention (non–G-Dec group) or rhG-CSF
combined with minimal dose Dec (G-Dec group: 100 mg/m2

of rhG-CSF on Days 0–5 and 5 mg/m2 of Dec on Days 1–5). Gao
et al. (141) observed that patients in the G-Dec group
experienced a lower 2-year CIR (15.0% vs. 38.3%, P=0.01)
Frontiers in Oncology | www.frontiersin.org 9
accompanied by rapid recovery of CD8+ T cells, NK cells, and
regulatory T cells compared with patients in the non–G-Dec
group, both of which led to higher LFS (HR=0.38, P<0.01) and
OS (HR=0.45, P=0.01). No differences in the 2-year chronic
GVHD without relapse between the two groups (23.0% vs.
21.7%, P=0.81) were shown. The authors (141). suggest that
rhG-CSF combined with minimal-dose Dec maintenance
therapy following transplantation can reduce the CIR, leading
to the acquisition of GVL effects and immune tolerance.

Impressively, data from two independent randomized trials
(15, 142) show that sorafenib maintenance posttransplantation,
including haplo-SCT, prevents disease relapse in patients with
FLT3-ITD AML both with negative or positive MRD after
allograft transplantation, resulting in an OS benefit. A previous
study by Mathew et al. (143), in allograft settings, showed that
sorafenib increased IL-15 production by FLT3-ITD+ leukemia
cells. IL-15 further caused an increase in CD8+CD107a+IFN-g+ T
cells with high levels of Bcl-2 and reduced PD-1 levels, and this
cell subset could eradicate leukemia in secondary recipients.
These studies (15, 142) provided strong evidence indicating
that targeted posttransplant maintenance therapy should be a
new treatment paradigm for AML, although questions remain.
Moreover, additional studies are needed to investigate the
optimal initial time and duration of sorafenib maintenance
after allo-SCT as well as to elucidate the underlying
mechanisms of sorafenib activity in the allograft setting.

In summary, the successful applicationofnewstrategies following
allografting (15, 137, 142, 144), such as rhG-CSF combined with
minimal-dose Dec, Aza plus VEN (NCT04809181), and targeted
agent maintenance, could help AML patients avoid hematological
relapse as much as possible, thus decreasing the CIR and improving
the survival rate (Figure 2B).

Could Infections Be Effectively Prevented
Using Adoptive Cell Therapy?
In haplo-SCT with the G-CSF modality, the cumulative
incidence of cytomegalovirus (CMV) DNAemia varies from
63.7 to 66.1% and remains one of the main causes of
morbidity and mortality. BKV and EBV infection are also
frequent in haplo-SCT and a risk factor for worse survival
except for CMV infection (58, 145). For cases with refractory
CMV infection who failed to respond to ganciclovir, foscarnet,
and cidofovir, adoptive T-cell therapies, such as CMV-specific T-
cells (CMV CTLs), represent a promising approach (146, 147).
Using a humanized HCMV-infected mouse model, our group
further elucidated that systemic HCMV infection could be
combated after first-line therapy with CMV CTLs via in vivo
promotion of the recovery of graft-derived endogenous CMV
CTLs (55). These studies provide substantial evidence suggesting
that refractory CMV infection could be successfully treated by
adoptive transfer of CMV CTLs. Future studies should focus on
risk factor-directed intervention or the development of new
drugs for CMV infections in haplo-SCT settings.

Olson et al. (148) performed a clinical trial in which HLA-
matched third-party BKV-specific CTLs were infused into 59
patients who developed BKV-HC following allo-SCT. They
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observed a rapid response to BKV-CTL infusion. The Day 14 and
Day 45 overall response rates were 67.7% and 81.6%,
respectively. No patient lost a previously achieved response.
There were no cases of de novo grade III or IV GVHD, graft
failure, or infusion-related toxicities. BKV-CTLs were observed
in patient blood samples up to 3 months postinfusion, and their
in vivo expansion predicted a clinical response. This study
suggests that off-the-shelf BKV-CTLs are a safe and effective
therapy for the management of patients with BKV-HC after allo-
SCT (148). Therefore, rapid reconstitution of immunity to a
broad range of viral and fungal infections can be achieved using a
multipathogen-specific T-cell product (147, 149).

In summary, recent studies (147) showed some promising
preliminary data and ongoing clinical trials on AML relapse
prophylaxis, intervention, and treatment (Figure 2B and
Table 4), as well as infection prevention and therapy. Both of
Frontiers in Oncology | www.frontiersin.org 10
these factors will pave the way for outcome improvements for
patients with AML who undergo haploidentical allografts.
FUTURE PROSPECTS

In the next five to ten years, the issue of relapse and infections
remains to be solved, although haplo-SCT has been rapidly
expanded in AML treatment (5, 11, 13, 22, 59–61). Regarding
relapse, elucidating the mechanisms underlying leukemia
recurrence remains the most important way to find novel
targets for intervention or treatment of relapse. Recently, the
application of single-cell sequencing techniques has been used
for the following purposes (150–160): i) identifying differentiated
AML cells with immunosuppressive properties; ii) dissecting the
clonal heterogeneity of AML; iii) providing novel insights into
TABLE 4 | Ongoing clinical trials focusing on patients with R/R AML or those who received haplo-SCT.

ClinicalTrials.gov
Identifier

Randomized
study

Estimated Study
Completion Date

Aim of the study

NCT04067180 Yes August 2028 To evaluate whether haplo-SCT is as good as URD SCT for the treatment of AML.
NCT02782546 No January 30, 2024 To explore the whether CIML NK could improve LFS of AML patients receiving haplo-SCT.
NCT04232241 Yes November 2024 To compare anti-leukemic activity between MUDT (10/10) and haplo-SCT for patients with AL.
NCT03384225 Yes July 31, 2022 To evaluate if CBA could decrease relapse after haplo-SCT in HR/R AML compared with FBA.
NCT03300492 No January 31, 2023 Safety, Feasibility of Pre-emptive therapy With in Vitro Expanded NK Cells in AML/MDS Patients

receiving Haplo-HSCT (Phase I/II).
NCT04678401 No October 31, 2023 Immunosuppression-free Treg-cell Graft-engineered haplo-SCT in R/R AML/MDS (Phase I).
NCT04060277 Yes July 22, 2022 To Evaluate the Protective Function of CMV-MVA Triplex Vaccine in Adult Recipients of haplo-SCT.
NCT04809181 No March 19, 2026 To investigate the efficacy of Aza plus VEN for Prevention of Relapse in MRD-Positive Post allo-SCT

AML/MDS Patients.
NCT04959903 No September 2026 To explore the Safety and the Efficacy of SMART101 Injection to Accelerate IR After TCD allo-SCT in

Patients With AL (Phase I/II).
NCT04599543 No November 15, 2023 To investigate the Safety and Efficacy of IL3 CAR-T Cell Therapy for R/R Acute Myeloid Leukemia.
NCT04658004 No January 15, 2024 The Safety and Efficacy of NKG2D CAR-T Cell Therapy for Patients With R/R AML.
NCT03473457 No December 31, 2022 The CAR-T cells (single CAR-T or double CAR-T cells with CD33,CD38,CD56,CD123,CD117,CD133,

CD34 or Mucl) for R/R AML
NCT04014881 No July 1, 2022 To evaluate the safety and efficacy of anti-CD123 CAR-T cells in patients with R/R CD123+ AML.
NCT03971799 No December 2024 To determine The safety and feasibility of anti-CD33 CAR-T cells in children and AYAs with R/R AML.
NCT04010877 No December 31, 2023 The feasibility, safety and efficacy of multiple CAR T-cell therapy targeting CD123 or CD33 in patients

with R/R AML.
NCT04272125 No July 1, 2023 To evaluate the efficacy and safety of CD123-targeted CAR-T cell therapy for patients with R/R AML.
NCT04835519 No April 8, 2024 To evaluate safety and tolerability of functionally enhanced CD33 CAR-T cells in patients with R/R

AML.
NCT04219163 No July 31, 2038 CAR T-cells for The Treatment of AML Expressing CLL-1 Antigen.
NCT04678336 No January 2036 To explore the safety, feasibility, and efficacy of CART123 cells in pediatric subjects with R/R AML

(Phase 1).
NCT04762485 No February 28, 2024 This is a phase 1/2 study to evaluate the efficacy and safety of CAR-T cells targeting CD7 for patients

with R/R CD7 positive AL.
NCT04766840 No December 1, 2023 To Evaluate the Safety and Efficacy of Donor-derived CAR-T Cells for patients with R/R AML.
NCT03631576 No August 10, 2021 This study aims to assess the safety and toxicity of CD123/CLL1 CAR-T Cells to patients with R/R

AML.
NCT04318678 No July 1, 2025 To explore the safety of autologous, CD123-CAR T cells in patients (≤21 years) with R/R CD123+

AML.
NCT04803929 No March 1, 2026 To investigate the safety and efficacy of novel ILT3-targeted CAR-T cell therapy for patients with R/R

AML (M4/M5).
NCT04789408 No January 2024 A Phase 1 Open-label, Multicenter Study Evaluating an Autologous Anti-CLL-1 CAR T-cell therapy in

Subjects With R/R AML.
NCT03190278 No October 2022 Phase I first-in-human study evaluating the safety and efficacy of UCART targeting CD123 in patients

with R/R AML.
AML, acute myeloid leukemia; Haplo-SCT, haploidentical stem cell transplantation; URD SCT, unrelated donor SCT; CIML NK, cytokine-induced memory-like natural killer cells; LFS,
leukemia-free survival; AL, acute leukemia; MUDT, human leukocyte antigen-matched unrelated donor transplantation; CBA, cladribine-based conditioning; FBA, fludarabine-based
conditioning regimen; HR, high-risk; R, refractory; R/R, relapsed/refractory; Treg, regulatory T cells; CAR-T, chimeric antigen receptor (CAR)-expressing T cells; Aza, azacitidine; VEN,
venetoclax; MRD, minimal residual disease; TCD, T cell depleted; SMART101, human T lymphocyte progenitor; IR, immune recovery; IL-3, interleukin-3.
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the clonal evolution and resistance mechanisms of leukemia cells;
iv) identifying novel targets for AML therapy; and v) highlighting
the profound impact of AML on NK cell heterogeneity. These
advances provide new clues and suggest that we could further
discover new mechanisms underlying leukemia relapse after
transplantation based on the abovementioned new techniques
as well as in vitro and in vivo functional experiments.

In addition, based on current available data (25, 106, 108, 113,
140, 161), at different timepoints (pre- and posttransplantation),
realization of individual therapy of AML by combining haplo-SCT
with other novel methods (113), such as CAR-T therapy, target
agents, and others, should be investigated. Could changing positive
MRD to negativeMRDpretransplantation further improve clinical
outcomes? Which is the best method for positive pretransplant
MRD eradication? For patients with intermediate- or adverse-
stratification, should maintenance after transplant be given
routinely? To answer these questions, prospective, multicenter,
randomized clinical trials are urgently needed.

Infections, especially viral infections, are of concern. Both in
the Beijing Protocol and the Baltimore Protocol, the delayed
reconstitution of CMV-specific CTLs and NK cells was
associated with CMV reactivation (58, 145). Therefore,
enhancing CMV-specific CTL and NK cell recovery represents
a future direction for virus infection prevention, including CMV,
EBV, and BKV. Unfortunately, overcoming the functional
impairments of adaptive NK cells to produce IFN-g (162), a
phenomenon due to the virus-induced expression of lymphocyte
activation gene 3 and programmed cell death protein 1
checkpoint inhibitors, remains to be investigated. In addition,
a phase II multicenter, randomized trial is ongoing to investigate
the protective function of the CMV-MVA triplex vaccine in adult
recipients who received haplo-SCT (NCT 04161885).
Frontiers in Oncology | www.frontiersin.org 11
CONCLUSION

Recent advances in haploidentical allografts have significantly
changed their position in AML treatment (5, 11, 13, 22, 59–61).
Their combination with novel therapies, such as CAR-T cells and
Ven, could make more R/R patients with AML eligible for
curative haplo-SCT who previously experienced poor outcomes
when receiving allografts in relapse or NR status (125). Ongoing
studies focusing on relapse, infections, and hematopoietic and
immunological reconstitution enhancement would further
improve haploidentical transplant outcomes of AML. In the
long term, biomarkers (163, 164), such as MRD, directed
donor selection (108), conditioning selection (14), and
immunological enhancement for relapse intervention (165),
will help us realize precision medicine in the setting of haplo-
SCT for treating patients with AML.
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