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Angiogenesis mediated by vascular endothelial growth factor (VEGF) is

known to play an important role in regulating cartilage remodelling and

endochondral ossification. However, the details of how VEGF signalling

mechanisms affect condyle remodelling in response to alterations in func-

tional loading remains unclear. To explore this, eighty 16-day-old male SD

rats were divided into two equal groups which were fed either a soft/powdery

diet or a hard diet for 4 weeks; the stiffness of the diet results in alteration of

mastication force and hence temporomandibular joint (TMJ) development.

We performed a proteomic analysis of rat condylar cartilage using isobaric

tags for relative and absolute quantification (iTRAQ) labelling, followed by

2D nano-high performance liquid chromatography and MALDI-TOF/

time-of-flight technology. After protein identification, we used biological

information analysis to identify the differentially expressed proteins associ-

ated with the VEGF signalling pathway. Among the identified differentially

expressed proteins, we found VEGF signalling mainly via the p44/42 MAPK

and p38 mitogen-activated protein kinase (MAPK) pathways in condylar

cartilage, including VEGFD, VGFR2, KPCB, KPCT, KPCZ, ARAF,

RASN, PLCG2, PLCG1, JUN and M3K12. Furthermore, four representa-

tive protein candidates, VEGF, p38 MAPK and p44/42 MAPK/phospho-

p44/42 MAPK, were confirmed by immunohistochemical staining and west-

ern blot. Our data suggest that VEGF might play an important role in TMJ

development and remodelling in response to alterations in functional loading

through the p44/42 MAPK and p38 MAPK signalling pathway. This study

provides new clues to the understanding of the signalling mechanism respon-

sible for VEGF production in response to different masticatory functions at

the protein level.

Abbreviations

H&E, haematoxylin and eosin; HPLC, high-performance liquid chromatography; IHC, immunohistochemical; iTRAQ, isobaric tags for relative

and absolute quantitation; MALDI-TOF/TOF, matrix-assisted laser desorption ionization time-of-flight/time-of-flight; MCC, mandibular condylar

cartilage; MS, mass spectrometry; RP, reverse-phase; SCX, strong cation exchange; SDS, sodium dodecyl sulphate; TMJ,

temporomandibular joint; VEGFR, VEGF receptor; VEGF, vascular endothelial growth factor.

44 FEBS Open Bio 7 (2017) 44–53 ª 2016 The Authors. Published by FEBS Press and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use,

distribution and reproduction in any medium, provided the original work is properly cited.



Mastication provides a crucial mechanical stimulus for

jawbone remodelling. Reduced masticatory loading

induced by a soft diet negatively affects the jaw muscle

activity and the masticatory force and strength [1].

Many previous studies have shown that masticatory

loading directly positively influences jaw muscle fibres

[2,3] and mandibular morphology, mineral density and

temporomandibular joint (TMJ) strength [4] in grow-

ing [5] and adult animals [6]. The cells and microstruc-

ture of the mandibular condyle are particularly

responsive to biomechanical stress, such as that of

mastication [7,8].

The invasion of new vasculature into cartilage is the

first vital step in the process of endochondral ossifica-

tion on the mandibular condyle. The mandibular

condylar cartilage (MCC) itself is an alymphatic and

nonvascular tissue. Angiogenesis brings in circulating

factors that promote the replacement of cartilage by

bone growth and remodelling, leading to endochondral

bone formation [9]. Vascular endothelial growth factor

(VEGF) is the single most important mediator regulat-

ing vascular development and angiogenesis. It is

thought to be synthesized by hypertrophic chondro-

cytes in the epiphyseal growth plate and is essential for

extracellular matrix remodelling, angiogenesis and

endochondral ossification [10]. Recent evidence sup-

ports this notion because VEGF could be found in

growing MCC but not new-born MCC [11,12].

Numerous studies have shown that VEGF is central to

promoting endochondral bone formation by affecting

the proliferation and migration of endothelial cells [13]

and chondrocytes [14] or inducing neovascularization

in response to physiological/nonphysiological mechani-

cal load in MCC [15]. However, the details of VEGF

signalling mechanisms in the condyle need further

investigation.

Isobaric tags for relative and absolute quantitation

(iTRAQ) technology is a powerful and popular pro-

teomic labelling method used in the search for markers

or molecular mechanisms in health or disease condi-

tions, as it can display thousands of proteins simulta-

neously [16,17]. In the current study, we used iTRAQ

analysis to determine changes in the VEGF signalling

pathway in MCC after mastication. Rodents were fed

a soft versus hard diet to reproduce the reduction of

masticatory function experimentally. After protein

identification, we focused on the analysis of biological

information to screen out the differentially expressed

proteins that are associated with the VEGF signalling

pathway. In the second step, we selected four represen-

tative proteins [VEGF, p38 mitogen-activated protein

kinase (MAPK) and p44/42 MAPK/phospho-p44/42

MAPK proteins] to validate the results of proteomic

analysis by immunohistochemical (IHC) and western

blot.

Materials and methods

Experimental model and tissue preparations

Sixteen-day-old male Sprague–Dawley rats without masti-

cation were used in this study. All procedures were

approved by the Ethics Committee for Animal Care and

Use of the Research Center for Experimental Medicine of

Ruijin Hospital. Eighty rats (40 in each group) were

divided into two groups: those fed a soft/powdery diet ver-

sus those fed a hard diet as described previously [18]. Simi-

lar quantities of water and food were offered to both

groups ad libitum daily. The animals were sacrificed

4 weeks later.

Preparation of condylar cartilage proteins and

proteomic analysis

Forty condylar cartilages per group were mixed together,

frozen in liquid nitrogen, pulverized mechanically and

suspended in RIPA lysis buffer (Beyotime, Shanghai, China).

The lysed samples were vigorously vortexed for 30 min on

ice and centrifuged for 15 min at 14 000 g at 4 °C. Then, pro-
tein concentrations were estimated by BCA assay

(Beyotime). After being reduced, alkylated, and digested with

trypsin (Promega, Madison, WI, USA) at 37 °C overnight,

100 lg protein per group was labelled with 4-plex iTRAQ

reagents according to the standard manufacturer’s supplied

protocol (iTRAQ Reagent Multi-plex Kit; AB Sciex, Fra-

mingham, MA, USA; schematics of the experimental design

are shown in Fig. 1A). Peptides from the baseline (new-born

rat condyles), soft diet group and hard diet group were

labelled with 114.1, 116.1 and 117.1 respectively.

The samples were then separated by two-dimensional sep-

aration using 2D nano-high-performance liquid chromatog-

raphy (HPLC; LC-20A; SHIMADZU, Tokyo, Japan),

including the first dimension using a strong cation exchange

(SCX) column and the second dimension using a reverse-

phase (RP) analytical capillary column (Thermo, Waltham,

MA, USA). Briefly, the mixed iTRAQ-labelled peptides

were first diluted in SCX buffer A (10 mM ammonium for-

mate in 0.1% v/v formic acid), followed by a gradient elu-

tion of 0%, 20%, 50% and 100% SCX buffer B (500 mM

ammonium formate in 0.1% v/v formic acid) over 24 min

(at 6-min intervals per gradient). The SCX fractions were

then separated by an RP analytical capillary column using a

time-linear gradient of buffer A (0.1 v/v trifluoroacetic acid

in 5% v/v acetonitrile) to buffer B (0.1 v/v trifluoroacetic

acid in 90% v/v acetonitrile). The column flow rate was

maintained at 2 lL�min�1 of CHCA matrix solution over

40 min. Positive ions were then spotted onto target plates
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for MALDI-TOF/TOF �4700 mass spectrometry (MS)

measurements with the AccuSpot system (SHIMADZU).

The MALDI-TOF spectra were acquired in TOF/TOF

mode using 10 laser shots per spectrum, while TOF/TOF

fragmentation spectra were acquired using 20 laser shots

per fragmentation spectrum. The scan range was 800–
4000 m/z and the frequency was 20 scans per time. Five pre-

cursor ions per well were selected from four plates (192

wells per plate) for tandem MS identification, and approxi-

mately 3000 precursor ions were selected for the target

plates. The parameters for MS analysis were a signal-to-

noise threshold of 20 and a minimum area of 100 and a res-

olution higher than 10 000 with a mass accuracy of

20 p.p.m. The following mass search parameters were set:

mass spectra over the m/z range of 800–4000 Da; MS toler-

ance �0.15 m/z and MS/MS tolerance �0.1 m/z, and an

allowance of missed cleavage of 1, with consideration for

variable modifications. The results were gathered by data-

base searching against MASCOT software (version 2.1; Matrix

Science, London, UK) and the rat SWISS-PROT protein

database (Release 2014_01). The detected protein threshold

was set to 80% confidence. All spectra used for protein ratio

calculations were unique to the given proteins. Cut-off confi-

dence values accepting protein identification for Mascot was

80%. Only proteins detected in every biological replicate

were included, and they must have contained at least two

unique high-scoring peptides. iTRAQ ratios were analysed

automatically by GPS EXPLORER(TM) v3.6 software (AB Sciex).

The iTRAQ ratio of increased proteins was greater than

1.20, and the iTRAQ ratio of decreased proteins was < 0.80

[19]. For bioinformatics analysis, cluster analysis was per-

formed according to their cellular component, biological

process and molecular function. The PANTHER pathway

database (http://www.pantherdb.org/) and the web-based

DAVID software (https://david.ncifcrf.gov/) were used to anal-

yse and annotate the functions of many proteins.

Haematoxylin and eosin staining and

immunohistochemical staining

Immediately after sacrifice, 10 condylar samples in each

group were embedded for histological analysis. The con-

dyles were fixed in 4% paraformaldehyde for at least 48 h

and then decalcified in ethylene diamine tetra-acetic acid
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Fig. 1. (A) The experimental design for

iTRAQ proteomic analysis. (B) Illustration

of VEGF signalling pathway in condylar

cartilage according to the proteomic

results.
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solution at 4 °C for 4 weeks. The samples were paraffin-

embedded and 5-lm sagittal sections were obtained. After

haematoxylin and eosin (H&E) staining, the condylar carti-

lage could be stratified into four layers, the fibrous layer,

proliferative layer, the maturing layer and hypertrophic

layer, and divided into three regions: anterior, superior and

posterior (Fig. 2A,B). As the most drastic changes were

observed in the anterior region of the condyle, the thick-

ness of the anterior region was measured in a blinded, non-

biased manner by image analysis software (IMAGE-PRO PLUS

6.0; Media Cybernetics, Silver Spring, MD, USA).

A standard IHC method was used according to the manu-

facturer’s recommended protocol. Endogenous peroxide was

quenched or destroyed by incubating it with 3% hydrogen

peroxide for 20 min at room temperature. The sections were

then reacted with the following primary antibodies (proteins

were selected according to the results of proteomic analysis) at

4 °C overnight respectively: anti-VEGF antibody (1 : 200,

ab46154; Abcam, Cambridge, UK), p38 MAPK antibody

(1 : 100, #9212; Cell Signaling, Beverly, MA USA), p44/42

MAPK antibody (1 : 200, #4686; Cell Signaling) and phos-

pho-p44/42 MAPK (Erk1/2) antibody (1 : 200, #4370; Cell

Signaling). As negative controls, the primary antibodies were

substituted with phosphate-buffered saline (PBS). The slides

were subsequently washed with PBS twice and then incubated

with biotinylated secondary antibody for 30 min at room

temperature, washed again and finally incubated with strepta-

vidin–peroxidase complex for 15 min at room temperature.

The antibody staining was performed with peroxidase/di-

aminobenzidine (DAB; Sigma Chemical Co., St. Louis, MO,

USA) and the slides were counterstained in the nucleus with

haematoxylin for 15 s. The localization of IHC-positive cells

was examined microscopically and semiquantitative analysis

was performed. The integrated optical density of condylar

Fig. 2. Histological examination of condylar cartilage from rats fed soft and hard diet. (A) Representative image showing sagittal section of

condylar cartilage stained with H&E and illustrated the anterior, central and posterior region of condylar cartilage (original magnification 49,

Bar = 500 lm). (B) Representative images showing that condyle cartilage consisted of subchondral bone (S) and cartilage, which included

the fibrous layer (F), proliferative layer (P), the maturing layer (M) and hypertrophic layer (H). (C) Comparison of the cartilage thickness of

anterior region between soft diet and hard diet group. (D) Representative images showing superior and anterior region of condylar cartilage

of rats fed soft and hard diet (original magnification 209, Bar = 100 lm). **P < 0.01.
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IHC staining was measured and statistics analysed in three

same anatomical area per section (mid-sagittal).

Western blot analysis

To confirm the results of proteomic analysis, four representa-

tive proteins, VEGF, p38 MAPK and p44/42 MAPK/phos-

pho-p44/42 MAPK, were validated by western blot.

According to standard procedures, 30 condylar cartilages per

group were mixed together and 200 lL RIPA lysis buffer

(Beyotime), 2 lL PMSF (Sigma) and 2 lL phosphatase inhi-

bitor cocktail (Roche, Applied Science, Mannheim, Ger-

many), frozen in liquid nitrogen and ground, were added.

The lysates were spun down at 14 000 g for 10 min at 4 °C
and the protein concentration was evaluated by Bradford

protein assay (Bio-Rad Laboratories Inc., Hercules, CA,

USA). The protein extracts were loaded and separated on

10% SDS/PAGE, and then transferred to a polyvinylidene

fluoride (PVDF) membrane (Millipore, Bedford, MA, USA).

Transferred membranes were incubated in blocking solution

with TBST buffer containing 5% w/v nonfat milk and incu-

bated with primary antibodies as follows: anti-GAPDH anti-

body (1 : 1000, ab8245; Abcam), anti-VEGF antibody

(1 : 500, ab46154; Abcam), p38 MAPK antibody (1 : 1000,

#9212; Cell Signaling), p44/42 MAPK antibody (1 : 1000,

#4686; Cell Signaling) and phospho-p44/42 MAPK (Erk1/2)

antibody (1 : 1000, #4370; Cell Signaling) overnight in TBST

(10 mM Tris/HCL, pH 7.5, 150 mM NaCl, 0.1% Tween-20)

supplemented with 1% BSA at 4 °C. After hybridization

with corresponding secondary antibodies from Cell Signal-

ing, the membrane was visualized using an ECL western

blotting detection system (ECL kits, #170-5060; Bio-Rad

Laboratories Inc.). The results were digitized using a GE

Image Quant LAS 4000 mini analyser (GE, Marlborough,

MA, USA). The relative abundance of four proteins was

analysed by obtaining the ratio of the normalized densito-

metric values between the soft and hard diet groups.

Statistical analysis

All statistical data (including histological and western blot

data) were expressed as the mean � standard deviation

(SD) using SPSS version 13.0 (SPSS Inc., Chicago, IL, USA)

and comparisons were analysed by one-way ANOVA fol-

lowed by t-test. Differences were considered significant at a

P-value < 0.05.

Results

iTRAQ proteomic analysis identified that VEGF

signalling increased after mastication

We performed iTRAQ analysis coupled with 2D nano-

HPLC and MALDI-TOF/TOF technology and identi-

fied that 805 proteins were differentially expressed

between the two groups. Only proteins that were iden-

tified as at least two unique high-scoring peptides were

detected. To functionally verify some intriguing pro-

teins identified by iTRAQ, we utilized a web-based

tool, DAVID, to highlight the MAPK signalling pathway

that participated in MCC mechanotransduction.

According to the GO and PANTHER databases, we

screened out 10 VEGF signalling-related proteins,

M3K12 and JUN in condylar cartilage in response to

different types of functional loading, and eight of them

displayed an up-regulated trend. Additionally, most

proteins, including VEGFR2, PLCG1, PLCG2,

KPCB, KPCT and RASN, were involved in the

MAPK signalling pathway, and M3K12 and JUN

were the key signalling molecules of the P38 MAPK

pathway (shown in Table 1 and Table S1). The path-

way information generated by KEGG successfully rec-

ognized the classical MAPK pathway and P38 MAPK

pathway involved in this process. The VEGF (encoded

by the VEGFD gene) and p38MAPK (encoded by the

M3K12 gene) proteins were up-regulated in the hard

diet group when compared to the soft diet group.

Moreover, as MAPKs can be inactivated by a cascade

of dephosphorylation and activated by phosphoryla-

tion, and several upstream (such as PKC, Ras) and

downstream (such as cPLA2, MKP, encoded by the

DUS6 gene) targets of ERK1/2 were identified in our

proteomic results. Thus, we selected the VEGF, p44/42

MAPK (Erk1/2), p-p44/42 MAPK (Erk1/2) and P38

MAPK proteins for further verification (the VEGF

signalling pathway is shown in Fig. 1B.).

Mastication increases condylar cartilage

thickness and VEGF immunostaining

To assess tissue-level changes in condylar cartilage

after 4 weeks of hard mastication, we examined the

cartilage by H&E staining (Fig. 2). Figure 2A shows

the anterior, superior and posterior regions of the

condylar cartilage. The anterior region is in more con-

tact with food, is directly involved in the mastication

process and directly experiences mechanical forces.

Figure 2B shows that the condylar cartilage can be

divided into four layers: the fibrous layer, proliferative

layer, maturing layer and hypertrophic layer. Cells in

the proliferative layer have the ability to differentiate

into chondrocytes, and their differentiation pathway is

thought to be regulated by biomechanical force. The

activity of collagen synthesis is high in the maturing

layer, while the hypertrophic layer is required for

condylar endochondral ossification. The anterior carti-

lage thickness was markedly increased in the hard diet

group compared to the soft diet group (Fig. 2D).
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Quantification of the cartilage thicknesses showed that

the anterior cartilage thickness was indeed significantly

increased in the hard food group compared to the soft

diet group (Fig. 2C).

In the soft diet group, VEGF staining is mainly

located in the proliferating and maturing layer but is

very light in the hypertrophic layer (Fig. 3A). In con-

trast, in the hard diet group, VEGF expression was

primarily observed in the hypertrophic layer. In the

hard diet group, p38 MAPK-positive and p44/42

MAPK/phospho-p44/42 MAPK-positive reactions

were mostly detected in the maturing and hypertrophic

layer in this period, while they were weak in the soft

diet (Fig. 3A). Statistical analysis showed there was

significantly higher VEGF, p38 MAPK and p44/42

MAPK/phospho-p44/42 MAPK protein values in the

hard diet group compared to the soft-diet animals

(Fig. 3B).

Validation of alterations in VEGF, p38 MAPK and

p44/42 MAPK/phospho-p44/42 MAPK proteins by

western blot

Four VEGF signalling-related proteins were chosen for

further identification and analysed by western blot

(Fig. 4). As shown in Fig. 4B, the results revealed that

VEGF, p38 MAPK and p44/42 MAPK/phospho-p44/

42 MAPK protein expression increased in the hard diet

group compared to the soft diet group. The results were

in agreement with current IHC and iTRAQ data, which

support the proteomic analyses based on iTRAQ.

Discussion

The normal growth and remodelling of MCC is depen-

dent on mechanical loading and various biochemical

factors [20]. Recently, it was found that there was a

close relationship between masticatory muscle function

and condylar growth [5]. Jaw muscle activity and mas-

ticatory forces of animals fed a hard diet were signifi-

cantly higher than those in the soft/powdery diet

animals; therefore, sufficient loading is important in

maintaining the appropriate proliferation of chondro-

cytes and matrix production in the condyle [21]. Many

studies have been performed to examine the mecha-

nism behind condylar mechanobiology. However, its

signal transduction mechanisms still remain obscure

and elusive [22]. It has been demonstrated that the

condylar cartilage undergoes endochondral bone for-

mation, known as the replacement of cartilage with

bone tissues [23]. The expressions of Sox-9, fibroblast

growth factors (FGFs), transforming growth factor-b
and VEGF were found to be affected after changes in

the consistency of the diet [8,24]. VEGF was initially

reported to be found in the proliferative and maturing

layers in the sheep condyle [25]. VEGF has been

Table 1. List of VEGF signalling-related proteins by iTRAQ proteomic analysis from the condylar cartilage of rats fed 4 weeks of soft and

hard food diet.

Gene ID Protein name KEGG pathway 116.1/114.1 117.1/114.1

VEGFD Vascular endothelial growth

factor D precursor

rno04060:Cytokine–cytokine receptor interaction; rno04150:

mTOR signalling pathway, rno04510:Focal adhesion

0.44 0.54

VGFR2 Vascular endothelial growth

factor receptor 2 precursor

rno04060:Cytokine–cytokine receptor interaction; rno04144:

Endocytosis

0.63 0.63

KPCB Protein kinase C beta type rno04010:MAPK signalling pathway; rno04012:ErbB

signalling pathway; rno04020:Calcium signalling pathway

0.60 0.51

ARAF A-Raf proto-oncogene serine/

threonine-protein kinase

1.78 1.66

RASN GTPase NRas precursor rno04010:MAPK signalling pathway; rno04012:ErbB

signalling pathway

2.39 2.96

NOS3 Nitric-oxide synthase, endothelia rno00330:Arginine and proline metabolism; rno04020:

Calcium signalling pathway

0.40 0.58

PLCG2 Phospholipase C-gamma-2 no00562:Inositol phosphate metabolism; rno04012:ErbB

signalling pathway, rno04020:Calcium signalling

0.70 0.74

KPCT Protein kinase C theta type rno04270:Vascular smooth muscle contraction; rno04530:

Tight junction; rno04920:Adipocytokine signalling pathway

0.61 0.64

NOS1 Nitric-oxide synthase rno00330:Arginine and proline metabolism; rno04020:

Calcium signalling pathway

0.88 0.86

PLCG1 Phospholipase C-gamma-1 rno00562:Inositol phosphate metabolism; rno04012:ErbB

signalling pathway; rno04020:Calcium signalling

0.87 1.01

KPCZ Protein kinase C zeta typ rno04144:Endocytosis; rno04530:Tight junction; rno04910:

Insulin signalling pathway

0.57 0.77
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Fig. 3. Immunostaining for VEGF, p38 MAPK and p44/42 MAPK/phospho-p44/42 MAPK proteins (original magnification 409) and negative

controls in the anterior region of condylar cartilage in the soft and hard diet group. Bars = 20 lm. IHC staining-positive cells were indicated

by the arrows. (B) Semiquantitative analysis of VEGF, p38 MAPK and p44/42 MAPK/phospho-p44/42 MAPK-positive area in the soft and

hard diet group (Bar graph represents the mean � SE of three independent experiments, *P < 0.05,**P < 0.01, t-test).
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implicated in endochondral ossification, angiogenesis,

apoptosis of hypertrophic chondrocytes, and remod-

elling of extracellular matrix in both physiological and

pathological conditions [20]. However, little is known

about the signal transduction mechanisms of VEGF

under different mechanical stimulation of the condylar

cartilage. Our preliminary study showed that: (a)

iTRAQ-based proteomic technology, which is a widely

accepted quantitative proteomic method [26], could

efficiently detect differentially expressed proteins in the

condylar cartilage due to reduced masticatory func-

tion. Among the identified proteins, we found 10

VEGF signalling-related proteins through GO analysis,

KEGG pathway and PANTHER pathway analysis,

which demonstrated that low-level mechanical forces

decreased the expression of VEGF via the MAPK sig-

nalling pathway. (b) According to the proteomic

results, we further validated the presence of VEGF,

p38 MAPK and p44/42 MAPK/phospho-p44/42

MAPK proteins in the growing rat MCC and the acti-

vation of these proteins under high-level mechanical

loading conditions.

Vascular endothelial growth factor is an angiogenic

factor and is considered to be mechanosensitive either

in long bone [27,28] or in condylar cartilage. Accord-

ing to the previous and current results, we can sub-

stantiate the following notions. First, VEGF is a good

candidate for normal condylar cartilage maturation,

extracellular matrix remodelling and vascular invasion,

including the apoptosis of hypertrophic chondrocytes,

vascular invasion and the recruitment of osteoblast

progenitors. In agreement with prior literature [24], we

found that in the hard diet group, VEGF expression

continued in the maturing layer and hypertrophic

chondrocytes. The hypertrophic layer is required for

the replacement of cartilage with trabecular bone fol-

lowed by vascular invasion. Yee et al. [25] found that

VEGF was expressed mainly in the proliferative and

maturing layers (early hypertrophic zone) in 18-

month-old sheep MCC. Aoyama et al. [11] further

reported that VEGF could not be found in new-born

MCC, and later, hypertrophic chondrocytes were posi-

tively stained for both VEGF and its receptor Flt-1 in

young rat condyles and identify the presence of

VEGF, Flt-1 and Flk-1 proteins by western blotting,

which changed with age. Furthermore, in the current

study, VEGF expression increased in the hard diet

group. However, abnormal mechanical stress or over-

expressed VEGF may also activate the angiogenic pro-

cess in adults [29] and increase the catabolic activity of

chondrocytes, which could be related to the pathogen-

esis of osteoarthritis [14,15,30]. These findings sug-

gested that VEGF signalling, detected in the condylar

cartilage, might stimulate the proliferation and differ-

entiation of chondrocytes and be released into the

adjacent extracellular matrix through autocrine sig-

nalling, subsequently recruit osteoblasts and chondro-

clasts, activate new blood vessel invasion into the

hypertrophic layer and thus trigger endochondral

ossification [29,31].

Second, we hypothesized that mechanical stress

induces VEGF expression via the p44/42 MAPK and

p38 MAPK signalling pathway in condylar cartilage

(Fig. 1B). VEGF binds to the VEGF receptor

(VEGFR) and induces biological function. Here, we

identified VEGFR2 (known as flk-1 [32]) by proteomic

analysis, which was detected in condylar cartilage by a

Fig. 4. (A) Western blot of VEGF, p38 MAPK and p44/42 MAPK/

phospho-p44/42 MAPK proteins from condylar cartilage in the soft

and hard diet group. Values were normalized to GAPDH. (B)

Quantitation of relative protein expression (Bar graph represents the

mean � SE of three independent experiments, *P < 0.05, t-test).
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previous study [11,14]. The expression of VEGFR1 in

the condyle was also evident in previous studies [11].

Further investigations on the regulation of VEGFRs

are required. Using KEGG and PANTHER pathway

analysis, we identified a series of significantly changed

proteins in VEGF signalling, such as PLCG2, PLCG1,

RASN, KPKB, ARAF, JUN and M3K12, which

demonstrated the involvement of the MEK/ERK and

p38 MAPK signalling pathways. Several studies have

shown that the activation or deactivation of p38 and

ERK1/2 was involved in cartilage formation and the

induction of hypertrophic changes in articular chon-

drocytes [33]. The MAPK-AP-1 axis (such as Fos- and

Jun-related transcription factors) is involved in the

mechanotransduction cascade in the condyle [18]. Fur-

thermore, p38 and ERK1/2 may crosstalk with each

other [33]. In the present study, we validated the pro-

teomic results by IHC and western blot and found that

animals fed a powdery diet showed lower expression

of VEGF, p38 MAPK and p44/42 MAPK/phospho-

p44/42 MAPK proteins in the condylar cartilage

compared to the hard diet group. Otherwise, the exp-

ression and distribution of VEGF were consistent with

those of the p38 MAPK and p44/42 MAPK/phospho-

p44/42 MAPK proteins. Similarly, Papachristou et al.

[22] reported that functional alterations in the mechani-

cal loading of condylar cartilage activated the JNK-c-

Jun signalling pathway components and ERK/MAPK

in the condylar subchondral bone, which was well corre-

lated with the in vitro situation. VEGF production in

response to growth factors through p38 MAPK and

p44/42 MAPK were also involved in osteoblasts or in

cartilage metabolism [34]. It is critical to understand the

mechanism by which VEGF is expressed in the condyle,

which will provide the basis for future gene therapy. In

addition, there might be a correlation between VEGF

and other signalling proteins; therefore, further investi-

gation should be carried out in vivo and in vitro.

In conclusion, we found that VEGF might play an

important role in TMJ development and remodelling

induced by alterations in functional loading through

the activation of the p44/42 MAPK and p38 MAPK

signalling pathway. This study provided new clues to

understanding the signalling mechanism responsible

for VEGF production in response to different mastica-

tory functions at the protein level.
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