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Simple Summary: Over the last decade, animal nutrition science has been significantly developed,
supported by the great advancements in molecular technologies. For scientists, the present "feedomics
and nutrigenomics" era continues to evolve and shape how research is designed, performed, and un-
derstood. The new omics interpretations have established a new point of view for the nutrition–gene
interaction, integrating more comprehensive findings from animal physiology, molecular genetics,
and biochemistry. In the ruminant model, this modern approach addresses rumen microbes as a
critical intermediate that can deepen the studies of diet–gut interaction with host genomics. The
present review discusses nutrigenomics’ and feedomics’ potential contribution to diminishing the
knowledge gap about the DNA cellular activities of different nutrients. It also presents how nutri-
tional management can influence the epigenetic pathway, considering the production type, life stage,
and species for more sustainable ruminant nutrition strategies.

Abstract: Ruminant nutrition has significantly revolutionized a new and prodigious molecular
approach in livestock sciences over the last decade. Wide-spectrum advances in DNA and RNA
technologies and analysis have produced a wealth of data that have shifted the research threshold
scheme to a more affluent level. Recently, the published literature has pointed out the nutrient roles in
different cellular genomic alterations among different ruminant species, besides the interactions with
other factors, such as age, type, and breed. Additionally, it has addressed rumen microbes within
the gut health and productivity context, which has made interpreting homogenous evidence more
complicated. As a more systematic approach, nutrigenomics can identify how genomics interacts
with nutrition and other variables linked to animal performance. Such findings should contribute to
crystallizing powerful interpretations correlating feeding management with ruminant production and
health through genomics. This review will present a road-mapping discussion of promising trends in
ruminant nutrigenomics as a reference for phenotype expression through multi-level omics changes.

Keywords: feedomics; gene expression; nutrigenomics; nutrition; transcriptome; ruminant

1. Introduction

Ruminants are distinctive, influential animal species that have become worthy of
attention in human food security marathons. The global population is expected to ap-
proach 9.15 billion people by the year 2050 [1], and in turn, global food animal pro-
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duction is expected to rise 2.3% annually, which will require rising production propor-
tions [1,2]. Additionally, rapid population growth has made the animal production situation
more critical [3,4], besides the presence of severe environmental changes (climate change,
global warming, methane, and greenhouse gas emissions) and natural resource limitations
(drought and desertification) [5–8]. Such emerging threats put pressure on the global
situation of the animal protein supply due to the feed resource competition with human
food production, which disrupts the sustainability of livestock production systems [9].

The classic animal nutrition approach was traditionally dominated by direct studies
that examined the feeding practices related to the production phenotypes. However, this
approach could not provide enough knowledge about the nutrient dynamics in the GIT, its
effect at the tissue level, and, in turn, its reflection in the animal’s productivity. Additionally,
it could not explain the mechanism of action of intermediate metabolites in different cellular
activities through different tissue types.

Hence, the advancements in molecular biology, molecular nutrition and physiol-
ogy, high-throughput technologies, and bioinformatics databases have led to the more
powerful inclusion of other studies such as epigenetics, metagenomics, metabolomics,
transcriptomics, and proteomics. However, these integration trends focused on the diet’s
characteristics, its role in altering metabolism, and its effects on the pathways of other
metabolites [10,11]. Thus, debates continue about the best strategies for epigenetic interfer-
ence applications for determining more precise animal requirements that can guide genetic
selection programs. Additionally, many questions have been raised about innovative
approaches that broaden our interpretations for more efficient feed resource utilization.

“Omics” refers to methodologies that relate to the knowledge about specific identifi-
able genes in an animal or the microbiome, genes transcribed to mRNA or proteins, and
metabolites present within a particular cell, tissue, organ, fluid, or population [12]. Some
of the published literature has drawn attention from traditional nutrition studies toward
a closer look at feedomics and nutrigenomics. Feedomics is a field of study that looks at
how changes in the diet and gut can affect gene expression, and it is also proposed as the
“feed-gut-gene scheme.” In comparison, “nutrigenomics” focuses on nutrient molecules’
role in gene expression and the regulatory mechanisms generally at the cellular level [13].

Recently, feedomics and nutrigenomics have made their way to precisely illustrate the
nutritional interventions in animal genetics which can open space for genotypic-tailored
feeding studies. This revolutionary approach has focused on how feeds talk to genes and
how genes respond, addressing a novel holistic approach and redefining the conventional
ruminant nutrition–gene pattern in a broad context. Moreover, animal bioscientists have
highlighted the host rumen milieu as a critical intermediate player that controls, regulates,
or triggers serial changes by the rumen microbiome’s activities [14,15].

This review discusses feeding and nutrition strategies from a molecular genomics
point of view. It introduces a larger framework that places the feed–gut context as the first
step toward efficient ruminant nutrition for improving animal health and welfare.

2. Molecular Nutrition–Genomic Interferences

It has been reported that genes alone do not necessarily produce phenotypic traits; var-
ious environmental aspects can affect the incidence and degree of trait expression. Nutrition
is a principal environmental factor; however, it needs profound genomic enlightenment due
to the complexity of feeding-related phenotypes such as feed efficiency [16]. Additionally,
our knowledge of which nutritional substrates may impact gene expression is limited.
Further, the existing literature analyzes the whole scenario from the diet through the rumen
to genes, although the final product is not fully discussed and remains inadequate.

Recently, studies have been published that group genomic feedback with ruminant
feeding management and feed formulation. As a result, they have helped to determine
more precise nutrient requirements for more sustainable strategies in ruminant production
systems. Therefore, trials to understand the genetic response to nutrition have been further



Animals 2022, 12, 997 3 of 19

complicated and have provided an opportunity for novel research studies that can thor-
oughly explain the intricate relationship between diet and animal tissue genomics [17–24].

DNA microarrays and gene analysis applications could not prove RNA dynamics,
whether mRNA synthesis (transcription) or RNA degradation. Therefore, the preference
for RNA-based techniques is attributable to DNA’s existence in both active and inactive or
dead cells [25]. However, RNA is dynamically distinguished in participating cells, making
RNA a more accurate cellular biomarker. Therefore, RNA-based systems are more precise
in omics studies, particularly microbial metabolic activity interpretations [26–29].

3. The Metabolism Messengers for Gene Regulation

In ruminants, researchers’ main challenge is investigating the relationship between
metabolism and genes, tracking molecular pathways that primarily depend on an mRNA
transcript methodology [28,30,31]. However, the link between mRNA abundance in the
tissue and phenotypic or protein changes in tissue’s gene transcription is not simple because
the regulatory pathway for protein synthesis is a multi-stage journey [30–32]. Previous
studies have established the importance of investigating transcripts depending on the out-
put protein’s significance in regulating or controlling specific metabolic processes [23–36].
Similar works also argued the effect of nutrition on proteomic changes and the feasibility
of inducing them in ruminants, which are still scant and surpass the application of these
studies to rodent models [37].

As we will discuss later, studies in the literature have reported the potential of some
dietary components to affect the cellular metabolism and growth transactions differently
through the omics context [38–40]. However, such explanations are still unsatisfactory
because each dietary factor may have a multi-genomic fingerprint distinguishing some
metabolic activities linked to gene expression regulators [41–43]. Figure 1 presents the feed
characteristics and the potential induction of molecular changes.
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4. Tracking the Change Cascade across Gastrointestinal Tissues

Recent trends in feedomics have tracked changes at the feed level or the biochem-
ical level such as an intermediate metabolite, mapping the pattern for multiple mRNA
alterations [20,33,44–46]. Therefore, it was suggested that there are two paths for feed to
start the molecular change cascade. Firstly, the GIT changes are induced by the feed’s
physical or biochemical action on the rumen and intestinal tissue. Some physical changes
such as papillae development affect absorption, post-absorption, and various metabolism
functions [47]. For example, it was reported that 47.5 percent of the critical genes in the
rumen epithelial tissues of beef steers are involved in metabolic processes [48]. Secondly,
passing the baton to the volatile fatty acids (VFAs) results from the microbiota activity,
which acts as a metabolic mediator. The VFA action mainly activates or depresses the
specialized transcription factors (TFs) by binding to them (e.g., Figure 2).
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4.1. Transcription Factors (TFs)

TFs are functional cellular proteins that manage the gene expression process through
binding to target gene regulatory regions (silencer or promoter sequences) on the DNA,
sparking gene expression series, and controlling the gene transcription rate [39]. Transcrip-
tion factors are crucial but not the only mediators in the nutrient–gene scene. Recently,
reports have shone the spotlight on the nutrient, mediator, and TF complex that is re-
sponsible for launching a later phase of gene upregulation [49]. The second wave of gene
expression starts after the upregulation of subsequent TF transcription [49]. Previously,
it has been reported that transcription factors may harmonically work in networks of
transcription factors that respond to dietary factors [50].

There are various types of transcription factors such as peroxisome proliferator-
activated receptors (PPARs), liver X receptors (LXRs), and retinoid X receptors (RXRs).
The ligand-dependent nuclear receptors (LdNRs), such as PPARs (α, β, and γ), play a
central role in the ruminant model [51]. PPARs are known for their vital cellular functions,
such as fatty acid catabolism in skeletal muscle [52], regulation of glucose uptake [39],
adipogenic actions [53], and fatty acid oxidation [54]. They are mainly activated by fatty
acids, regardless of their source—either the diet or an intermediate metabolite as a ruminal
fermentation product [34,38].

The LXR family has major regulatory functions for production traits, such as the
two known isoforms α and β which are mainly activated by sterols and fatty acids [55].
For example, LXRα showed regulation capacity for SREBF1 (sterol regulatory element-
binding transcription factor 1) expression, a crucial transcription factor regulating milk fat
synthesis [55,56]. On the contrary, although it is known that retinoids (9-cis-retinoic acid)
are the primary activator of RXR, there are limited data on the potential nutrigenomic effects
of vitamin A and derivative retinoids such as 9-cis-retinoic acid through RXRα [57,58].

4.2. DNA Methylation

DNA methylation is a critical epigenetic mechanism that affects gene expression
for parent-of-origin traits by methyl group addition without any DNA sequence change,
affecting DNA activity. This process occurs by an enzyme group, “DNA methyltrans-
ferase (DNMT),” composed of five members: DNMT1, DNMT2, DNMT3A, DNMT3B, and
DNMT3L. These enzymes’ mode of action includes methyl group addition to the fifth car-
bon of cytosine (C) in CpG dinucleotides, forming 5-methylcytosine. The methylation rate
strictly correlates with the gene expression extent; hypermethylation of the promoter region
depresses the expression level, whereas a low degree of methylation or hypomethylation
refers to the active gene expression process [59,60]. Adaptation from parents to offspring
is a big part of this mechanism, especially adaptation to various environmental condi-
tions such as heat stress [61], a stimulus such as a change in maternal management [62],
physiological state [63], mastitis [64], and milk protein synthesis [65].

4.3. Histone Modification

Histone modification is based on physical conformation to chromatin structure reform
by adding or removing functional groups from the N-terminal tails of histone proteins
such as H2A, H2B, H3, and H4 [66–68]. This conserved protein modification also includes
lysine methylation, lysine acetylation, serine/threonine phosphorylation, and ubiquitina-
tion [69–71]. The majority of histone alterations can regulate the developmental style; the
modification in the promoter region results in depressing or activating genes corresponding
to different environmental stimuli, such as ultraviolet (UV) or other radiation and chemical
carcinogens [72].

4.4. Non-Coding RNA (ncRNAs)

The majority of mammalian genomic DNA is transcribed as non-coding RNAs (ncR-
NAs) [73], which are initially defined as “junk” [74]. The main effects of ncRNAs range from
interfering with mRNA stability to regulating mRNA transcription and translation [75,76].
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In ruminants, researchers have shown an increased interest in long non-coding RNAs
(lncRNA) and microRNAs (miRNAs), which are well-studied types of non-coding RNA.

4.4.1. Long Non-Coding RNAs (LncRNAs)

LncRNAs refer to RNA transcripts greater than 200 base pairs possessing no protein-
coding activity. They have been recently appreciated in physiological processes [77]. How-
ever, their examination among ruminants is still limited [27,28,78]. Although the precise
acts of lncRNAs are not explicit yet, lncRNAs are reported to have a potential regulatory
function in the bovine mammary gland through the pathway of lipid metabolism, fatty
acid synthesis [78], and calves’ intestinal growth [27].

4.4.2. MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are non-coding RNAs (18–25 nucleotides) that play an essential
role in many physiological processes. Moreover, it is estimated that miRNAs form between
1% and 5% of animal genes and are expected to control at least 60% of genes involved
in all cellular activities [79]. The interesting role of miRNAs presents through regulating
RNA readiness in the posttranscriptional phase and before translation, affecting protein
derivation [80–84]. Additionally, miRNAs are well known for their various significant
biological functions, such as adipose tissue regulation [85], proliferation and differentiation
of gastrointestinal tissue cells [45,82,86–88], mammary gland development [26,33,89–92],
and ovary development [85,93]. Therefore, studying the expression and distribution of
miRNAs has attracted interest across a wide range of tissues, aiming to interpret diverse
cellular mechanisms, particularly from a pathological perspective [94].

Furthermore, the expression and function of specific miRNAs can be modulated by nu-
trition. For example, in lactating goats, the expression of 30 miRNAs in the mammary gland
was modulated through macronutrient deprivation, where 14 miRNAs were upregulated,
and 16 miRNAs were downregulated [53].

Thus, the animal gut’s tracking of an inherited genetic change might take different
forms depending on the nutrient or the nature of the feed, shaping gene expression, DNA,
and histone modification.

5. Nutrition Influence in Tracking of Epigenetics

Among environmental factors, nutrition can induce desirable epigenetic effects [95–98]
for some traits such as fertility [99,100]. However, diet–epigenetic intervention, or the link-
age between nutrients and inheritable changes in DNA base pairs, primarily occurs through
chemical regulation mechanisms. As depicted in Figure 3, the potential interaction between
environmental conditions and animal status can alter the epigenetic style. Furthermore,
broad findings have focused on dietary components and various metabolites as signal
messengers for cellular activity in reproductive tissues and organs, as well as their signifi-
cant effect on reproductive efficiency [101–105]. Additionally, fertility–epigenetic studies
supported comprehensive nutritional management as an applicable tracking tool for poten-
tial reproduction improvements. In addition, it was reported that fatty acids, especially
polyunsaturated types, can alter reproductive performance during different life stages,
which is also linked to adipose tissue gene expression [106–114].

Conversely, some nutrient substrates may have a contradictory action, even though
VFAs play multiple roles across several physiological activities as energy sources and
significant transcription factor agonists [39]. Nevertheless, they have been shown to inhibit
histone deacetylase mechanisms [115]. Epigenetically, some modifications to DNA base
pairs do not change the DNA sequence itself but can shape transgenerational transcription
phenotypes (e.g., Table 1).
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Table 1. Dietary characteristics and components that have an epigenetic effect.

Factor Action Animal Type Reference

Maternal protein insufficiency DNA methylation Sheep [116]

Vitamin b12, folate, and methionine deficiency DNA methylation Sheep [117]

Rumen-protected DNA methylation Cows [118]methionine

Maternal undernutrition DNA methylation Sheep [119]

Maternal overnutrition Sex-specific DNA methylation Sheep [120]

Methionine supply Sex-specific DNA methylation Cows [121]

Undernutrition
MicroRNAs

Cows [122,123]Histone modifications
DNA methylation

Rumen-protected methionine DNA methylation Cows [124]

6. Fetal Programming in the Nutrigenomics Context

Maternal nutritional management has a significant impact, especially in late pregnancy
when colostrum is secreted: for instance, selenium supplementation and raised IgG levels
in the cattle colostrum [125]. Additionally, in pregnant sheep, changing hay-based diets to
corn-based diets in the second half of gestation significantly depressed the expression of
(H19, MEG8, PEG1, DLK1, and IGF2R) DNMT genes in the fetus muscles. The expression
of these genes was found to be associated with embryonic programming and muscle
growth [126].

Moreover, pregnant ewes supplemented with protected methionine in late gestation
produced lambs heavier than those produced by non-supplemented ewes [127]. Similarly,
treating dairy cows with dietary protected methionine in the late gestation upregulated
placental genes that participate in neutral AA and glucose transport, accompanied by higher
gene and protein expression of mTOR; this change was also associated with increased calf
birth weight [128]. Although some studies have reported that maternal nutrition during
late gestation could be a way to change the offspring’s miRNA in beef cattle, there are still
some questions about the correlations between colostrum’s miRNAs and their effect on
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offspring [129,130]. Maternal nutrition substantially affects offspring signaling pathways
via regulating transplacental transfers [131] or other diverse pathways [118,119,130,131].
Available nutrients mainly pass through a channel in “the placenta” for launching pathways
of signaling such as controlling amino acid transport, as is the case for the mammalian
target of rapamycin (mTOR) complex, or the peroxisome proliferator-activated receptor γ
(PPARγ), which is the leading influencer of lipid pathway regulation.

7. Nutrigenomics during Newborn Animal’s Life

Although the placenta serves as the primary fetus transfer channel for nutrients and
other signaling molecules that pass from mother to newborn, colostrum is thought to be
the first super source of active proteins, minerals, and vitamins. However, the placenta
barely delivers some bioactive molecules such as immunoglobulins, the chief molecules
that can hardly be transferred through it [132]. Therefore, colostrum is the sole source of
immunoglobulins that play a crucial part in an animal’s lifespan and passive immunity.
Previous studies highlighted growth promoters in colostrum such as insulin-like growth
factor (IGF-1) and hormones, focusing on colostrum management and its effects on gut
development in neonatal animals [133,134]. In the first week after birth, ingesting colostrum
could regulate the expression of T and B cell lineage-specific genes in the intestinal mucosa,
in addition to miRNAs and microbial colonization, which may control various mucosal
immune changes [135]. While delaying the first colostrum administration after birth
reduces IgG transfer in calves [136], calves that ingested colostrum had a higher serum
content of amino acids (leucine, valine, and glutamate), which are known for their health
benefits and immune expression induction, particularly in the colonic mucosal immune
system [137,138].

Among the various colostrum components, the higher content of miRNAs becomes an
interesting feature that distinguishes this newborn liquid feed from mature milk that can
pass through the milk in bovines [139]. Similarly, miRNA is notable for its immune participa-
tion effect on B and T cell differentiation, and interleukin production of macrophages [140].
However, colostrum’s miRNAs drew attention as an active biological component and were
remarkably nominated as signaling molecules communicating between the mother and her
offspring [141]. Many dairy performance fingerprints mentioned that bta-miR-574, which
regulates the leptin receptor, controls the development and lactation of mammary tissue
in dairy goats [33]. During lactation, the maternal dietary fat content is suggested to be a
fundamental controller of miRNAs in colostrum [141]. However, miRNAs related to lipid
metabolism may not be associated with changes in energy sources [142].

The above description is not the whole story of nutrigenomics; studies could not
fully discover a central role player—a rumen microbe—which contributes through meta-
transcriptomic or meta-proteomic factors. Thus, the rumen microbes may be the critical
responders for nutritional change and thus launch another wave of serial changes as we
are about to discuss.

The neonatal gut microbial community is a strategic partner in calf health and per-
formance. Since microbial colonization starts from the first days of neonatal animal life, it
interacts actively with the first diet in early animal life. Therefore, significant rumen devel-
opment changes can be found in an age-dependent manner [143]. Additionally, through the
microbe–host context, reports have proposed that rumen microbiome changes could regu-
late neonatal gut development [144]. Dietary promotion of a diverse microbial community
is mainly favored as an infection-preventive measure in this sensitive stage. It promotes
beneficial bacteria colonization in the small intestine, constraining pathogen microbes’ colo-
nization [145,146]. Newborn calves with a lower incidence of diarrhea and higher growth
rates tend to have a higher fecal prevalence of Faecalibacterium, a butyrate-producing
strain, and major acetate consumers, which intensify the energy content per mole of the
ruminal VFAs. Noteworthy, it plays a partial anti-inflammatory role in Faecalibacterium
prausnitzii due to the production of metabolites that further depress NF-kB activity and
IL-8 production [147].
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8. Feedomics and Nutrigenomics Strategies through Premature Diets

Pre-weaned feeding depends on colostrum, milk replacers, or even whole milk, which
passes directly to the abomasum due to the esophageal groove’s existence. As a result,
newborn ruminants’ reliance on liquid feeds may limit rumen development [18,148,149].
Furthermore, in the rumen epithelium, MCT1 is the major cellular monocarboxylate trans-
porter (such as SCFAs, lactate, pyruvate, and ketone bodies). MCT1 is mainly responsible
for transferring energy sources from the ruminal epithelial cells to the bloodstream and
maintaining the intracellular pH [148]. Therefore, MCT1 expression in neonatal ruminants
may be influenced by liquid feeds [149], intraluminal SCFA concentrations, or a lower pH
value [150]. In beef-producing calves, it was found that adopting a strategy of early wean-
ing (at two months of age) and introducing different diets (high dietary starch) resulted in
precocious adiposeness activity present in more intramuscular fat deposition, producing
higher-graded carcasses. These dynamics in skeletal muscle tissue activated by the dietary
change are mainly coordinated by PPARγ and CCAAT enhancer-binding protein alpha
(CEBPA) [151].

Various dietary alterations in premature animals can affect their upcoming production
patterns through genomic alteration. For example, starter enrichment (especially for protein
content) in neonatal Holstein calves elevated PPARA and cell proliferation gene expression
(INSR, FOXO1, AKT3) [152]. Additionally, this change was accompanied by upregulated
ketogenic genes (HMGCS2, HMGCL, and BDH1) simultaneous to fatty acid oxidation gene
(CPT1A, ACADVL) downregulation, mainly suggesting that early dietary enhancements
may be a promising route for promoting energy utilization in the ruminal cell, which results
in more significant ruminal development [152]. In addition, changes in the early feeding
strategy and style of newborn ruminants may influence rumen development and initiate
long-term consequences for lifetime productivity [141–156].

9. Feed Efficiency and Gene Expression

Productive, healthy animals require an adequate intake of tallied and well-balanced
diets. Caloric density and nutrient availability are among the controllers of metabolism
through gene expression by inducing changes in metabolic regulatory signals, mainly since
nutrient supply and hormonal status are strictly linked [103,157]. Moreover, low-feed-
intake animals are more vulnerable to several immune responses such as inflammation,
liver lesions, and bacterial infection [158]. Additionally, efficient animals are the valuable
producer’s target because, economically, this means less feed consumption and lower
production costs. Moreover, efficient animals showed further environmental benefits such
as lower ammonia emissions [159], 28% less methane [160], and 15% less manure [161].

Feed intake and residual feed intake (RFI) have been used as expressions for feed
efficiency measures. However, RFI is calculated as the difference between actual feed
intake and estimated feed intake on a maintenance and growth requirement basis. Low-
RFI animals are considered efficient, whereas high-RFI animals are considered inefficient.
Since it is based on energy intake and requirements contrary to the gain: feed ratio, RFI is
unrestricted by growth outlines, making RFI a more reliable feed efficiency measure. Re-
searchers highlighted RFI as a precursor to animal energy intake. This opened possibilities
to apply genomic selection to this trait, a moderately heritable trait (0.28 to 0.45), to identify
genes associated with various physiological pathways [162,163]. Correspondingly, feed
efficiency measures were integrated with selecting feed-efficient animals in time-saving,
accurate, and cost-efficient styles [158]. Suggested regulatory genes for energy production
linked to RFI were also associated with paracellular permeability, which assists various
nutrients’ and SCFAs’ transport [88,148]. In beef cattle, low-RFI animals showed higher
expression for a group of genes (TPI1, TECR, COX8A, SLC25A39, PKM2, and SUZ12) that
play a part in rumen epithelium morphogenesis through facilitating energy production,
needed for tissue development [48].

As feed intake changes, the ruminant GIT reacts differently to pH disruption. The
ruminal epithelium responds in various ways; as a short-run response, the molecular
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adaptation includes greater gene expression and proteins participating in VFA transport
actions [162,163]. Therefore, the Na+/H+ exchanger’s activity (such as SLC9A1) tends to
show elevated expression, which has been nominated as adaptive molecular-physiological
feedback for stabilizing pH through the rumen and omasal epithelium [164,165], and higher
expression of Na+/H+ exchangers linked to insulin signaling [166]. Then, physical adapta-
tion follows, through expanding absorptive surfaces by the morphological development of
the ruminal epithelium, such as hyperplasia and hypertrophy [10,167]. Some of the discus-
sions provided a molecular understanding of the ruminal epithelial absorptive mechanism
in feed-efficient animals. VFA uptake synchronized with absorption and upregulating
genes in the ruminal epithelium [168,169]. Upregulation of VFA absorption enhances
VFA uptake in ruminal epithelial cells, which results in an increased pH level through an
elevation in intracellular hydrogen ions to normalize the intracellular pH status [170,171].

10. Genomic Changes through Dietary Management

Feed restriction protocols have frequently been used to examine intake reduction’s
effect, its relation to mRNA abundance in GIT tissues, and potential feeding behavior
feedback. Previous studies have shown that feed restriction could downregulate specific
gene expressions such as α-lactalbumin (LALBA), which is mainly considered responsible
for expressing co-enzymes that participate in lactose synthesis, which explains the milk
production decline for restricted feed cows [172]. However, it was reported that during
short-term feed deprivation, GIT hormones’ (cholecystokinin and glucagon-like peptide 1)
concentration decreased due to mRNA abundance depression of these hormones in the
duodenum and ileum [37].

Several studies have shown that dietary energy might play an essential role in how dif-
ferent tissues use other nutrients. For example, dietary energy and propionate production
could help bovine mammary tissue make more protein [38]. In addition, previous studies
have shown that dietary fatty acids can change cellular behavior. For example, they can
change the miRNA regulation of ovine adipogenic genes [173] or make a specific gene more
active, which might be an inflammatory mediator such as L-selectin [174]. Furthermore,
controlled energy intake also confers ruminant advantages by triggering hepatic molecular
adaptations well ahead of parturition [175]. In this connection, intensifying the dietary
caloric content using unsaturated fats is more favorable than using oils. This preference
for saturated over unsaturated fats in ruminant diets is due to the higher digestibility
of saturated than unsaturated forms, which also depress milk fat [176]. It is noteworthy
that the abundance of mRNA transcripts in pregnant, repeat-breeding cows that were
fed n-3 PUFA-rich diets showed upregulated interferon-stimulated gene (ISG) expression,
accompanied by an increased preovulatory follicle (POF) size [21]. Additionally, n-3 PUFA
supplementation was correlated with suppressing the pulsatile endometrium secretion of
PGF2α that had anti-luteolytic activity [109], besides higher embryonic survival [177].

In the same vein, energy overfeeding of dairy cattle in the dry period has been linked
to transcriptional changes, disposing cows to fatty liver, and perhaps overall liver health
during the periparturient period [175]. Moreover, it has been conclusively shown that
higher-feed-intake beef steers showed significant increases in gene expression responsi-
ble for cell growth and proliferation, highlighting factors associated with glycolysis and
oxidative phosphorylation in rumen epithelial cells [48].

It is thought that cutting back on food could affect reproductive traits and growth
in the small ruminant model. In addition to gut morphology impairments, early feed-
restricted ewe lambs showed inefficient reproduction performance and retarded live body
weights [178]. Contrarily, this suggestion raises the negative consequence of the acidic
effects of high-energy diets that depress cell barrier capacity against various damaging
molecules. In addition, an energy-rich diet could weaken some rumen epithelial cellular
immunity functions by depressing the expression of some proteins such as HSP71 [18].

Furthermore, various proteins’ abundance and shifts in the genes expressed in the
ruminal epithelium showed a linkage to metabolite flux. This abundance, which may be
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related to changes in ruminal bacterial species [179], was closely related to the metabo-
lite profile, with significantly higher ruminal SCFA concentrations, particularly valerate
and butyrate [180–182]. Moreover, butyrate, the key influencer in epithelial barrier inte-
gration [183], also affects the expression of genes contributing to other SCFA transports
through the ruminal epithelium (SLC16A3, SLC26A3, and HIF1A) in sheep and (PAT1,
AE2, MCT1, and NHE2) in goats [184,185]. Noteworthy, short-chain fatty acids (propionate
specifically) could decelerate GH expression and prolactin (PRL) in dairy cow anterior
pituitary cells [186].

11. The Future of Research in GIT Mucosal Immunity

The previous sections integrated the diet–GIT development of neonates with mature
animals, linking it with transcriptomic changes. These things are essential to understanding
how animal performance can be affected by changes in nutrition through the gut.

The previous results highlighted that the mucosal epithelial architecture change could
result in antigen changes and various innate immune responses followed by a disturbance
in cytokine profiles. Therefore, diet–microbiota and host immune modulation interventions
against gastrointestinal pathogens can significantly optimize production performance and
minimize gastrointestinal disease [187]. Additionally, such interventions are mainly respon-
sible for early life stage stress [188], which significantly depresses the newborn animals’
growth performance and health. However, there is a knowledge gap about the mechanisms
involved, especially from the host side of this host–diet interaction. Additionally, novel
molecular approaches such as fecal microbiome RNA can enrich this research spot and
introduce a more deep interpretation of the dynamics of the cellular changes during the
different animal life stages [189].

Therefore, the mucosal immune functions have opened future questions about whether
the GIT mucosal immunity can be a starting point for re-evaluating nutritional management
and strategies, especially for ruminants.

12. Conclusions

Feedomics and nutrigenomics have revolutionized our previous knowledge about ru-
minant nutrition. The interaction between feeding and gene expression can be manipulated
for more benefits concerning animal health, production sustainability, and welfare. DNA-
and RNA-based technologies empower researchers to form a comprehensive picture of the
feed effect on biological changes, and metabolic and epigenetic mechanisms. Additionally,
feedomics and nutrigenomics studies revealed the critical role of the rumen microbiome
that is present mightily in many physiological-metabolic pathways. Additional factors
must be considered through feedomics studies, such as age, animal species, production
phase, and gut–host relations. Different dietary diet/gene connections between production
systems are complicated, especially with multi-gene expression changes. In all the studies
reviewed here, nutrigenomics insights support researchers in remodeling feeding practices
efficiently and isolating diet-induced changes from other causes of change such as age and
development. It is hoped that this review will help to build a bigger picture that can show
how each dietary component has a unique genomic response that can be used in future
feeding management strategies.
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