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The type 2 immune response is an adaptive immune program involved in defense against 
parasites, detoxification, and wound healing, but is predominantly known for its patho-
physiological effects, manifesting as allergic disease. Engineered nanoparticles (NPs) are 
non-self entities that, to our knowledge, do not stimulate detrimental type 2 responses 
directly, but have the potential to modulate ongoing reactions in various ways, including 
the delivery of substances aiming at providing a therapeutic benefit. We review, here, the 
state of knowledge concerning the interaction of NPs with type 2 immune responses 
and highlight their potential as a multifunctional platform for therapeutic intervention.

Keywords: allergy, immunomodulation, immunotherapy, nanomedicine, nanoparticles, parasite infection, vaccine, 
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nAnOMATeRiALS AnD TYPe 2 iMMUne ReSPOnSeS

Upon contact with non-self entities, the adaptive immune system decides between one of three 
response programs. The tolerance program, orchestrated by regulatory T cells (Treg), ensures that 
no defense is initiated against harmless agents. If pathogens are identified, the adaptive immunity 
chooses between two main types of defensive responses (1). The first branch, a type 1 response, is 
characterized by the rapid removal of pathogens by macrophages and neutrophils, mediated by  
T helper 1 (TH1) and TH17 cells, which release pro-inflammatory cytokines, such as interferon 
(IFN)-γ and interleukin (IL)-12. Type 1 responses are integrated seamlessly with inflammatory 
reactions. The role of inflammation and type 1 responses in the context of exposure to nanoparticles 
(NPs) is discussed elsewhere in this volume.

The second defensive branch, type 2 immunity, involves the key cytokines IL-4, IL-5, IL-13, and 
different types of immune cells, such as basophils, eosinophils, mast cells, anti-inflammatory (M2) 
macrophages, and TH2 cells (1). This type of response is often connected to parasitic infections, later 
stages of the wound healing process, and to chronic inflammatory conditions, such as asthma and 
allergy (2). Of note, some NPs are known to modulate type 2 immune responses (3). This review 
covers applications of NPs in the context of type 2 immune responses, such as parasitic infections, 
wound healing, and allergy, with a special focus on therapeutic approaches.

PARASiTiC inFeCTiOnS

Ancestral populations can be assumed to have been constantly subjected to parasite infections. Hence, 
macroparasites have played a large role in the evolution of type 2 immune responses. One particular 
purpose of type 2 responses is to limit the parasite load and is done so, via immunoglobulin (Ig)E  
type antibodies and effector cells (4). Parasitic diseases continue to be a serious health problem in 
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large areas of the world (5). Unfortunately, there are currently 
no studies regarding coexposure to parasites and nanomaterials. 
However, nanomedical approaches have been investigated for 
vaccination, diagnosis, and therapy of parasitic diseases (6–8). 
Some studies have looked specifically at a shift between type 1 
and type 2 responses, as indicated by characteristic cytokines and 
antibody isotypes. In particular, numerous nanomedical studies 
concerning malaria have been performed, including studies 
about the response type (7). For example, self-assembled protein 
NPs were used to vaccinate mice with Plasmodium sp. antigens, 
resulting in the development of protective type 2 responses (9).

In contrast, chondroitin nanocapsules upregulate TH1 
cytokines and downregulate TH2 cytokines in hamsters, leading to  
enhanced doxorubicin-induced apoptosis that eradicates infec-
tion with Leishmania donovani (10). Similarly, the host response 
of mice against L. donovani was supported by artemisinin-loaded 
NPs that shifted the cytokine profile from type 2 to type 1 (11). 
This corresponds to the conventional view that Leishmania, 
like other microparasites, is promoted by type 2 responses and 
controlled by type 1 responses. However, it should be borne in 
mind that careful analysis of this mouse model has revealed that 
the prototypic TH2 cytokines IL-4 and IL-13 can contribute to 
either the control or the exacerbation of disease (12). It is, thus, 
not always clear which role type 2 responses play in relation to 
specific parasites. NP adjuvants contribute to effective vaccina-
tion of mice against Angiostrongylus costaricensis and of pigs 
against Trichinella spiralis, but they do this by supporting a type 1  
response in the first case and a type 2 response in the second 
(13, 14). Altogether, it is clear that NPs can influence the type of 
immune response toward a challenge, with either detrimental or 
protective effects for the host.

wOUnD HeALinG

Wound healing is a natural process that repairs and regenerates 
damaged tissues, for example, in the skin (15), lung (16), or 
intestine (17). Numerous therapies have been developed to accel-
erate this process, involving, for example, pharmaceutics, stem 
cells, electrical stimulation, negative pressure, light, or radiation  
(15, 18–21). Furthermore, NPs, especially those with antimicro-
bial properties, are considered as valuable tools in accelerating 
the wound-healing process (22). Silver (Ag) was used for its 
antibacterial properties since the Roman empire, and nowadays, 
numerous therapeutical products containing ionic Ag or Ag 
NPs are on the market (22, 23). Several publications review the 
beneficial effects of ionic nanoparticulate Ag in wound healing 
(22, 24, 25). An earlier animal study by Tian et al. (26) showed 
that Ag NPs accelerate healing and improve cosmetic appearance 
of wounds in a dose-dependent manner. By analyzing bacterial 
growth and cytokine profiles in wound sections, the authors 
demonstrated the antimicrobial and anti-inflammatory potential 
of Ag NPs. Microbially synthesized Ag NPs enhanced wound-
healing efficiacy in rats (11, 27, 28). Using a transforming growth 
factor (TGF)-β receptor inhibitor, Li and coworkers proposed the 
activation of the TGF-β1/Smad signaling pathway as a mechanism 
of wound-healing enhancement by polyvinylalcohol/chitosan 
oligosaccharide Ag nanofibers (29).

Gold (Au) NPs were successful in acceleration of wound 
healing in combination with photobiomodulation therapy in rats  
(15) or in combination with the antioxidants epigallocatechin gal-
late (EGCG) and α-lipoic acid (ALA) in mice (30). The observed 
decrease of CD68 expression and increase of SOD1 expression 
around the wound area suggest that anti-inflammatory as well 
as antioxidative effects of the Au NP/EGCG/ALA mixture play a 
role in increased wound-healing efficiency (30). The inflamma-
tory reaction in wounded skin of rats was investigated in a recent 
report. Phytochemically stabilized Au NPs accelerate wound 
healing in a process that involves alteration of the amounts of 
TGF-β1, vascular endothelial growth factor (VEGF), and the 
number of mast cells in the wounded skin sections compared 
to vehicle controls (31, 32). These observations indicate an 
involvement of the particles in type 2 immune functions dur-
ing the healing process. A different approach for wound healing 
with Au NPs in diabetic mice, showed that spherical nucleic 
acid–Au NP conjugates efficiently to downregulate target genes 
in diabetic mice. Thus, resulting in full wound closure occurring 
within 12  days, compared to control wounds which were only 
50% closed (33).

Aside from Ag and Au, other types of NPs, such as selenium 
(34), zinc oxide (35), copper oxide (36, 37), iron oxide (38), or 
polymeric NPs (39), were shown to be beneficial for wound heal-
ing (Table 1). Thereby, the beneficial effect is either a result of 
the NPs properties alone (i.e., antibacterial effects) or a combined 
result of the NPs with other substances. For example, TiO2 NPs 
have been shown to enhance the wound-healing potential of chi-
tosan (40), which is used as wound dressing material (41) and is 
currently commercially available (42). Some caution may be nec-
essary when using very high concentrations of chitosan leading to 
a highly positively charged NP surface, as recently demonstrated 
in a study involving Au NPs (43). Increased uptake by phago-
cytic cells and an enhanced pro-inflammatory response were 
determined, rendering chitosan coating exceeding an optimal 
range counteractive for wound healing. Chitosan-based copper 
nanocomposites accelerate wound healing in rats by modulation 
of different cytokines and growth factors. The upregulation of 
VEGF, TGF-β1, and IL-10 as well as the downregulation of tumor 
necrosis factor α (TNF-α) indicate a shift toward type 2 immunity. 
An interesting approach using biodegradable NPs was published 
by Galili (44), who demonstrated that α-Gal NPs can accelerate 
the process of wound healing. The mechanism involves binding 
of natural anti-α-Gal antibodies to the multiple α-Gal epitopes, 
which then present on the NPs resulting in complement activa-
tion, recruitment, and activation of macrophages, which leads to 
tissue regeneration (44, 45). A summary of current therapeutic 
approaches for NPs is given in Table 1.

ALLeRGY

Allergy and asthma represent a global public health concern in  
developed countries, with a steady increase also occuring in 
emerging countries. According to the World Health Organization, 
approximately 300 million people worldwide are currently suf-
fering from asthma, with a rising trend to increase up to 400 
million by 2025 (85). Allergic diseases include the various forms 
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TAbLe 1 | Selected therapeutic nanoparticle (nP)-based approaches in the context of type 2 immune responses at different stages of development.

nanomaterial type Therapeutic benefits Reference

in clinical practice

inorganic nPs
Silver Most widely used NPs in wound healing due to their antimicrobial and anti-inflammatory properties.  

Several products already on the market
(22–24, 26)

Organic/biodegradable nPs
Glatiramer acetate Prolonged onset and reduced transition from relapsing remitting to progressive multiple sclerosis (46, 47)
Lipids T cell inhibition and immunosuppression by encapsulating sirolimus into nanostructured lipid carriers (48)

in clinical studies

Organic/biodegradable nPs
l-leucin-l-glutamate copolymers Enhanced depot effect for insulin upon subcutaneous injection (49)
Polyethylene glycol (PEG) Anti-tumor necrosis factor α antibody fragment against rheumatoid arthritis and Crohn’s disease (50)
Calcium phosphate Enhanced depot effects for various drugs (51)
Poly-l-lysine dendrimer Antimicrobial protection from genital herpes and HIV infection (52)
Virus-like particles (VLPs) VLPs derived from Qbeta bacteriophages filled with CpG-DNA and filled with house dust mite extract, 

 respectively, conjugated with Der p 1 peptide
(53, 54)

in development/basic research studies

inorganic nPs
Gold Successful acceleration of wound healing in combination with photobiomodulation therapy, antioxidants,  

or nucleic acids

Phytochemically stabilized Au NPs accelerate wound healing altering the amounts of transforming growth factor

Plasmodium falciparum antigen Pfs25 or Yersinia pestis F1

(15, 30–33, 
55, 56)

Cerium oxide Acceleration of the wound-healing process by enhancement of the proliferation and migration of fibroblasts, 
keratinocytes, and vascular endothelial cells

(57)

Selenium Shortening of healing duration of artificial wounds in Wistar rats (34)

Zinc oxide Castor oil/chitosan-modified ZnO NPs increase wound-healing efficacy in rats (35)

Copper oxide Enhanced wound-healing activity of CuO NPs by inhibiting pathogenic bacteria surviving in the wound sites (36, 37)

Acceleration of wound healing by chitosan-based copper nanocomposites involves a type 2 shift of immune 
response

Iron oxide Thrombin-conjugated magnetic γ-Fe2O3 NPs enhance wound healing in rats (38, 58)

Reeducation of TAMs from M2 toward M1 phenotype by FDA-approved ferumoxytol

Titanium dioxide TiO2 NPs enhance wound-healing potential of chitosan (40)

Fullerene Induction of dendritic cells (DCs) maturation and activation of TH1 immune response using [Gd@C82(OH)22]n  
fullerene NPs

(59)

Silica Boost of vaccine immune response against influenza virus (60, 61)

Lysozyme-loaded mesoporous silica NPs (nanopollens) with long-term antibacterial effects tested  
in ex vivo small intestine models

Carbon nanotubes (CNTs) Plasmodium vivax AMA-1 N-terminus peptide–CNT conjugate delayed parasitemia in infected  
Plasmodium berghei mouse model

(62)

Organic/biodegradable nPs
Chondroitin Doxorubicin-loaded chrondroitin nanocapsules eradicate infection with Leishmania donovani in hamsters (10)

Polyglutamic acid (PGA) Timothy grass pollen extract-loaded PGA NPs as delivery vehicle to DCs (63)

Poly-d,l-lactic-co-glycolic acid (PLGA) Inhibition of TH2 immune response and airway inflammation in mice (11, 64–71, 
72)Treatment for autoimmune disease by induction of antigen-specific tolerance using myelin bound to NPs

Reprogramming of TAMs by rabies virus glycoprotein peptide-loaded paclitaxel-carrying NPs in a mouse  
glioma model

CpG/peanut extract-PLGA enhance peanut-specific immunotherapy

Bet v 1-loaded PLGA NPs improve efficacy of allergen-specific immunotherapy (AIT) by downregulating ongoing 
TH2 response in mouse models

Ole e 1-loaded PLGA (<2 μm) microparticles as vehicle for AIT

Oral administration of major Chenopodium album pollen allergen Che a 3-PLGA downregulates TH2 response in 
mouse model

Artemisinin-loaded PLGA NPs showed superior antileishmanial efficacy compared to free artemisinin in a mouse 
model and shifted cytokine profile from type 2 to type 1

Successful M cell targeting with birch pollen allergen-loaded PLGA NPs specifically functionalized with Aleuria 
aurantia lectin

Polymethylvinyl ether-co-maleic 
anhydride (PVM-MA)

Ryegrass pollen extract-loaded PVM-MA NPs as adjuvant for AIT (73)

(Continued)
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nanomaterial type Therapeutic benefits Reference

PEG Self-assembled PEG-dendrimer efficiently delivered and increase anti-inflamatory effect of dexamethasone in 
allergic airways inflammation

pH-sensitive PEG nanocarriers for grass pollen and house dust mite allergen encapsulation and controlled  
release from DCs

(74, 75)

Chitosan Local nasal AIT with house dust mite-chitosan vaccine in mouse asthma model

Intranasal AIT with immunodominant Der p 1 epitope reduced allergen-specific T cell reactivity and interleukin  
(IL)4 and IL5 levels in brochnoalveolar fluid of sensitized mice

Oral DNA vaccine of house dust mite allergen Der p 1 formulated with chitosan NPs

Induction of TH1 immune response by DNA vaccine of Der p 2 with chitosan NPs

Oral gene delivery of chitosan-formulated NPs in peanut-allergic mouse model with additional induction  
of mucosal dimeric allergen-specific immunoglobulin A

(76–80)

Polyanhydride NPs Intradermal immunization of mice with polyanhydride NPs loaded with peanut proteins induced strong  
mixed TH1/TH2 immune response (immunostimulant)

(81)

Polyacrylic acid Antibacterial activity of poly-phospoester-based Ag-loaded NPs in lung infections (82)

Protamine NPs Liposome–protamine–DNA NPs induced strong TH1 response upon subcutaneous AIT in Chenopodium album-
sensitized mouse model

(83, 84)

Protamine-based NPs (proticles) with CpG complexed with Ara h 2 extracted from raw peanuts induced  
strong TH1 response upon subcutaneous AIT in mice

Self-assembled protein NPs (SAPN) SAPN used to vaccinate mice with Plasmodium sp. antigens achieved delayed parasite motility and  
complement lysis

(9)

Immunostimulatory complexes  
(ISCOMs)

Effective intranasal immunization of mice against Angiostrongylus costaricensis with ISCOM formed by a  
synthetic pph 1 peptide linked to cholera toxin adjuvanted with saponin/phospholipids/cholesterol NPs

(14)

α-Gal NPs Tissue regeneration induced by macrophages activated through binding of natural anti-α-Gal antibodies  
to multiple α-Gal epitopes present on the NPs

(44, 45)

TAbLe 1 | Continued
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of asthma, rhinitis, conjunctivitis, angioedema, urticaria, eczema, 
eosinophilic disorders, such as esophagitis and life-threatening 
anaphylaxis, as in the case of food, insect venom, or drug aller-
gies. Patients with allergic diseases have a significantly reduced 
quality of life, and even milder forms such as allergic rhinitis have 
a significant economic impact (86). Globally, allergic diseases 
affect 20–30% of the population, and in the developed countries 
sensitization rates of up to 50% have been reported (87).

Allergy is defined by IgE reacting specifically with non-
pathogenic environmental proteins, thus, being defined as 
allergens (88). Presence of allergen-specific IgE in the blood of 
affected individuals resulting from an overshooting TH2-driven 
immune response, is hence the hallmark of being sensitized (89). 
The sensitization process is intiated upon first contact where 
a variety of potential functions of allergens may be involved 
(90–98); however, the overall mechanism of allergic sensitization 
still remains to be fully established. As potential risk factors, 
nutrition, and hygiene have been described (99). Upon second 
contact with the allergen, specific IgE-loaded allergic effector cells,  
i.e., tissue-resident mast cells and peripheral blood basophils, 
degranulate due to IgE receptor cross-linking and release vasoac-
tive mediators (histamine, tryptase, etc.). During this process, 
being termed the effector function, the typical allergic symptoms 
emerge, including vasodilation and permeation resulting in 
swelling, itching, and redness, characteristic of the wheal and 
flare reaction in rhinoconjunctivitis. Furthermore, effector cells 
initiate the secretion of lipid mediators (leukotrienes) and cyto-/
chemokines leading to bronchoconstriction, mucus production, 
intestinal hypermotility, as in the case of more severe forms, 
such as anaphylaxis (88). Furthermore, eosinophil infiltration, 

chronicity, and amplification of the allergic response can lead to 
tissue remodeling, a characteristic of asthma (100).

Presently, few studies investigating the potential sensitization-
aggravating effects of particulate matter itself or NP-associated 
allergens exist (101–103). Historically, research was conducted 
on combustion-derived particles as reviewed recently (104, 105).  
The interaction of allergens with engineered NPs, such as Au, 
Ag, ZnO, TiO2, SiO2, may arise at sites where such materials 
are handled, so risk of disease-aggravating conditions can be 
expected in occupational settings. Studies in mice have addressed 
the pro-allergic potential of Au, TiO2, and SiO2 NPs in contact 
hypersensitivity. Such reactions are characterized by a T  cell-
mediated delayed-type adverse response without the presence 
of allergen-specific IgE or airway hyperresponsiveness with 
eosinophil infiltration, mucous cell metaplasia, and elevated 
type 2 cytokine secretion (106–108). Graphene nanosheets and 
multiwalled carbon nanotubes (MWCNTs) have been shown to 
induce a TH2 immune response in mouse models when adminis-
tered intravenously (109). While in human in vitro studies includ-
ing fullerene or MWCNTs contrasting results were reported  
(110, 111). Human skin-derived mast cells and peripheral blood 
basophils exhibited a significant inhibition of IgE-dependent 
mediator release by fullerene. Furthermore, MWCNTs were 
shown to inhibit allergen-induced type 2 cytokine secretion by 
peripheral blood mononuclear cells from house dust mite-allergic  
individuals, emphasizing the pro-inflammatory potential of 
MWCNTs which has recently been reviewed (112). In line with 
these reports, MWCNTs have been shown to suppress humoral 
immune effects in mice by a mechanism involving the activation 
of cyclooxygenases in the spleen in response to signals from 

http://www.frontiersin.org/Immunology/
http://www.frontiersin.org
http://www.frontiersin.org/Immunology/archive


5

Himly et al. NPs in Type 2 Immune Reactions

Frontiers in Immunology | www.frontiersin.org April 2017 | Volume 8 | Article 471

lung (113). Accordingly, iron oxide NPs were shown to attenuate  
serum levels of OVA-specific IgG1 and IgG2a in mice (114). 
Pro tein corona formation represents a paradigm when studying 
the biological effects of NPs and it is well accepted that pro-
tein–NP interactions may alter the proteins’ 3D structure and 
hence epitope integrity (115). In the context of type 2 immune 
effects, IgE epitope integrity is essential. Following this ration-
ale, allergic disease-modulating effects were investigated upon 
interaction of three major inhalant allergens with Au NPs (116). 
This study showed that increased, decreased, or similar aller-
genic responses may be observed, presumably depending on the 
orientation and accessibility of the IgE epitopes of the allergens 
bound to the NPs.

Not only material composition has an influence on the type of 
immune response but the particle size of the same material can 
also be decisive upon inducing either a type 1 or a type 2 immune 
response. Bigger particles (>100 nm) are more prone to induce 
a type 2 response, in comparison to smaller particles (~50 nm) 
that rather induce a type 1 response (117, 118). Wen et al. showed 
that NPs were also able to induce both a TH1 and a TH2 response 
equally when using chitosan NPs in combination with ovalbumin 
in mice (119). The immune responses elicited by different NPs 
can be diverse and are highly dependent on material and size of 
the particles.

During the past two decades much progress has been made in 
the field of molecule-based diagnostics, also termed component-
resolved diagnostics (CRD), with the development of two types of 
serological tests involving purified natural or recombinantly pro-
duced allergen molecules, coated to particles (ImmunoCAP™) or 
a glass surface (ISAC™) (120–122). The higher predictive value 
of CRD compared to extract-based methods has been appreciated 
by clinicians (123, 124). These two large studies advocate that CRD 
improves the decision-making process during the prescription of 
allergen-specific immunotherapy (AIT) due to its high specificity. 
AIT has been described >100 years ago and still remains the only 
effective treatment against allergy resulting in a shift from a type 2 
immune response toward a tolerogenic state, which is character-
ized by the key cytokines IFN-γ, IL-10, and TGF-β and produc-
tion of allergen-specific IgG4 blocking antibodies (125–127). The 
potential of NPs being used for allergen therapeutics emerged 
from adjuvants which will be discussed next.

ADJUvAnTS

The idea to use adjuvants to aid in vaccination was established 
due to the finding that a higher specific antibody titer can be 
induced by an abscess at the site of inoculation (128, 129). 
Adjuvants comprise different classes of compounds, including 
microbial substances, mineral salts, emulsions, or microparticles, 
displaying potentiating and/or modulating effects on the human 
immune system, and they have even been quoted as “dirty little 
secrets of immunologists” (130, 131). The main desired effects of 
adjuvants in therapy or vaccination can be broken down into two 
groups. On the one hand they function as delivery vehicles of the 
active pharmaceutical ingredient (API) to antigen-presenting 
cells (APCs), like dendritic cells (DCs) and macrophages. On 
the other hand, they induce an immune potentiation effect that 

is achieved by activation of the APCs through specific receptors, 
thus creating an inflammatory context (132). Adjuvants have to 
be safe in formulation, stable during storage, easily expelled 
from the body, either by being biodegradable or by efficient 
excretion, and furthermore, the costs of their production should 
to be low (133).

Aluminum hydroxide or alum has been in use as an adjuvant 
from as early as 1926 (134), widely used in vaccination ever since 
(135). Its clinical function also involves innate mechanisms estab-
lished for recognition of crystals based on NLRP3 inflammasome 
activation (136). In the last two decades, the research into new 
adjuvants has increased, but many new adjuvants fall prey to local 
or systemic toxicity and are not suitable for the use in humans 
(137). A possible new approach is the use of nanosized inorganic 
or organic particles as an efficient antigen delivery vehicle  
(138, 139). Additional advantages of using NPs as adjuvants are 
that they can incorporate several desired effects of an adjuvant 
in one substance. They may (i) confer a depot function with 
enhanced abundance in the tissue/circulation, (ii) function as 
a delivery vehicle by binding the APIs and delivering them to 
the APCs, and (iii) be able to induce immunostimulatory effects 
(140). It has been demonstrated that different kinds of NPs rang-
ing from inorganic NPs, like silica (60, 141) and gold (142), over 
lipids (143) to biodegradable polymeric particles (144, 145) show 
adjuvant potential. For some NPs the adjuvant effect is greater 
than that of alum (138, 141, 146).

Due to their unique properties, NPs readily bind substances 
like proteins, peptides, and nucleic acid vaccines (147). Those 
conjugates have been shown to be taken up by APCs (146, 148), 
and thus NPs are able to deliver the APIs to the APCs. The immune 
stimulatory effect of NPs has been shown, for example, using 
poly-γ-glutamic acid NPs and DCs (148), which facilitates the 
second major requirement for adjuvants—to provide a costimula-
tory signal for initiation of an immune response. Keeping all that 
in mind, several types of NPs bear the potential to act as efficient 
adjuvants in formulation.

nPs—A POTenTiAL MULTiFUnCTiOnAL 
PLATFORM FOR inTeRACTiOnS wiTH 
THe iMMUne SYSTeM

In addition to spontaneous interactions of proteins (or other 
biological substances) with NPs, engineered nanomaterials may 
form a platform where various functions of different chemical 
entities may be combined intentionally (Figure 1). It should be 
stated here that in particular for nanomedical approaches the 
strict nano definition by “ISO/TS27687:2008 Nanotechnologies—
Terminology and definitions for nanoobjects—NP, nanofibre and 
nanoplate” confining NPs for a size range up to 100 nm is often 
relaxed. Therefore, nanomedicines usually list substances of 
particulate matter in the submicro size range. The surface of NPs 
can be functionalized covalently with specific ligands including 
antibodies and fragments thereof or other immunologically 
active proteins, such as allergens. Other ligands may include 
peptides, nucleic acids such as immunostimulatory CpG-DNA, 
small inhibitory (si-)RNAs, aptamers, carbohydrates, and other 
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FiGURe 1 | nanoparticles (nPs) used as a potential multifunctional 
nanomedical platform to facilitate three roles in therapeutic use. The 
numbers represent different types of NPs: 1, liposomes; 2, biopolymers;  
3, inorganic NPs; 4, nanoemulsions; 5, dendrimers. Active pharmaceutical 
ingredient (API); for symbolizing protein APIs the 3D structure of Der p 1,  
the major house dust mite allergen (PDB entry 3f5v) was used; LPS, 
lipopolysaccharide; TLR, Toll-like receptor; TH1, T helper 1 cells.
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biomolecules [vitamin D3 or toll-like receptor (TLR) ligands]. 
Such NP conjugates may mediate (i) efficient delivery, i.e., cellular  
targeting and uptake, (ii) mucosal adhesion, penetration, and 
retention, or (iii) immunostimulatory or modulatory effects. 
Applied in a well-controlled manner, these ligands modify and 
can thus be used to opimize the safety profile, specificity, and 
efficacy of a vaccine candidate.

nPs Mediate efficient Delivery
Anticytokine therapy has been recognized since the early 2000s 
(149, 150), and a number of approaches are in the clinic or the 
pipeline. Examples include antibodies to counteract the effects 
of TNF-α or IL-1β in inflammatory bowel disease, rheumatoid 
arthritis, psoriatic arthritis, ankylosing spondylitis, and athero-
sclerosis. Such antibodies work via shifting the immune response 
from TH1 or TH17 toward TH2 (151, 152). Polyethylene glycol has 
been regarded as a nanomedical proponent which due to its non-
degradable properties under physiological conditions confers a 
prolonged circulation time of the co-delivered API (153, 154). 
During AIT, clinical efficacy of a vaccine has to be counterbal-
anced by a well-defined safety profile of the whole formulation, 
i.e., API and adjuvant (155). Therefore, the “hypoallergen concept” 
emerged where substances with reduced IgE-binding capacities 
were used. By genetic engineering or chemical modification 
(allergoids) the IgE-binding epitopes were disrupted, and hence, 
higher amounts could be administered at lower risk of side-
reactions (156–162).

nPs enable Mucosal Adhesion, Tissue 
Retention, and Penetration
Among the aforementioned ligands, carbohydrates may establish 
specific as well as non-specific interactions with the human 
immune system. Therefore, these hydrophilic moieties represent 
attractive functionalizations for enhanced mucosal delivery via 
the oral, nasal, or dermal routes of application. Upon adhesion 
with the mucosal or intradermal tissue, prolonged retention may 
result in a more effective presentation to immunocompetent 
cells in the dedicated lymphoid tissues (163, 164). Using NPs as 
a platform for additionally introducing mucoadhesive ligands 
can improve sublingual AIT, which have been shown effective in 
ovalbumin-sensitized mouse models (165–169). Table 1 provides 
a list of potential candidate approaches based on specific (upon 
binding to lectins) and non-specific (upon hydrophilic interac-
tions of chitosan with mucins) carbohydrate recognition aiming 
at enhanced efficacy of AIT.

nPs for immunostimulation and 
Modulation toward TH1
The response of the immune system against internal or external 
stimuli can be categorized into two reactions, stimulation or 
suppression (170). It is possible to push the response either to 
stimulation or suppression, and this regulation can be used in 
therapeutic treatment (171, 172). An immune stimulation may be  
desired for increasing vaccination or cancer treatment efficacy. 
On the contrary, undesired effects of immune stimulation can 
result from interactions of leukocytes with NPs (173–175). 
These may include IFN response, lymphocyte activation, and 
cytokine storm, leading to severe off-target effects limiting the 
therapeutic efficacy. Immunosuppression, as observed for inhaled 
MWCNTs in a mouse model (113), is desired for treatment of 
hypersensitivities like allergies or autoimmune diseases or in the 
context of organ transplantation for preventing organ rejection  
(172, 176, 177). The downside of suppression is that it may lead 
to an attenuated defense state of the body facilitating infections 
and cancerous diseases.

The interactions with NPs do not only lead to stimulation 
or suppression of the immune response but also influence the 
type of immune response. Both the ability to deviate an immune 
response from a type 2 to a type 1 response as well as a bias 
for different types of responses have been described for NPs. 
Reeducation of tumor-associated macrophages from M2 toward 
M1 phenotype by NP-mediated induction of pro-inflammatory 
responses was found effective using the FDA-approved iron oxide 
NP compound ferumoxytol (58). Similar effects were observed 
with rabies virus glycoprotein peptide-loaded paclitaxel-carrying 
biodegradable poly-d,l-lactic-co-glycolic acid (PLGA) NPs in  
a mouse glioma model, and notably, even crossing of the blood–
brain barrier was achieved (66, 178). These polarizing effects may 
be due to an uptake preference reported for type 2 compared to 
type 1 macrophages (179). A modulation in immune response 
was observed using PLGA NPs which were able to downregulate 
an ongoing TH2 response in an allergic BALB/c mouse model 
(68). Additionally, PLGA NPs have been used to induce a TH1 
response when delivering the TH2-biased peptide hepatitis B 
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surface antigen (180). A potential therapeutic use for PLGA NPs 
coated with CpG-DNA (TLR9 ligand) and peanut extract was 
demonstrated when peanut-allergic mice treated with the NPs 
were protected from anaphylaxis upon challenge and lower levels 
of TH2 cytokines were measured compared to untreated mice 
(67). Other possible candidate ligands acting as danger signals 
providing immunodeviation into type 1 include lipopolysac-
charide, monophosphoryl lipid-A, cholera or E. coli toxins, or 
flagellin (181–187). Table 1 gives an overview on nanomedical 
immunomodulatory approaches in particular in respect to AIT, 
which have recently been reviewed elsewhere (188).

COnCLUDinG ReMARKS

As for other mechanisms of the immune system (inflammation, 
type 1 response, tolerance), NPs can modulate type 2 responses 
in different ways. It is a task for the community, working at the 
border between immunology and nanotechnology, to understand 
the parameters leading to NP induced up- or downregulation of 

type 2 responses. Understanding of such concepts could enable 
the prediction of the outcomes of human exposure to NPs.
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