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Abstract

Background: Gastric cancer is the second-leading cause of global cancer deaths, with metastatic disease
representing the primary cause of mortality. To identify candidate drivers involved in oncogenesis and tumor
evolution, we conduct an extensive genome sequencing analysis of metastatic progression in a diffuse gastric
cancer. This involves a comparison between a primary tumor from a hereditary diffuse gastric cancer syndrome
proband and its recurrence as an ovarian metastasis.

Results: Both the primary tumor and ovarian metastasis have common biallelic loss-of-function of both the CDH1
and TP53 tumor suppressors, indicating a common genetic origin. While the primary tumor exhibits amplification of
the Fibroblast growth factor receptor 2 (FGFR2) gene, the metastasis notably lacks FGFR2 amplification but rather
possesses unique biallelic alterations of Transforming growth factor-beta receptor 2 (TGFBR2), indicating the
divergent in vivo evolution of a TGFBR2-mutant metastatic clonal population in this patient. As TGFBR2 mutations
have not previously been functionally validated in gastric cancer, we modeled the metastatic potential of TGFBR2
loss in a murine three-dimensional primary gastric organoid culture. The Tgfbr2 shRNA knockdown within Cdh1-/-;
Tp53-/- organoids generates invasion in vitro and robust metastatic tumorigenicity in vivo, confirming Tgfbr2
metastasis suppressor activity.

Conclusions: We document the metastatic differentiation and genetic heterogeneity of diffuse gastric cancer and
reveal the potential metastatic role of TGFBR2 loss-of-function. In support of this study, we apply a murine primary
organoid culture method capable of recapitulating in vivo metastatic gastric cancer. Overall, we describe an
integrated approach to identify and functionally validate putative cancer drivers involved in metastasis.
Background
Worldwide, gastric adenocarcinoma is the fourth most
common malignancy and the second leading cause of can-
cer deaths among men and women. Based on distinctive
histopathologic features, gastric adenocarcinoma is cate-
gorized into diffuse and intestinal subtypes [1]. In terms
of histopathology, diffuse gastric cancers are generally
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undifferentiated, frequently have signet cell ring features
and invasively infiltrate normal stomach tissue. In con-
trast, the intestinal subtype has epithelial features and
forms discrete tumor masses similar to colon cancer.
Diffuse gastric cancer has a higher incidence of metastatic
disease and a generally worse prognosis compared to the
intestinal subtype [2,3]. Currently, the genomic analyses of
diffuse gastric cancer have involved a small number of
samples including a recent study by the Cancer Genome
Atlas Project (TCGA) and a whole genome sequencing
survey of a set of diffuse gastric tumors [4]. However,
there are few, if any, studies that detail the metastatic
evolution of gastric cancer; metastatic tumors are typically
absent from large-scale genomic cancer surveys such as
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TCGA. Overall, little is known about the oncogenic
process and tumor evolution of metastatic gastric cancer
despite its paramount clinical importance [5].
In hereditary diffuse gastric cancer (HDGC), germline

mutations in CDH1 (that is, E-cadherin) confer a 70% life-
time risk of developing diffuse gastric cancer [6,7]. The
CDH1 tumor suppressor gene encodes E-cadherin, a trans-
membrane glycoprotein that mediates calcium-dependent
cell-cell adhesion. Changes in CDH1 function affect the
epithelial-mesenchymal transition (EMT) that has been
implicated as playing a role in tumorigenesis. Studies of
affected HDGC individuals’ tumors provide a unique op-
portunity to determine the essential drivers of diffuse gas-
tric cancer in the context of CDH1 loss of function.
Supporting evidence of the role of CDH1 in sporadic dif-
fuse gastric cancers includes the observation that 50% con-
tain CDH1 mutations or hypermethylation of the CDH1
promoter [8,9]. A recent whole genome sequencing survey
of diffuse gastric cancer also identified frequent CDH1 mu-
tations as the most common driver event [4]. The TCGA
gastric cancer data also show a high frequency of somatic
CDH1 mutations [10]. Significantly less is known about the
identity and role of co-occurring drivers that contribute to
diffuse gastric metastasis.
Herein, we report a study of the metastatic evolution-

ary process in diffuse gastric cancer. Our goal was to
identify known and candidate drivers that delineate the
tumor progression during metastasis. We performed
an extensive genome sequencing analysis of a primary
gastric tumor and metastasis from an individual with
a germline CDH1 mutation (Figure 1) who presented
with a gastric primary, followed after 3 years by metas-
tasis in the left ovary. Given the existing germline muta-
tion in CDH1, the cancer genome only requires a
second allelic hit via a somatic genetic aberration, as is
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Figure 1 Family and clinical history of a Mendelian diffuse gastric can
types are indicated by color including green for pancreatic cancer, red for
presented with her primary gastric cancer at the age of 37 years. Three yea
enhanced CT scan of the pelvis identified a left ovary mass (yellow circle) t
(that is, Krukenberg tumor). During the course of metastatic tumor evolutio
the tumor evolution and genetic divergence of the metastasis from the pr
demonstrated in the tumor from this individual. Because
the initial cancer driver event is known, Mendelian cancer
genomes provide a rare and highly informative ‘experi-
ment of nature’ that provides an opportunity to delin-
eate somatic genetics of metastasis. Genome sequencing
analysis of both tumors revealed evidence of a common
origin based on shared mutations but greater genomic
diversity seen both at the level of mutations as well as
extensive allelic imbalance and copy number aberra-
tions for the metatasis.
We determined if the candidate drivers from this

metastatic progression were sufficient to reproduce dif-
fuse gastric cancer. Our cancer modeling methodology
used in vitro gastric organoids and allows one to engin-
eer the genetic driver context of these cancers and study
the process of metastatic evolution and oncogenic path-
way divergence. Integrating genetic analysis and bio-
logical modeling, we determined the independent role of
TGFBR2 (transforming growth factor-β receptor 2) in
the oncogenesis of diffuse gastric cancer. Our experi-
mental cancer modeling relies on an air-liquid interface
for primary mouse intestinal culture that contains both
epithelial and mesenchymal elements, accurately recapit-
ulates long-term proliferation, multilineage differenti-
ation, the Wnt/Notch-dependent stem cell niche, and
peristalsis [11]. We reported an analogous primary gas-
tric organoid culture system that accurately recapitulates
multilineage epithelial differentiation and stromal ele-
ments [12]. Recently, we achieved robust in vitro onco-
genic transformation of primary gastric, colon, and
pancreatic organoids via mutations in Kras and Trp53,
which induce high-grade dysplasia and invasion in vitro
with adenocarcinoma upon subcutaneous transplant-
ation into mice [13]. We demonstrate the functional
validation of candidate gastric cancer metastasis drivers
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cer. The pedigree of the index patient 525 (III-1) is depicted. Tumor
diffuse gastric cancer, and yellow for breast cancer. The patient
rs later she presented with an abdominal discomfort. Contrast-
hat was confirmed on biopsy to be a diffuse gastric cancer metastasis
n, a number of known and candidate cancer driver events delineated
imary tumor.
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from cancer genomic profiling studies, focusing on mod-
eling the TGFBR2 driver as proof of principle.

Results
Diffuse gastric cancer and metastatic progression
At the age of 37 years, the index patient (525) was diag-
nosed with stage III (T3N1M0) poorly differentiated dif-
fuse gastric adenocarcinoma (Figure 1). Her 42-year-old
sister was diagnosed with diffuse gastric adenocarcinoma
2 months earlier. Based on the family history of gastric
cancer and the unusually young age of onset, she under-
went germline CDH1 mutation testing. The patient and
her sister were found to have a germline splice site muta-
tion in intron 10 (c.1565 + 2insT). This germline mutation
was subsequently reported in another family with heredi-
tary diffuse gastric cancer (HDGC) [14]. The patient
underwent a total gastrectomy to remove her primary
tumor and was found to have a single lymph node metas-
tasis. She received standard adjuvant treatment including
combined chemotherapy (cisplatinum and 5-fluorouracil)
and radiation. Three years after her initial presentation,
the patient reported progressive lower abdominal full-
ness. A computed tomography (CT) scan demonstrated
a large pelvic mass consistent with a left ovarian metas-
tasis (Figure 1). Subsequently, the patient underwent
laparotomy with bilateral salpingo-oophorectomy and
biopsy of the pelvic mass. Pathological studies demon-
strated metastatic adenocarcinoma involving the ovary,
otherwise referred to as a Krukenberg tumor, with the
same histologic appearance as the primary tumor. One
study reported that among diffuse gastric cancer with
metastatic dissemination, the ovary was a metastatic site
in 28.8% of cases [15]. Thus, the ovary is a common site
for metastatic disease.

Cancer genome sequencing analysis
Both exome and whole genome paired-end sequencing
were performed on the primary tumor, ovarian metastasis,
and normal tissue which included blood and normal gas-
tric tissue (Additional file 1: Table S1). Tissue from the
lymph node metastasis was not available for analysis. Mul-
tiple sequencing methods were employed to compensate
for the extent of normal stromal mixture, a direct result of
the infiltrative invasiveness of the diffuse gastric cancer
subtype. We determined the extent of normal genome
mixture and corrected for inclusion of the normal DNA
(Additional file 1: Methods). Given the complexity of the
tumor samples, we conducted an additional round of tar-
geted sequencing to confirm the presence of mutations
and other genetic aberrations that occurred in exons, near
exon boundaries or promoters.
Overall, we obtained greater than 100× average cover-

age for each exome and generally relied on exome
data for the discovery of coding region mutations. For
whole genome sequencing, we had greater than 60×
average coverage for the primary cancer whole genome
sample and 30× for the metastatic genome. The whole
genome sequencing was used for identifying larger
scale genetic aberrations such as copy number variation
(CNVs), allelic imbalances, rearrangements, and other
classes of structural rearrangements. After alignment,
we conducted variant calling to identify somatic muta-
tions and other classes of genetic aberrations. This in-
cluded somatic mutations, insertion-deletions (indels),
CNVs, loss-of-heterozygosity regions (LOH), and cancer
rearrangements (Additional file 1: Table S3 and Table S4).
As a control for single nucleotide variant calling, we geno-
typed the samples with Affymetrix 6.0 single nucleotide
polymorphism (SNP) arrays; we compared the genotypes
to the identified SNPS from the sequence data. The con-
cordance of exome and whole genome SNP data to the
array data was 99%.

Coding region mutations and validation with deep
sequencing
We identified mutations that occurred in exons and in-
tronic mutations within 100 bases of the exon boundary
and the results are summarized in Additional file 1:
Table S2. As noted previously, the tumor samples had
complex composition that reduced the sequence cover-
age of some mutations. We proceeded with an additional
round of targeted sequencing to validate these mutations
and determine their presence in both tumors. We
designed an assay for deep targeted resequencing that
covered approximately 300 bases around the specific
mutation loci (Additional file 1: Table S5). The average
targeted sequencing coverage for each putative mutation
or loci was 278× for the normal, 251× for the primary
tumor and 152× for the metastasis.
Between the two tumors, we independently validated a

total of 77 mutations that occurred within or proximal
to exons (Additional file 1: Methods and Table S5). Vali-
dated genetic aberrations included: (1) non-synonymous
mutations, (2) synonymous mutations, (3) insertions, or
(4) deletions. With the targeted sequencing data, we de-
termined the mutation allelic frequency (MAF) between
the primary tumor and metastasis for each mutation.
This involves determining the fraction of a sequence
read with a mutation in comparison to the reference se-
quence reads. We were able to identify which mutations
were common or exclusive to the primary tumor versus
the metastasis. Among the 77 validated mutations, the
distribution was such that mutations were generally
unique either to the primary tumor or metastatic site.
For example, the primary tumor had eight mutations
that were not present in the metastasis while the metas-
tasis had 37 mutations not present in the primary tumor.
Common to both cancers were 32 mutations.
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Given the interval of three years prior to the detection
of the metastasis, there is a possibility that the metastasis-
specific mutations occurred independently from the pri-
mary tumor. Mutations specific to the primary tumor that
were not present in the ovarian metastasis may have been
the result of random genetic drift. The mutations com-
mon to both indicate a common origin but the exact tim-
ing of the differentiation between the two tumors is less
clear as noted by those mutations with lower MAF. A sub-
set of these genes had high MAF values, indicating a
higher likelihood of being present in all clonal populations
in the primary tumor or metastasis. As we describe later,
these genes were prioritized for further experimental test-
ing in gastric organoids.

Mutations affecting gene function
Among the mutations that were externally validated, we
focused on the subset of mutations leading to amino acid
substitutions, premature stop codons and indels that
Figure 2 Comparison of the genetic aberrations in the primary tumor
compared between the two tumor genomes. (a) Genes with coding muta
classified based on whether they are exclusive (red characters) or common
mutations all lead to changes in the amino acid composition of the gene p
likelihood of affecting the gene product function. (b) A summary of the ch
both tumors. This includes copy number variation (CNV) or loss of heterozy
tumor or metastasis. The green blocks indicate events common to both. Th
indicate LOH events or deletions that encompass the p arm, q arm, or enti
exclusive and green arrows indicate events that are common.
altered the open reading frame. Subsequently, we deter-
mined if these coding mutations were potentially deleteri-
ous to gene function using a number of prediction
algorithms such as Polyphen [16] and SIFT [17] among
others. Based on the MAF information for each mutation,
we determined whether these mutations with a possible
deleterious impact on the gene products were common or
exclusive to the primary tumor and metastasis (Figure 2).
On the subset of deleterious mutations, we conducted

additional biological pathway analysis, literature review
and comparison against the Cancer Genome Atlas data
available for diffuse gastric cancer. This identified a set
of known cancer genes and likely cancer-related candi-
dates with mutations that likely had an impact on pro-
tein function. We focused on a number of candidate
driver genes (Table 1) that had previously been demon-
strated to have oncogenic potential or were known
tumor suppressors with biallelic changes present in the
cancer genomes.
and metastasis. Common versus exclusive genetic aberrations are
tions having a potential deleterious impact are listed. These genes are
(green characters) to the primary tumor and metastasis. The
roduct and were identified to have a significant alteration with a high
romosomal aberrations is shown across the entire cancer genome of
gosity (LOH). The red blocks indicates events exclusive to the primary
e number of events per chromosome is listed in each block. Arrows
re chromosome. Red arrows indicate chromosomal aberrations that are



Table 1 Cancer oncogenes with amplifications or cancer drivers with biallelic events

Origin Known or candidate
cancer driver

Biallelic
event

Allelic
alteration 1

Mutation or genomic
aberration

Chr Chr position or interval Allelic alteration 2

Unique to the primary FGFR2* Amplification 6-fold amplification 10 117820033 - 119748751

Common to the primary tumor and
metastasis

CDH1 Yes Deletion Partial deletion of exon 9 16 68847326 - 68847403 Germline mutation in CDH1

TP53 Yes 5’ splice site
mutation

Aberrant splicing 17 7578370 Hemizygous loss of 17p arm

Unique to the metastasis TGFBR2 Yes Frameshift indel Stop codon in exon 4 3 30691871 Hemizygous deletion of wild-type
TGFBR2 locus

PCDH7 Yes Missense S87R 4 30723305 Hemizygous deletion of wild-type
4 arm

FERMT1 loci Yes Loss of
heterozygosity

FERMT1 located in 20p12.3 20 FERMT1 mutation

BMP7 loci Yes Loss of
heterozygosity

BMP7 located in 20q13.3 20 BMP7 mutation

Chr: chromosome.
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Copy number variations and allelic imbalances
distinguishing the primary tumor from the metastasis
We noted larger scale genomic aberrations that differenti-
ated the primary from the metastasis (Figures 2b and 3a).
This included copy number changes and LOH events.
Unique to the primary tumor were two genomic amplifi-
cations on chromosomes 5 and 10, and two inversions on
chromosomes 15 and 16 (Additional file 1: Table S4). The
chromosome 10 amplification covered a 1.66 Mb interval.
When considering deletions or allelic imbalances, the only
major event that was noted involved a loss of the p arm of
chromosome 17.
In contrast to the primary tumor, the metastatic tumor

had numerous chromosomal scale LOH events and gen-
omic deletions affecting 12 different chromosomes, the
Figure 3 Genetic divergence of the ovarian metastasis from the prim
position of the mutation, copy number variations (CNV) regions or loss-of-h
the chromosome plots, the Y axis designates position with the respective c
shown to the left of the copy number profile. Deleterious mutations are sh
distribution of cancer-specific CNVs and LOH intervals are summarized acro
Chromosome 3, the metastasis had unique biallelic events involving a dele
allele as seen most clearly with LOH intervals. Secondary to genomic delet
value of -1 and correlates with a genomic deletion. (c) On chromosome 10
only in the primary and not the metastasis. The amplification is noted in a
majority of which were unique to the metastatic tumor
(Figure 2). This included multiple deletions and copy
neutral LOH events that are detailed in Additional file 1:
Table S3. There was a five-fold genomic amplification in
chromosome 2 but no specific known genes existed in
the affected interval. There were no detectable inter-
chromosomal translocations in either the primary tumor
or metastasis genomes. Other cancer rearrangements
were identified but did not point towards aberrations in
any candidate driver genes (Additional file 1: Table S4).
There were indications of large scale genomic instability
based upon allelic imbalance analysis; chromosomes 14,
17, 20, and 22 all involved the entire chromosome.
For copy number aberrations and allelic imbalances, we

identified exclusive versus common events between the
ary gastric cancer for critical candidate drivers. The genomic
eterozygosity (LOH) intervals are shown from the cancer genomes. For
hromosome, its length in megabases (MB) and ideogram designation
own as boxed arrows with the gene symbol. (a) The genome wide
ss all chromosomes for the primary tumor and metastasis. (b) On
terious TGFBR2 mutation and a genomic deletion affecting the other
ions, LOH is demonstrated as a shift in the minor allelic frequency ratio
, the FGFR2 gene was located in a genomic amplification region seen
red circle.
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primary tumor and metastasis. The only common genetic
aberration involved the p arm of chromosome 17. Overall,
the lack of overlap was indicative of significant genetic di-
vergence from the primary tumor and metastasis despite a
common origin as denoted by shared mutations in critical
tumor suppressors.
The genomic intervals of the LOH, copy number ab-

erration and rearrangement events were compared with
the position of validated gene mutations. This inte-
grated analysis pointed to a number of genes that had
biallelic alterations involving both a loss of the wild-
type allele from a large interval genomic aberration and
a mutant allele. The results for genes with biallelic hits
were considered to be strong candidates for a loss-of-
function involvement in cancer (Table 1).

Identification of cancer drivers common to the primary
tumor and metastasis
Both the primary and the metastasis contained cancer
driver events that were likely to be critical for tumori-
genesis in the context of the initial CDH1 mutation
(Table 1, Figure 2). In addition to the germline CDH1
intronic mutation, the second CDH1 allele had a som-
atic 77 bp genomic deletion of a portion of exon 9
that affects the downstream coding regions as well.
The CDH1 somatic mutation was identical in both the
primary and metastatic gastric cancer genomes, dem-
onstrating a common genetic origin and providing
strong genetic evidence that this driver had a critical
role in diffuse gastric tumorigenesis. Mutations affect-
ing CDH1 exon 9 that lead to loss of protein expres-
sion have frequently been detected in diffuse gastric
cancer [18-20]. This exon’s amino acid sequence is a
putative calcium-binding site that is likely important
for receptor function.
The primary and metastatic tumor also shared biallelic

splice donor site mutation (c.559 + 1G >A) of the fifth in-
tron of TP53 and a chromosome 17p LOH event encom-
passing the TP53 locus (Additional file 1: Figure S1).
The TP53 splicing mutation interrupts RNA splicing
[21] and is a previously reported cancer mutation [22,23].
The analyses of sporadic and inherited gastric cancers
have identified TP53 mutations that occur concurrently
with CDH1 mutation [24,25]. CDH1 inactivation in gas-
tric parietal cells does not induce gastric carcinoma,
suggesting that loss of CDH1 is insufficient for tumor
initiation [26]. However, double conditional knockout of
CDH1 and TP53 induces development of diffuse gastric
carcinoma [26]. Interestingly, the genomic interval of
the LOH event affecting the TP53 locus was larger in
the metastasis compared to the primary tumor. This
could have occurred because of independent genomic
instability events given the strong selection for biallelic
loss of TP53 function.
FGFR2 is an actionable cancer driver exclusive to the
primary gastric tumor
In the primary tumor, there was a six-fold genomic amp-
lification of a region of chromosome 10 q arm and cov-
ered an interval of 1.66 Mb. Within this genomic
regions was an oncogenic candidate driver FGFR2 also
referred to as the fibroblast growth factor receptor 2
(Figure 3c). This was confirmed with multiple methods
including sequencing, array analysis, and validation by
quantitative PCR. FGFR2 is a transmembrane receptor
that acts as part of a key signal transduction pathway
regulating tissue repair and embryonic development
among a host of other functions [26].
To validate the prevalence of FGFR2 amplification in

diffuse versus intestinal gastric cancers, we analyzed 37
diffuse and 27 intestinal subtype primary gastric tumor
samples with digital PCR [27]. Previously, we demon-
strated that this method is profoundly sensitive for de-
tecting copy number aberration even in the context of
normal diploid DNA diluting tumor DNA. Our study
demonstrated FGFR2 amplification in four of 37 (11%)
diffuse tumor samples, which was absent in the intes-
tinal subtype samples (Figure 4a).
In support of its role as a candidate driver, FGFR2

amplification is present in a number of gastric cancer
cell lines [28,29] and subsequently reported in various
gastrointestinal malignancies such as esophageal adeno-
carcinoma [30]. In addition, treatment of cancer cell
lines with FGFR2-specific small molecule inhibitors or
shRNAs leads to potent growth inhibition [28] suggest-
ing a functional role for FGFR2 amplification in the dif-
fuse subtype.

Functional analysis of the FGFR2 driver in combination
with CDH1 and TP53
We identified two examples of a primary diffuse gastric
cancer with co-occurrence of known and putative cancer
drivers involving CDH1, TP53, and FGFR2 as seen in the
index patient. The first example included a diffuse gastric
cancer sample that was among the gastric adenocarcin-
omas analyzed by TCGA. Using the cBio TCGA portal
[10], we identified a patient (TCGA-BR-6803) who had a
similar complement of genetic aberrations in CDH1,
TP53, and FGFR2, all of which have been previously de-
scribed in cancer as seen in the COSMIC cancer mutation
repository. This included the following: a missense muta-
tion in CDH1 (D254Y) that has been described in three
other cancers; a missense mutation (L130F) in TP53
where mutations in this codon have been reported in 37
other cancers; the FGFR2 amplification which we and
others have identified in diffuse gastric cancer.
As the second example, we identified a human diffuse

gastric cancer cell line, KatoIII, which has a similar com-
position of genetic aberrations affecting the same cancer



Figure 4 Prevalence of FGFR2 in human gastric tumors and its contribution to cellular proliferation. (a) Sporadic gastric cancer samples
were evaluated by quantitative digital PCR to determine FGFR2 genomic copy number. Black dots represent diffuse gastric cancers. Red dots
indicate the intestinal subtype of gastric cancer. (b) Genetic characteristics of the AGS (FGFR2 diploid) and KatoIII (FGFR2 amplified) gastric cancer
cell lines are shown. (c) Percent survival for the AGS cancer cell line is shown with FGFR2 inhibitors of varying specificity. (d) The KatoIII diffuse
gastric cancer cell line was treated with FGFR2 inhibitors of varying specificity. The Y-axis depicts percent survival versus the X-axis with log
concentrations. In all panels, error bars represent standard error of the mean. The difference in percent cell survival between KatoIII and AGS cells
was statistically significant (P <0.05) at the three highest concentrations of all drugs, except Brivanib which was only significant at the
highest concentration.
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genes as the primary tumor of our index patient. KatoIII
has a CDH1 mutation leading to an intronic sequence
insertion in the mRNA [31,32], a TP53 mutation leading
to a complete gene deletion [33] and the FGFR2 amplifi-
cation [29] (Figure 4b). This cell line allowed us to assess
the potential oncogenic role of the FGFR2 amplification
in the specific genetic context of CDH1 and TP53 muta-
tions, similar to the index patient’s primary tumor.
To determine the contribution of FGFR signaling to neo-

plastic growth, we treated KatoIII cells with several FGFR2
small molecule tyrosine-kinase inhibitors (TKIs), including
Brivanib, TKI258, Ponatinib, and AZD4547 [34]. As a con-
trol, we used the gastric cancer cell line AGS which is wild
type for FGFR2, CDH1, and TP53, but has mutations in
KRAS and PIK3CA [35] (Figure 4b). All FGFR2 inhibitors
induced cell death in KatoIII but not AGS cells (Figure 4c
and d). The most potent of these TKIs, AZD4547, has an
IC50 of approximately 2 nM in KatoIII cells and 39,580 nM
in AGS cells (Figure 4c and d). Each of the inhibitors dem-
onstrated a statistically significant lower IC50 in FGFR2-
amplified KatoIII cells compared to non-FGFR2-amplified
AGS cells at all concentrations tested (Figure 4c and d).
In contrast, treatment of KatoIII and AGS cells with

cytotoxic chemotherapeutic agents such as paclitaxel, 5-
fluorouracil and carboplatin did not have a significant effect
on either KatoIII or AGS lines, with similar IC50 identified
in each (Additional file 1: Table S7). For AZD4547, the
20,000-fold difference in sensitivity to FGFR inhibitors
suggests that FGF signaling is a critical driver to CDH1-ini-
tiated gastric cellular proliferation and this TKI represents a
potential targeted therapy in diffuse subtype cancers har-
boring FGFR2 amplifications.
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Biallelic inactivation of TGFBR2 is exclusive to the ovarian
metastasis
Genetic divergence was evident; the metastasis harbored
its own unique subset of mutations and genomic aberra-
tions. As we described, the metastasis had the same
CDH1 and TP53 mutations as the primary tumor but
lacked the FGFR2 amplification found in the primary
cancer site (Figure 3c). To eliminate the possibility that
the absence of FGFR2 amplification was related to a sub-
population not present in our original metastatic section,
we performed a highly sensitive quantitative digital PCR
on a separate geographic region from the metastasis
(data not shown). This method has been previously been
demonstrated to identify FGFR2 copy number amplifica-
tions with high sensitivity and specificity, even in the
context of diluted mixtures [27]. This independent ana-
lysis again confirmed that the FGFR2 locus was not
amplified in a separate region of the metastatic tumor.
The most striking event uniquely defining the metastasis

was a TGFBR2 deletion in exon 3 (Table 1). We looked for
the presence of this somatic mutation among the normal
and primary tumor sequence from the independent data-
sets (for example, whole genome, exome, and deep tar-
geted resequencing). The MAF of the mutation among all
of these sequencing datasets indicated exclusivity specific
to the ovarian metastasis (Additional file 1: Table S5). The
mutation was not found in any significant fraction among
the primary and normal genomes.
TGFBR2 encodes a receptor for the transforming

growth factor β (TGF-β) pathway. While TGFBR2 is mu-
tated in numerous human cancers with particular preva-
lence in mismatch repair-deficient colon cancer [36], its
functional relevance in gastric cancer is unknown. This
particular deletion markedly reduces mRNA levels, pre-
sumably due to nonsense-mediated decay [37]. The me-
tastasis also harbored a unique large genomic deletion of
chromosome arm 3p encompassing the TGFBR2 locus
as shown by both CNV and LOH events, resulting in
biallelic events affecting the wildtype TGFBR2 alleles
(Figure 3b).
TGFBR2 exon 3 deletions are typically associated with

colorectal tumors displaying microsatellite instability
(MSI), a molecular marker for the loss of DNA mismatch
repair (MMR). We assessed the primary and metastatic
tumor for DNA mismatch repair defects. The primary
tumor had normal immunohistochemical staining for the
major DNA mismatch repair proteins MLH1, MSH2,
PMS2, and MSH6. Neither the primary tumor nor metas-
tasis exhibited elevated MSI at any of the diagnostic gen-
etic markers (Additional file 1: Table S7). In addition, the
patient had no germline, primary tumor or metastatic
somatic mutations in the MMR genes.
We examined the cBIO TCGA dataset for gastric can-

cers classified by the Lauren histopathologic criteria as
diffuse. Among the TCGA set, three of 79 diffuse gastric
tumor samples had mutations in TGFBR2. This included
two cancers in which there was biallelic loss of the wild-
type allele [10]. These samples were MSI stable. The dif-
fuse subtype samples with TGFBR2 mutations include: a
homozygous deletion (TCGA-BR-A4QM); biallelic mu-
tations involving F442S and A426V in (TCGA-D7-6522);
Q418 splice site mutation (TCGA-CD-8531). The exam-
ples of TGFBR2 mutations existing in diffuse gastric
cancers are supportive evidence for the potential role of
TGFBR2 as a driver.

Other candidate cancer genes delineating the metastasis
from the primary tumor
Additional candidate cancer genes were identified that
distinguished the metastasis from the primary gastric
tumor (Table 1). A novel predicted pathogenic mutation
in BMP7 was identified in the primary and metastatic
tumor but the metastatic tumor had a unique copy neu-
tral loss of heterozygosity event encompassing the entire
chromosome arm 20 q including the BMP7 locus. BMP7
(that is, bone morphogenic protein) interacts with the
TGF- β pathway and has a well-studied role in osteoclast
differentiation and bone development [38]. In addition,
BMP7 expression has been correlated with tumor recur-
rence in gastric cancer [39].
Similarly, a novel DOCK1 mutation was uniquely identi-

fied in the metastatic genome. DOCK1 regulates cell mo-
tility and migration and has been implicated in ovarian
cancer tumorigenesis [40] (Additional file 1: Table S5).
Another genomic amplification unique to the primary
tumor occurred in the 5q22.3 locus (Additional file 1:
Table S3). Among the 15 genes within the amplification
locus, the major oncogenic-related cancer gene was
TRIM36 that is overexpressed in prostate cancer. It has
been hypothesized its overexpression leads to chromo-
somal instability [41,42].

TGFBR2 knockdown in the context of CDH1 and TP53 is
sufficient to induce metastatic diffuse gastric cancer in a
primary gastric organoid murine model
Given the metastasis-specific, biallelic alteration of
TGFBR2, we exploited our validated primary air-liquid
interface murine gastric organoid system [12,13] to in-
vestigate if TGFBR2 knockdown was sufficient to induce
gastric cancer metastasis. Its consideration as a candi-
date was also suggested by the TCGA data. Previously,
we observed that Trp53 deletion and KrasG12D induced
pronounced in vitro dysplasia and invasion of gastric orga-
noids with in vivo tumorigenicity upon subcutaneous im-
plantation, but spontaneous metastasis was not seen by
50 days [13].
Since both the primary and metastasis shared common

CDH1 and TP53 mutations, primary gastric organoids
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were established from Cdh1fl/fl;Trp53 fl/fl neonatal mouse
stomach. Gastric organoid infection with a control adeno-
virus (Ad Fc) encoding an immunoglobulin Fc fragment
[43] resulted in gastric organoids with wild-type Cdh1 and
Tp53, while adenovirus Cre-green fluorescent protein (Ad
Cre-GFP) induced deletion of the floxed Cdh1 and Trp53
alleles, with Cdh1 and Trp53 loss confirmed by immuno-
fluorescence (Figure 5a and Additional file 1: Figure S2),
accurately modeling the Cdh1 and Trp53 loss common to
both the primary and metastatic tumors. As we previously
reported [12,13], Ad Fc-treated organoids with wild-type
Cdh1/Trp53 contained epithelial and mesenchymal com-
ponents, accurately recapitulating in vivo stomach tissue
architecture (Figure 5a and 5d).
Figure 5 Dysplastic epithelium in gastric organoids. (a) Gastric organo
Cdh1 and Trp53 floxed alleles then subsequently infected with Fc-expressin
expressing shRNA against Tgfbr2. Images indicate immunofluorescence with
Intrinsic GFP fluorescence from adenovirus CreGFP was abrogated by tissue
immunofixation experiments. (b) GSM-06 murine gastric epithelial cells we
and lysates probed by western blotting with antibodies against TGFBR2 or
neonatal mice harboring Cdh1 and Trp53 floxed alleles and subsequently in
cultured spheres at days 2 and 20. (d) Images represent H&E stained gastri
power (400×).
To model the effect of the TGFBR2 in metastatic
oncogenesis, we infected the same Cdh1-/-;Trp53-/- gas-
tric organoids with retrovirus expressing shRNA against
Tgfbr2, confirming Tgfbr2 knockdown by immunofluor-
escence and Western blot analysis (Figure 5a and b).
Likewise, gene expression of Tgfbr2 was also reduced
as determined by real time PCR (Additional file 1:
Figure S3). The Tgfbr2 shRNA did not grossly increase
the growth rate of Cdh1-/-;Trp53-/- gastric organoids
over a 20-day period, possibly because of dominant ef-
fects of the Cdh1 and Trp53 deletions (Figure 5c). How-
ever, histologic analysis revealed that the resultant
Cdh1-/-;Trp53-/-; Tgfbr2 shRNA gastric organoids but
not Cdh1-/-; Trp53-/- controls demonstrated features of
id cultures were made from gastric tissue of neonatal mice harboring
g adenovirus, or CreGFP-expressing adenovirus +/- retrovirus
nuclear DAPI staining and antibodies against CDH1, TGFBR2, or PCNA.
passaging and subsequent formaldehyde fixation, and is not visible in

re infected with scrambled shRNA or an shRNA against murine Tgfbr2
β-actin. (c) Gastric organoid cultures were made from gastric tissue of
fected with retrovirus expressing shRNA against Tgfbr2. Images are of
c organoids with the indicated genotypes taken at low (40×) or high
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diffuse subtype gastric cancer. Severe dysplasia along
with focal areas of invasion, signet ring formation, and
nuclear pleomorphism were found throughout the ana-
lyzed organoids (Figure 5d).
To examine potential Tgfbr2 effects on in vivo metasta-

sis, the Cdh1-/-;Trp53-/-;Tgfbr2 shRNA organoids versus
Cdh1-/-;Trp53-/- controls were disaggregated and injected
subcutaneously into immunodeficient NOG mice. Cdh1-/-;
Trp53-/- organoids produced extremely slow but detectable
tumor growth by day 50 as we previously documented
[13] (Figure 6a and b). In contrast, Cdh1-/-;Trp53-/-;Tgfbr2
shRNA gastric organoids exhibited robust in vivo tumori-
genicity (Figure 6a and c). Notably, Cdh1-/-;Trp53-/-;Tgfbr2
shRNA primary tumors exhibited a poorly differentiated
adenocarcinoma histology with signet ring features as oc-
curs in diffuse gastric cancer (Figure 6e to g). Immuno-
fluorescence analysis confirmed loss of Cdh1 and Tgfbr2
knockdown (Figure 5a).
Evaluation for distant disease confirmed the presence

of pulmonary metastases in NOG mice harboring
Cdh1-/-;Trp53-/-;Tgfbr2 shRNA tumors, comprised of
poorly differentiated adenocarcinoma with signet ring
features (Figure 6f, g). Metastatic tumors were located
in the lungs bilaterally, were grossly observable upon
Cdh1-/-; Trp53-/- + Tgfbr2 shRNA
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Figure 6 Gastric organoid tumor explants. Gastric organoids with the ind
time post-injection and plotted according to genotype of the driver combina
Cdh1-/-;Trp53-/-;Tgfbr2 shRNA as shown in red. Error bars represent SEM. Asteris
Cdh1-/-;Trp53-/- tumor volumes. (b, c) With different driver combinations, trans
injected into the flanks of immunodeficient NOG mice. Images indicated tum
confirms the presence of poorly differentiated adenocarcinoma with signet ri
Tgfbr2 shRNA organoids. After flank injections with dissociated organoids, histo
adenocarcinoma with signet ring features at low (f) and high (g) magnificatio
dissection and had similar histologic appearance to
diffuse gastric cancer. Overall, these studies support the
role of Tgfbr2 as a putative tumor suppressor gene in
diffuse gastric cancer, demonstrate successful in vitro
conversion of primary gastric tissue to metastatic
adenocarcinoma, and reveal the utility of a primary gas-
tric organoid system for functional validation of candi-
date metastasis drivers.

Discussion
To address the question of identifying the genetic drivers
of diffuse gastric cancer metastasis, we performed an ex-
tensive genome sequencing analysis of the metastatic evo-
lutionary process. This involved sequencing of a matched
gastric primary and subsequent metastasis from the same
patient. We leveraged the unique Mendelian genetics of a
HDCG proband as an ‘experiment of nature’ to delineate
essential cancer drivers in diffuse gastric cancer.
Our genomic analysis revealed FGFR2 amplification

exclusive to the primary gastric tumor and not present
in the metastasis. Our results fully confirm several de-
scriptions of FGFR2 amplification, as well as increased
sensitivity of FGFR2-amplification positive cell lines such
as KatoIII to small molecule FGFR inhibitors [44-47],
b c 

Cdh1-/-; Trp53-/- 
Cdh1-/-; Trp53-/- 

+ Tgfbr2 shRNA

Cdh1-/-; Trp53-/- + Tgfbr2 shRNA
Spontaneous lung metastasis 

s.c. primary tumor 

f g 

icated genotypes are shown. (a) Tumor volumes were measured over
tions being tested. This includes Cdh1-/-;Trp53-/- as shown in blue and
k (*) indicates P <0.01 for Cdh1-/-;Trp53-/-;Tgfbr2 shRNA compared to
formed gastric organoids were dissociated and subcutaneously (s.c.)
or growth at 30 days post injection. (d, e) Histological analysis of tumors
ng features, as indicated by the yellow arrows, only in the Cdh1-/-;Trp53-/-;
logical analysis of murine lungs after 30 days revealed metastatic gastric
n.
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with accompanying implications for FGFR2-targeted
treatment [48]. The striking absence of FGFR2 amplifi-
cation in the metastasis in the context of the common
somatic CDH1 and TP53 mutations argues strongly for
a tumor evolutionary divergence.
The functional validation of the metastatic potential

of Tgfbr2 knockdown in our well-validated air-liquid
interface gastric organoid method [12,13] provides the
first demonstration that TGFBR2 functions as a bona
fide metastasis suppressor gene in diffuse gastric cancer.
Homozygous TGFBR2 deletion is also present in a sub-
set of TCGA gastric cancers [10] which are largely com-
prised of non-metastatic tumors. It will be interesting to
evaluate whether TGFBR2 alterations are more prevalent
in gastric metastases, such as to ovary or other sites. Fur-
thermore, the functional relevance of other potential loci
undergoing alteration in these samples merits additional
exploration.
Our study also describes the first successful in vitro con-

version of primary gastric tissue to metastatic gastric
adenocarcinoma, suggesting the general applicability of
the organoid method to the functional validation of gastric
cancer loci involved in progression and/or metastasis.
As shown here, such three-dimensional organoid-based
functional validation strategies can potentially combine
both the experimental tractability of two-dimensional
culture of transformed cell lines with the accurate tissue
ultrastructure and stromal components of transgenic
mouse systems.

Conclusions
Exclusive FGFR2 and TGFBR2 genetic aberrations delin-
eated the evolution of metastatic recurrence. Our finding
may have implications for targeted cancer therapy. For ex-
ample, the index patient in this study may have conceiv-
ably responded to a FGFR2 inhibitor based on FGFR2
amplification in the primary tumor. However, the patient’s
metastatic recurrence did not harbor this same FGFR2
amplification, suggesting that treatment with a therapeutic
small molecule inhibitor may not have had a discernible
biological effect on the patient’s metastatic disease. In the
precision management of individuals with metastatic can-
cer, one may need to account for the genetic heterogeneity
and subsequent variation in cancer biology that differenti-
ates metastatic sites from the primary tumor before the
initiation of targeted therapy.
Although a comprehensive knowledge of the meta-

static process is crucial for improved cancer treatment,
the driver events underlying metastatic spread are unfor-
tunately poorly understood [49]. Our paucity of know-
ledge regarding metastasis is further compounded by the
relative omission of metastatic samples in large-scale
genomic cancer surveys such as TCGA. This study is an
initial effort to further address these questions about the
genetics and biology of metastatic evolution by integrat-
ing genomic sequencing analysis with in vitro validation
of clonal-specific candidate drivers.

Materials and methods
Cancer samples
This study was conducted in compliance with the Helsinki
Declaration. The institutional review board (IRB) at Stanford
University School of Medicine approved the study protocols
(11886 and 19071). For all patients cited in this study,
we obtained informed consent to conduct research and
publish the results. Samples were obtained from the
Stanford Cancer Institute Tissue Bank. Frozen tissue sec-
tions were prepared from each tumor and hematoxylin-
eosin (H&E) staining was performed on a single section.
We estimated overall tumor composition that generally
was approximately 50% or greater for most samples.
Tumors were macro-dissected to increase tumor cellular-
ity and processed for genomic DNA. Full details are in the
Additional file 1: Methods.

Sample preparation for whole genome, exome, and
targeted resequencing analysis
Genomic DNA was extracted from blood, normal gastric
tissue and tumor samples using the E.Z.N.A. SQ DNA/
RNA Protein Kit (Omega Bio-Tek, Norcross, GA, USA).
Concentrations of genomic DNA were determined with a
Nanodrop instrument (Thermo Scientific, Wilmington,
DE, USA). Genomic DNA from matched normal and
cancer tissue were then used for creating sequencing li-
braries. DNA from peripheral leukoctyes was used for the
Affymetrix SNP array.
From each sample, we fragmented 4 μg of genomic

DNA with a Covaris instrument (Covaris, Woburn, MA,
USA). Illumina TruSeq Paired End libraries were con-
structed from double stranded, fragmented DNA per
Illumina’s standard protocol (Illumina, San Diego, CA,
USA). The amplified material was recovered with a
Qiaquick (Qiagen) column according to the manufac-
turer’s instructions, except the DNA were eluted in
50 μL water. The sequencing library DNA was quantified
using the NanoDrop-1000 and the library was evaluated
with an Agilent Bioanalyzer 2100 (Agilent, Santa Clara,
CA, USA) using a DNA1000 chip. The mean library frag-
ment size was found to be 300 bp and these libraries
were used for whole genome sequencing. For exome
capture hybridization, we used Nimblegen SeqCap ver-
sion 2 enrichment assay (Roche-Nimblegen, Madison,
WI, USA). The methods were according to the Nimble-
Gen’s SeqCap EZ Exome Library SR User’s Guide v2.2.
Following the final amplification reaction, we purified
the exome libraries using a Qiaquick column (Qiagen,
Valencia, CA, USA) per the manufacturer’s recom-
mended protocol.
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Cancer genome sequencing
See Additional file 1 for complete details regarding the
whole genome, exome, and targeted resequencing data
analysis. This includes information about the targeted
resequencing process, variant calling, allelic frequency
determination, and mutation interpretation The oligo-
nucleotide sequences for deep targeted resequencing
are listed in Additional file 2.

FGFR2 amplification analysis from diffuse and intestinal
gastric cancers
Quantitative PCR was performed using the Bio-Rad
QX100 droplet digital PCR (ddPCR) system (Bio-Rad,
Pleasanton, CA, USA). We used a standard set of FGFR2-
specific TaqMan primers and probes (Life Technology,
Foster City, CA, USA) compared with standard references
using an ultra-conserved region on chromosome 1.
Briefly, TaqMan PCR reaction mixtures were assembled
using 2× ddPCR Supermix for probes, 20× assays (18 μM
primers and 5 μM probe) and restriction digested DNA
samples (Biorad). To assess FGFR2 copy number, 125 ng
of each tumor DNA sample was digested with 1.25 units
of BsaJI (NEB) in 15 μL for 1 h at 60°C. The digests were
diluted 1.67-fold to 25 μL with nuclease free water then
25 ng (5 μL) was assayed per 20 μL ddPCR reaction.
FGFR2 assay sequences were (forward primer) 5’-GGCT
GGCTGCTGAAGTCT-3’, (reverse primer) 5’-CTTAATC
GCCTGTATGGTGGTAACA-3’, and (probe) 5’-FAM-TC
TTGGTCGTGTTCTTCATTCGGCACAG-BHQ1-3’. The
FGFR2 assay was duplexed with a standard reference se-
quence on Chromosome 1. This standard reference assay
used the following primers: (forward primer) 5’-TGAGG
GATTCGGCAGATGTTG-3’, (reverse primer) 5’-CTGAA
AGGCTGGACTTGACAGA-3’, and (probe) 5’-VIC-ACT
GTGTGCTGGACCT-MGB-3’. All assay primers were
ordered from Integrated DNA Technologies. Thermal
cycling conditions were 95°C 10 min (1 cycle), 94°C 30 s
and 60°C 60 s (40 cycles), 98°C 10 min (1 cycle), and a
12°C hold. FGFR2 copy number per cell was estimated
as the ratio of the FGFR2 and RPP30 concentrations
multiplied by two to account for the two copies of
RPP30 that are expected per diploid genome. Analysis
of the ddPCR data was performed using the CNV mode
of the QX100 analysis software (version 1.2.9.0). Quad-
ruplicate ddPCR wells were analyzed for each sample.

FGFR2 inhibitor sensitivity assay
KatoIII cells (HTB-103, ATCC) and AGS cells (CRL-1739,
ATCC) were grown in Dulbecco’s Modified Eagle Medium
(DMEM), supplemented with 10% fetal bovine serum and
100 U/mL of Pen Strep Glutamine (Gibco). All cells
were cultured at 37°C in a humidified atmosphere and 5%
CO2. Survival of KatoIII and AGS cells was determined
using the WST-1 Proliferation Assay (Roche). We tested
multiple FGFR inhibitors including TKI-258, Brivanib
(BMS-540215), Ponatnib (AP24534), and AZD4547 (Sell-
eck Chemical). Cells were seeded at a density of 2 × 104

cells/well in 96-well microtiter plates, 100 μL medium/well
and maintained 18 h for attachment. Afterwards, we
treated the cultures with varying concentrations of each
drug diluted in DMSO. After 30 h incubation, 10 μL of
WST-1 reagent was added followed by 1 h at 37°C. The
cleavage of tetrazolium salt (WST-1) into a visible forma-
zan by viable cells was spectrophotometrically measured
using a reference wavelength of 450 nm. Each test was per-
formed in triplicate. Percentages of cell survival were cal-
culated as follows:% cell survival = (absorbance of treated
cells/ absorbance of cells with vehicle solvent) × 100. The
half inhibitory concentration (IC50) was calculated with a
non-linear regression from the dose–response curve.

Mismatch repair protein immunohistochemistry
Mismatch repair protein immunohistochemistry was
performed on the primary diffuse gastric tumor using
the standard streptavidin-biotin-peroxidase procedure.
Primary monoclonal antibodies against MLH1 (clone
G168-728, 1:200, BD PharMingen, San Diego, CA, USA
1:200), MSH2 (clone FE11, 1:100, Oncogene Research
Products, Cambridge, MA, USA), MSH6 (clone 44, 1:200,
BD Transduction, San Jose, CA, USA) and PMS2 (clone
MRQ-28, 1:10, Cell Marque, Rocklin, CA, USA) were ap-
plied to formalin-fixed, paraffin embedded sections four
microns thick. The sections were deparaffinized in xylene,
and rehydrated through graded alcohols to distilled water
before undergoing antigen retrieval by heat treatment in
either citrate solution pH 6.0 (MLH1, PMS2, and MSH2)
or EDTA solution pH 9.0 (MSH6). An automated de-
tection using a Leica Bond Autostainer (Leica, Buffalo
Groove, IL, USA) was employed. Normal expression was
defined as nuclear staining within tumor cells, using infil-
trating lymphocytes as positive internal control. Negative
protein expression was defined as complete absence of nu-
clear staining within tumor cells in the face of concurrent
positive labeling in internal non-neoplastic tissues.

Gastric organoid cancer modeling in mice and functional
analysis
All procedure involving animal were approved the Stanford
University Administrative Panel on Laboratory Animal
Care and was fully compliant with the USDA Animal Wel-
fare Act, and our Assurance of Compliance with the PHS
Policy on Human Care and Use of Laboratory Animals.
Air-liquid interface organoid culture was performed as de-
scribed [11,12].
Cdh1flox/flox;Trp53flox/flox mice were generated by

crossing Cdh1flox/flox mice, obtained from Jackson La-
boratory, and Trp53flox/flox mice, kindly provided by Dr.
Anton Berns [50] NOD.Cg-Prkdcscid Il2rgtm1Sug/JicTac
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mice were obtained from Taconic Farms, Inc. We dis-
sected stomachs from neonatal mice (age P1-10) and
washed them in cold PBS to remove all luminal con-
tents. We extensively minced either large 25% sections
or any entire neonatal stomach per dish and embedded
the minced tissues in a 3D collagen gel using a double-
dish air-liquid interface culture system as previously
described [11]. To maintain the organoids, we applied
fresh medium (F12, 20%FCS, gentamicin 50 ug/mL)
every week.
Tgfbr2 shRNAs were obtained from Origene (catalog

TG516186). Retroviral plasmids were cotransfected with
pCL-Eco into 293 T cells by Lipofectamine2000 (Invi-
trogen). Retroviral supernatants were collected 48 and
72 h post-transfection and concentrated by PEG-it virus
precipitation solution (5×, System Biosciences). Virus
titer was determined by infection of NIH3T3 cells and
FACS analysis of GFP positive cells 48 h post infection.
Cdh1flox/flox;Trp53flox/flox gastric organoids were in-
fected at day 0 with adenovirus Ad Cre-GFP (University
of Iowa Vector Core) or control adenovirus Ad Fc [43]
encoding a mouse immunoglobulin IgG2α Fc fragment
by layering viral particles (109 pfu) suspended in 500 μL
culture media over the top of the collagen matrix con-
taining primary tissue. For retrovirus infection of sec-
ondary organoids, primary organoids at 14 to 20 days of
growth were recovered from collagen gel by collagenase
IV (Worthington) incubation followed by 0.05% trypsin/
EDTA incubation to dissociate organoids into a single
cell suspension. Following extensive washing with 10%
FBS to inactivate collagenase/trypsin, cells were pelleted
by centrifugation and incubated with retroviral particles
(2 μL of 108 pfu/mL) encoding Tgfbr2-shRNA in the
presence of growth medium and TransDux (System
Biosciences) at room temperature for 60 min before serial
replating into 3D collagen gel air-liquid interface culture.
Samples were fixed with 4% paraformaldehyde overnight,

paraffin-embedded, sectioned, and sections stained by H&E
for initial histology analysis. Further immunohistochemistry
analysis, used the following antibodies: PCNA (1:300;
Invitrogen), CDH1 (1:300; BD Biosciences Pharmagen),
TGFBR2 (1:250; Abbiotec), p53 (1:100; Santa Cruz). Cell ly-
sates of mouse gastric culture cell or GSM-06 cells trans-
fected with Tgfbr2-shRNA-GFP were immunoblotted with
TGFBR2 (1:2,000, Abbiotec) and β-actin (1:2,000, Abcam).
Cells from gastric organoids were collected from the

air-liquid interface collagen gel by disaggregation with
collagenase IV (Worthington). For transplantation,
400,000 cells per mouse flank were mixed with matrigel
(50% Matrigel, 10%FCS, 40% F12, 100 μL of Matrigel
mixture per = mouse) and injected into NOD.Cg-
Prkdcscid Ilr2rgtm1Sug/JicTac mice. Mice were sacrificed
after day 50, after which tumors were dissected and exam-
ined by H&E staining. P values were determined using a
two-tailed Student’s t-test assuming unequal variances. A
P value of 0.05 was considered significant.

Data availability
The data from this study have been submitted to the
NCBI Sequence Read Archive under the accession num-
ber SRP044347.
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