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A B S T R A C T   

We investigate the effect of the adoption of electric vehicles (EVs) on CO2 emissions using spatial 
econometric models and have three findings. First, there are spatial spillover effects of EV 
adoption on CO2 emissions, implying that the CO2 mitigation of a city depends on local sales of 
EVs and sales of EVs in neighboring cities. A 1% increase in the sale of EVs in a city can reduce 
CO2 emissions locally by 0.096% and by 0.087% in a nearby city. Second, EVs indirectly impact 
CO2 emissions through the substitution effect, energy consumption effect, and technological ef-
fect. The overall impact of EV adoption on CO2 emissions is negative. Finally, we demonstrate the 
moderating effect of urban energy structure on EVs’ CO2 emissions mitigation. A 1% increase in 
the proportion of renewable energy generation increases the decarbonization of EVs by 0.036%. 
These findings provide policy implications for the coordinated development of EV market and 
energy system.   

1. Introduction 

Internal combustion engine vehicles (ICEVs) bring great convenience to human society but also cause serious greenhouse effects. In 
2020, the global transport sector accounted for 22.3% of energy-related CO2 emissions and 15.5% of energy consumption1 [1,2]. To 
meet the important commitments made in the Paris Agreement as well as to deal with the greenhouse effects, the Chinese government 
has released a long-term plan to achieve the “carbon peak” by 2030 and “carbon neutrality” by2060.2 The transportation sector has 
emerged as a prominent decarbonization goal [3,4]. The Chinese government places a high value on electrifying the transportation 
industry to minimize CO2 emissions. To accelerate the market penetration of EVs, China’s policymakers have developed some in-
dustrial incentive policies since 2009 [1]. As a result, EV sales in China have increased from 480 in 2009 to 3.521 million in 2021 [5]. 

Although the widespread adoption of EVs is regarded as a feasible strategy for decarbonization, scholars are still divided on 
whether or not EVs reduce emissions. Whether EVs really contribute to decarbonization and gradually alleviate the greenhouse effects 
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is still a yet-to-be-verified question. Many scholars have attempted to answer this question [6–8]. Holland et al. [9] provided a 
perspective on externalities and studied regional differences in the environmental effects of EVs. The study also demonstrates that EVs 
may increase electricity consumption and “export” CO2 to neighboring areas through the electricity grid. Therefore, it is crucial to 
understand the inherent cause-and-effect relationship between EVs and CO2 emissions. 

To fill the gap in existing research, we use a spatial econometric model to study the environmental effect of EVs. Based on EV sales 
and CO2 emissions in 50 Chinese cities from 2010 to 2020, we empirically study the spatial spillover effect and influencing mechanisms 
of EV adoption on CO2 emissions. The substitution effect, energy consumption effect, and technological effect are three ways that EVs 
influence CO2 emissions. 

First, under the constraint of a purchase restriction policy for ICEVs, the widespread adoption of EVs, as the main substitute for 
ICEVs, can reduce the market share of ICEVs. Much literature has shown that an EV’s CO2 emission is significantly lower than that of an 
ICEV [10–13]. Therefore, we make a reasonable assumption that the increase in EV adoption can significantly reduce CO2 emissions by 
reducing the market share of ICEVs. The decline in ICEVs’ market share due to the increase in EV adoption is defined as the “sub-
stitution effect”. Second, Holland et al. [9] found an interesting conclusion: EVs “export” CO2 to neighboring areas through the 
electricity grid. Although the CO2 emissions per EV are lower than that of an ICEV, driving EVs still consumes electricity. As EV sales 
increase, the residents’ electricity consumption significantly increases. The literature shows that to date, more than 50% of China’s 
electricity is still generated by fossil fuel combustion [14], and the combustion of fossil fuels is the key factor producing the greenhouse 
effect. Consequently, the widespread adoption of EVs significantly increases CO2 emissions by increasing the consumption of fossil 
fuels. The expansion of fossil fuel usage is defined as the “energy consumption effect”. Third, the widespread adoption of EVs is 
conducive to promoting transportation technology innovation. The increase in EV sales also improves the financial performance of 
manufacturers. Using the revenue from the sales of EVs, manufacturers can further boost R&D investment to enhance the level of 
transportation technology. As transportation technology advances, urban traffic congestion will be lessened, and vehicles’ exhaust 
emissions will decrease as a result [15]. Furthermore, the advancement of transportation technologies may also have a spatial spillover 
effect. For example, airplanes, railways, and high-speed railways can improve connectivity between different regions and improve 
transportation efficiency. The overall effect of EVs on CO2 emissions is unknown. Therefore, an empirical study of the aforementioned 
mechanism is still required. 

The marginal contribution of this study is as follows: First, we study the effect of EV adoption on CO2 emissions, which provides a 
meaningful examination of the causal relationships between EVs and CO2 emissions, as well as confirms the existence of externalities in 
the environmental effects of EVs. Our findings not only provide new evidence for the argument on the environmental effects of EVs but 
also provide a theoretical basis for policymakers to adjust and optimize the industrial layout of EVs. Second, based on the substitution 
effect, energy consumption effect, and technological effect, the feasibility path of EV diffusion emission reduction is explored. More 
policies can be formulated to accelerate the diffusion of EVs and decarbonization. Third, by constructing the interaction term between 
EVs and energy structures, we demonstrate the moderating effect of urban energy structures on the CO2 emissions mitigation effect of 
EVs. This finding has important policy implications for the coordinated growth of the EV market and energy structure. Finally, by 
grouping regression (cities with net power generation or net power consumption), we demonstrate that urban energy consumption can 
“export” CO2 through the electricity grid. Based on this, by constructing the interaction term between the proportion of renewable 
energy generation and urban power consumption, we demonstrate that a higher proportion of renewable production can offset the 
energy consumption effect, which also means that the “exported” CO2 can be reduced by optimizing the energy structure. This finding 
not only offers a reasonable explanation for optimizing the distribution of the electric power grid and EV industry but also provides a 
new perspective for the coordinated growth of the EV market and energy structure. 

The rest of our study is structured as follows: The related literature is reviewed in Section 2 along with the literature’s gaps. Section 
3 describes our empirical strategy and data. Section 4 presents the empirical results and analysis of this paper. The moderating effect 
and influence mechanism of EV adoption on CO2 emissions are further discussed in Section 5. Section 6 presents the conclusion and 
policy implications. 

2. Literature review 

2.1. Spatial spillover effects of CO2 emissions 

Many researchers have proven that CO2 emissions have a regional spillover impact. To illustrate the dynamic spatial spillover 
impact of EV industry regulations on CO2 emissions, Zhao et al. [16] built a dynamic spatial panel data model. Fang et al. [17] assessed 
the CO2 emissions of 282 Chinese cities from 2004 to 2018 using data on nighttime lighting, along with the CO2 emissions efficiency 
(CEE). Their findings demonstrate the sizeable and advantageous geographical spillover effects of CEE in Chinese cities. When Liu et al. 
[14] calculated the CO2 emissions efficiency of 30 Chinese provinces, they discovered that the provinces with high or low CO2 
emissions efficiency tend to cluster over time and that the spatial distribution of CO2 emissions efficiency changes to be ordered. Based 
on data from China’s provinces from 2000 to 2018, Huo et al. [18] explored the network structure features of CO2 emissions in the 
building industry. They discovered that China’s building CO2 emissions show the network structure. The significance and durability of 
the spatial linkages steadily increased between 2000 and 2018. 

2.2. Impact of the transport sector on CO2 emissions 

Although many scholars have studied the effect of the transport sector on CO2 emissions, there is no agreement in the research 
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about how much emissions are reduced by EVs [19]. 
First, some scholars have studied the negative impact of ICEVs and the positive impact of EVs on decarbonization. On the one hand, 

ICEVs will hinder decarbonization. For instance, to examine transportation-related energy consumption and CO2 emissions, Yin et al. 
[20] used the comprehensive energy model that is nested in the Global Change Assessment Model (GCAM). According to this research, 
the transportation industry will continue to be highly dependent on fossil fuels and future transportation energy consumption and CO2 
emissions will rise quickly. According to Li et al. [10], urban passenger transport is now a significant contributor to the consumption of 
energy and CO2 emissions due to the continued rise in automobile ownership caused by economic growth and urbanization. Böhm 
et al. [21] used GPS traces and a microscopic model to analyze the emissions of four air pollutants. They found that the emissions across 
the vehicles and roads are well approximated by heavy-tailed distributions, and as a result, they identified the existence of gross 
polluters—vehicles with the highest emissions—and grossly polluted roads—which are subject to the highest emissions. Ten gasoline, 
four diesel, and six fully hybrid light-duty passenger vehicles (LDPVs) were examined by He et al. [22] in Macao, China, using portable 
emissions measuring systems (PEMS). Due to the deliberate removal of after-treatment systems, they discovered that diesel vehicles are 
the study’s highest polluters. HEVs, on the other hand, could reduce carbon emissions by about 30% (i.e., by consuming less fuel and 
producing less CO2). 

On the other hand, EVs are conducive to decarbonization. For instance, Zheng et al. [23] discovered that 682,047 battery electric 
vehicles (BEVs) sold in the five provinces between 2011 and 2017, totaling 18.3 billion kilometers driven by EVs. 3.0 TWh of electricity 
was used, which decreased the amount of CO2 emitted by 611,824 tons and the amount of gasoline used by 1.6 billion gallons. Ac-
cording to Gan et al. [24], PHEVs have a significant deal of potential to decarbonize the transportation industry. Even though all future 
expansions of the electric sector’s capacity will be powered by fossil fuels, Ou et al. [25] determined that widespread adoption of EVs 
would reduce net CO2 emissions until 2050. Best et al. [26] used a life-cycle evaluation and discovered that under most circumstances, 
electric cars emit less pollution than ICEVs. In a life cycle approach, Yu et al. [27] estimated the GHG emissions of powertrain cars with 
a focus on the effects on energy and the environment. The findings demonstrated that compared to ICEVs, all electric cars (EVs)—of 
which BEV is the least—have lower life-cycle total energy and GHG emissions. Li et al. [28] found that promoting the use of electric 
vehicles contributes to a reduction in national-level nitrogen oxide emissions, as well as greenhouse gas and PM2.5 emissions in most 
provinces of China. Based on a suite of scenarios with a chemistry transport model, Schnell et al. [29] found that the electrification of 
heavy-duty vehicles (HDVs) contributes to sustained improvements in air quality, specifically in reducing NO2 and fine particulate 
matter (PM2.5) pollution. Based on the integrated assessment model combining the regional air pollution model WRF-Chem and 
epidemiological concentration-response relationships, Peng et al. [30] found that the electrification of the transportation sector can 
lead to significant health benefits. 

Second, based on various models of engineering technology, some scholars have estimated the negative effect of EVs on the 
environment. To estimate the CO2 from the producing vehicle, Yang et al. [13] used the life cycle assessment (LCA). Their findings 
showed when compared to ICEVs, BEVs and PHEVs reduced CO2, VOC, and NOX emissions but increased PM2.5 and SO2. Qiao et al. 
[31] discovered that, in the context of China, BEV manufacturing has emissions of greenhouse gases and energy that are around 50% 
greater than those of an ICEV. Experimental research on exhaust and non-exhaust emissions from gasoline and diesel ICEVs was 
conducted by Woo et al. [32]. They discovered that when just main exhaust PM emissions were taken into account in cars fitted with 
non-asbestos organic (NAO) brake pads, the total PM10 of the EVs was 10–17% higher than those of the gasoline ICEVs and diesel 
ICEVs. By analyzing the age and distribution of NEVs, Yu et al. [27] built on the prior research. They discovered that the CO2 emissions 
of BEV and PHEV total life cycle are greatly increased by the short lifespan, making them much higher than those of conventional cars. 
Using portable emissions monitoring devices, McCaffery et al. [33] discovered that compressed natural gas vehicles and liquefied 
petroleum gas vehicles had lower emissions, while conventional diesel engines still exhibited significant distance-specific NOx ben-
efits. Shen et al. [34] found that the electrification of transportation brings significant benefits to national energy security, but the 
climate benefits remain uncertain. 

Finally, previous studies had explored the effect of transportation infrastructure on decarbonization. For instance, Ensslen et al. [4] 
found that customized smart charging services are a persuasive technique to lower CO2 emissions unique to EVs as CO2 emissions 
intensities alter over time according to the electric power networks. Based on empirical information from the operations of ride-hailing 
services, Li et al. [35] modeled the travel and charging patterns of shared autonomous electric vehicles (SAEVs). According to their 
research, shared autonomous electric cars often emit less CO2 per mile than contemporary ICEVs under the Californian power system. 

2.3. Research gaps 

Based on the above studies, first, many studies have focused on the positive effect of EVs on CO2 emissions and the spillover effect of 
CO2 emissions, which ignores discussing the possible channels of EVs increasing CO2 emissions. Second, although many studies have 
estimated the negative effect of EVs on the environment based on various models of engineering technology, there is still no study on 
the causal relationship between EVs and CO2 emissions based on economic theories and methods, especially the channels through 
which EVs may increase CO2 emissions. Therefore, it is of great importance to reveal the internal impact mechanism between EVs and 
CO2 emissions based on the research paradigm of economics. Based on the substitution effect, energy consumption effect, and tech-
nological effect, this paper studies the negative, positive, and net effects of EV adoption on CO2 emissions. Third, the research objective 
of most scholars is CO2 emissions. The dependent variable we used is CO2 emissions intensity with more economic significance. Fourth, 
scholars often ignore the synergy between EVs and energy structure when studying the decarbonization effect of EVs. By constructing 
the interaction term between EVs and energy structures, this paper demonstrates the moderating effect of urban energy structures on 
the CO2 emissions mitigation effect of EVs. This paper also demonstrates that more optimized energy structures will be conducive to 
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mitigating CO2 “exported” by EVs through the electricity grid. 

3. Empirical strategy and data 

3.1. Variable and data 

We employ balanced panel data from 50 Chinese cities from 2010 to 2020 for empirical analysis. Transportation-related CO2 
emissions intensity (CO2) is the core dependent variable of this study. It is measured by the ratio of CO2 emissions to transportation- 
related output values [15,36]. To further study the geographic distribution of China’s CO2 emissions, we draw distribution maps of 
China’s CO2 emissions in 2010, 2015, and 2020, respectively. These maps are shown in Fig. 1. In 2010, the CO2 emissions of the 
southeast coastal and northwest cities were relatively high. While CO2 emissions in the west of the southeast coastal cities decreased 
significantly in 2015. Finally, in 2020, except in a few cities, for example, Beijing and Shanghai, other cities’ CO2 emissions have 
decreased to a low level. The CO2 emissions data is obtained from the China Emissions Accounts and Datasets (CEAD, 2022). As a core 
independent variable, the data on EV sales is obtained from the Statistical Yearbook of China’s Energy Conservation and Electric 
Vehicles 2011–2021. 

Furthermore, related literature also shows that CO2 emissions are affected by the following variables [36]. The ratio of foreign 
direct investment to GDP serves as a proxy for the degree of openness (Open). Open is measured by the proportion of foreign direct 
investment to GDP. The energy consumption level (ES) is measured by 10,000 tons of coal consumption. The ratio of the tertiary 
sector’s production value to that of the secondary industry serves as a proxy for industrial structure upgrading (Ind). The ratio of the 
total urban population to the urban area is used to measure population density (Density). The level of urbanization (Urban) is measured 
by the ratio of urban residents to the total local population. The data for GDP, Open, Ind, and Density is derived from the China City 
Statistical Yearbook 2011–2021. The data for ES is derived from the statistics bureaus of Chinese cities. We logarithmic all the variables 
except Urban. Table 1 shows the descriptive statistics of variables. 

3.2. Econometric model 

3.2.1. Spatial autocorrelation analysis 
Before employing spatial econometric methods, we first examine whether there is a spatial dependency between data. Spatial 

autocorrelation is defined as those regions with similar positions having similar variable values [37]. An overall measure of spatial 
autocorrelation is provided by Global Moran’s I (Moran, 1950). Moran’s I is given by: 

I =
∑n

i=1
∑n

j=1ωij(xi − x)
(
xj − x

)

s2
∑n

i=1
∑n

j=1ωij
(1)  

where s2 =

∑n
i=1

(xi − x)
n ; ωij is the (i, j) element of the spatial weight matrix; 

∑n
i=1

∑n
j=1ωij is the sum of the weights of the space; n is the 

number of cities; xi and xj are the CO2 emissions of the city i and j. 
According to LeSage et al. [38], the choice of a spatial weight matrix significantly influences the test for spatial autocorrelation. 

Thus, based on our data and previous literature analysis, we employ a geographical weight matrix based on economic distance. To be 
more specific, we first analyze the Shp-file at the city level in China to obtain longitude, latitude, and other city-specific information. 
Second, we match the latitude and longitude with the data used in this paper. Finally, based on the gross product of the transportation 
sector, we construct a spatial weight matrix of economic distance through STATA 16. Global Moran’s I, however, only assesses the 

Fig. 1. Spatial-temporal Trends of CO2 emissions intensity from China’s Transport Sector in 2010 (Panel A), 2015 (Panel B), and 2020 (Panel C).  
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general distribution and trends of CO2 emissions and does not provide details on the geographical connection of specific units [15]. The 
degree of spatial autocorrelation of specific locations can be determined using the local indicator of spatial association (LISA) [39]. 
LISA is given by: 

LISAi =
xi − x

s2

∑n

i=1
ωij(xi − x) (2)  

where LISAi is the local Moran’s I for the city i. In the LISA spatial pattern, there are four different types of clusters: the homogeneous 
low-low and high-high clusters (L-L and H–H), as well as the heterogeneous high-low and low-high outliers (H-L and L-H). 

3.2.2. Construction of spatial effect model 
The degree of economic growth and energy structure in various areas of China varied significantly, which offered a suitable 

experimental setting for researching the regional spillover impact of CO2 emissions. To be more specific, the GDP of the southeast 
coastal regions of China is higher than that of the central and western regions. Second, China’s power generation industry is clustered 
in the western cities. However, electric consumption is clustered in the central and eastern cities. As a result, the spatial interaction 
effect is not taken into account by the typical econometric model, which might result in a biased model configuration and biased 
conclusions. The assumptions of geographical irrelevance and homogeneity are refuted by spatial econometrics [16]. Therefore, we set 
up the following spatial econometric model: 

ln CO2it =α + β ln EVit +
∑7

i=2
βi ln Xit + εit (3)  

In equation (3), CO2it represents CO2 emissions of each city in year t; EVit is the sales of EVs in each city in year t; Xit is the control 
variable matrix; εit is a random disturbance. Specifically, by introducing the spatial weight matrix of economic distance, we employ the 
spatial fixed effect for spatial econometrics and make a comparative analysis of the above three methods.3 The specific three 
econometric models are as follows: 

ln CO2it =α1 + γ
∑n

j=1
WijCO2it + β ln EVit +

∑7

i=2
βi ln Xit + αi + εit (4)  

In equation (4), γ represents the spatial correlation coefficient; Wij represents spatial matrix; WijCO2it represents spatial lag term; αi 

represents spatial fixed effects; EVit represents the core explanatory variable. The SAR is to test the spatial correlation of the 
explanatory variables, i.e., whether neighboring cities’ CO2 emissions can affect those of the local city. 

⎧
⎪⎪⎨

⎪⎪⎩

ln CO2it = α2 + β ln EVit +
∑7

i=2
βi ln Xit + αi + uit

uit = λ
∑n

j=1
Wijuit + ϵit

(5)  

In equation (5), λ represents the error term’s coefficient; Wij represents the spatial error term; ϵit represents random error. The 
meanings of other variables are the same as those in the above equation. The purpose of SEM is to test whether there is spatial de-
pendency in the error term, i.e., whether the error term has a spatial spillover effect. However, the disadvantages of SAR and SEM are 
that the spatial effect must be explained not only by endogenous variables and error terms but also by the interaction of endogenous 
and exogenous variables. The SDM can make up for the above shortcomings, and it is given by: 

ln CO2it =α3 + γ
∑n

j=1
WijCO2it + θ

∑n

j=1
Wij ln EVit +

∑7

i=2
βi ln Xit + αi + εit (6)  

In equation (6), θ represents the spatial correlation coefficient. 

Table 1 
Descriptive statistics of variables.  

Variable N Mean Std Min Max 

LnCO2 550 − 9.055651 0.8479215 − 11.3740 − 6.71603 
LnEV 550 6.50396 2.864217 0.693147 11.70439 
LnGDP 550 8.360369 1.007169 5.652026 10.57038 
LnOpen 550 − 1.14234 1.218428 − 8.08187 0.870852 
LnES 550 5.930918 0.925420 3.888691 8.313852 
LnInd 550 0.192983 0.460780 − .867916 1.677097 
LnDensity 550 6.347876 0.566769 5.067646 8.252316 
Urban 550 0.705812 0.129014 0.386 1  

3 SDM: Spatial Durbin Model; SEM: Spatial Error Model; SAR: Spatial Autoregressive Model. 
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4. Empirical results and analysis 

4.1. Spatial autocorrelation test 

We check for spatial dependencies between the data using equation (1) and the model analysis in Section 3.2.1. The results of the 
test are displayed in Table 2. We find that there is a stronger autocorrelation in Urban CO2 emissions, as shown by the fact that all 
results in Table 2 are positive and pass the significance test of 1%. In addition, the results in Table 2 also prove the necessity of 
constructing and using a spatial econometric model. 

Based on equation (2), we use the software STATA 16 to estimate the local Moran’s I of CO2 emissions from the transportation 
sector in 50 cities from 2010 to 2020. The Moran scatter is displayed in Fig. 2. In Fig. 2, the first and third quadrants indicate that the 
high CO2 emissions of the region are surrounded by high CO2 emissions and the low CO2 emissions of the region are surrounded by low 
CO2 emissions, respectively. Specifically, in 2010, 16 of the 50 cities are in the first quadrant, indicating that the CO2 emissions of these 
cities show a high-high cluster. 14 of the 50 cities are in the third quadrant, showing a low-low CO2 emissions cluster. In 2015, the 
number of high-high CO2 emissions clusters in the first quadrant decreased to 14, and the number of clusters with low-low CO2 
emissions in the third quadrant increased to 18. By 2020, the number of high-high CO2 emissions clusters in the first quadrant had 
decreased to 11, and the number of low-low CO2 emissions clusters in the third quadrant had increased to 21. In the first and third 
quadrants, as shown in Fig. 2, there are more than 65% of the cities. Consequently, this result still proves that it is feasible and scientific 
for us to use spatial econometric models. Moreover, we find that over time (2010–2020), the spatial cluster of CO2 emissions gradually 
mitigated, and CO2 emissions have been alleviated to some extent. 

4.2. The test of model 

This paper uses Hausman, LR, and LM tests to test the econometric model taking into account spatial effects to choose the right 
model, as shown in Table 3 [14,16]. First off, the LM test result suggests that the spatial econometric model should be used in this study 
based on the geographic weight matrix of economic distance, which is also consistent with the findings of the spatial autocorrelation in 
Section 4.1. Second, the LR spatial lag test demonstrated that the SDM used in this study is robust since it does not degenerate into SAR 
or SEM. Moreover, the Hausman test results also indicate that the random effects model is rejected. Finally, the temporal and spatial 
double fixed effect panel model should be used, according to the findings of the LR test. 

4.3. The total spatial effects 

We employ the SDM to study the spillover effect of EV sales on CO2 emissions in light of the findings in Section 4.2. Our baseline 
regression results based on the economic distance matrix are presented in Table 4. Table 4 shows that all the remaining variables 
except LnOpen and LnUrban are significant at the 1% level. To be more specific, the results of model (1) total effect show that LnEV has a 
significant inhibitory effect on CO2 emissions, which means that the net effect of the substitution effect, energy consumption effect, and 
technological effect is negative. Those results are also consistent with previous research [40,41]. 

As far as the control variables are concerned in model (1), LnGDP fails to pass the significance test, proving that the effect of GDP on 
CO2 emissions is not significant. This result does not agree with earlier research. The following are some possible explanations: GDP is a 
very macro indicator, which can affect the three channels of influence we mentioned. Firstly, many studies have shown that the GDP 
will significantly and rapidly increase energy consumption [42], which will increase CO2 emissions. Secondly, the increase in GDP will 
promote the level of science and technology, which will decrease CO2 emissions. Thirdly, the effect of GDP on the “substitution effect” 
may not be very obvious due to the complex impact mechanism. As a result, the effects of GDP on energy consumption and technology 
may offset each other. The estimated coefficient of Open is not significant, indicating that higher FDI over the study period is not 
expected to significantly increase CO2 emissions. ES has a significant positive effect on CO2 emissions. This result is also consistent with 
the fact that energy consumption will directly lead to an increase in CO2 emissions. LnInd’s coefficient is − 0.750 at a 1% level, 
indicating that the larger the ratio of the tertiary sector to the secondary sector, the lower the CO2 emissions. Population density exerts 
a positive effect on CO2 emissions. The result is in line with our expectation, because the higher the population density, the higher the 
overall emissions from commuter traffic. Urban also has a positive impact on CO2 emissions, because urbanization is often accom-
panied by industrialization, which increases energy consumption. 

4.4. The direct and indirect spatial effects 

The spatial spillover effect cannot be demonstrated in the SDM using point estimates. The indirect impacts can be thought of as a 
spatial spillover effect, and partial differentiation should be employed to estimate both the direct and indirect effects [10]. The results 
of direct and indirect effects are shown in models (2–3) of Table 4. The estimated coefficients of LnEV are both negative (direct effect: 
− 0.096; indirect effect: − 0.087). On the one hand, a 1% increase in EV sales in a city reduces local CO2 emissions by 0.096%. On the 
other hand, significant negative spillovers indicate that a 1% increase in EV sales in the surrounding city will reduce the CO2 emissions 
of the local city by 0.087%. The diffusion of EVs will not only benefit the local environment but also help improve the environment of 
nearby cities. A possible reason is that neighboring cities with high EV market penetration affect the environmental quality of local 
cities through advanced technology diffusion. In other words, the market diffusion of EVs in adjacent cities promotes the spillover of 
transport technology and transport efficiency, thereby significantly mitigating local CO2 emissions. 
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As far as control variables are concerned in models (2–3), the direct and indirect effects of the GDP offset each other, which 
validates the reasons mentioned above. The explanation of the level of opening and population density is the same as in Section 4.3. In 
addition, we find an interesting result, i.e., the coefficient of energy consumption in the model (2–3). This result suggests that an 
increase in energy consumption in nearby cities increases the CO2 emissions of local cities, which validates the conclusion of previous 
studies [9], i.e., EVs may “export” CO2 through the electricity grid. The direct impact and indirect effects of industrial structures are 
both negative. This finding shows that local industrial upgrading will be conducive to decarbonization. The positive spillover effect of 
industrial upgrading in neighboring regions may be the result of the coordinated development of the industrial structure. The in-
dustrial upgrading of neighboring cities can provide an advanced development mode and management for neighboring cities, and a 
model of coordinated development with the industrial upgrading itinerary of local cities. The direct impact of the level of urbanization 
is negative, but the indirect impact of the level of urbanization is positive. This finding suggests that the more urbanized neighboring 
cities are, the more energy they consume, increasing the power generation load of the local cities because some of this energy is 
generated locally and some of it is generated in nearby cities. 

Table 2 
Spatial autocorrelation test——Global Moran’s I.  

Year Moran’ s I Z P 

2010 0.308 2.667 0.008 
2011 0.362 3.100 0.002 
2012 0.372 3.189 0.001 
2013 0.425 3.645 0.000 
2014 0.420 3.586 0.000 
2015 0.383 3.289 0.001 
2016 0.367 3.156 0.002 
2017 0.365 3.158 0.002 
2018 0.280 2.479 0.013 
2019 0.261 2.316 0.021 
2020 0.325 2.844 0.004  

Fig. 2. Local Moran’s I and Moran’s scatter in 2010 (Panel A), 2015 (Panel B), and 2020 (Panel C).  

Table 3 
The results of model identification.  

Test method Test results P-value 

Hausman 88.63 0.000 
LR- space fixed 23.99 0.006 
LR- space fixed 976.79 0.000 
LR-SDM-SEM 41.08 0.000 
LR-SDM-SAR 41.02 0.000 
LM-Lag 11.764 0.001 
LM-Error 6.360 0.012 
Robust LM-Lag 5.688 0.017 
Robust LM- Error 4.231 0.040  
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We also carry out robustness tests based on various spatial matrices. The regression utilizing the spatial weight matrices for 
geographic adjacency and distance is robust. 

5. Further discussion 

5.1. The influence mechanism of EV sales on CO2 emissions 

5.1.1. Mediating model 
Here, we continue to examine the impact mechanism of EV adoption on CO2 emissions, building on the study from Section 1 of this 

paper. Specifically, we contend that rising EV sales have an impact on CO2 emissions by impacting substitution effects, energy con-
sumption effects and technology effects. Accordingly, the market share of EVs (LnShare), electricity consumption in cities (LnElectric),5 

and the quantity of transportation-related patent applications (LnPatent) are used as proxies for the substitution impact, energy use 
effect, and technological effect. We use the following mediation effects equations (7)–(9): 

⎧
⎪⎪⎨

⎪⎪⎩

ln Shareit = α1 + ∂1 ln EVit +
∑7

i=2
βi ln Xit + εit

ln CO2it = α + ρ1lnShareit + σ1 ln EVit +
∑7

i=2
βi ln Xit + εit

(7)  

⎧
⎪⎪⎨

⎪⎪⎩

ln Electricit = α2 + ∂2 ln EVit +
∑7

i=2
βi ln Xit + εit

ln CO2it = α + ρ2 ln Electricit + σ2 ln EVit +
∑7

i=2
βi ln Xit + εit

(8)  

⎧
⎪⎪⎨

⎪⎪⎩

ln Patentit = α3 + ∂3 ln EVit +
∑7

i=2
βi ln Xit + εit

ln CO2it = α + ρ3llnPatentit + σ3 ln EVit +
∑7

i=2
βi ln Xit + εit

(9)  

5.1.2. The influence mechanism of EV sales on CO2 emissions 
Table 5 displays the regression results of the mediating effect between EV sales and CO2 emissions. In models (1), (3), and (5), the 

coefficients of LnEV in models (1), (3), and (5) all are significantly positive, indicating that EV sales have a positive impact on the 
substitution effect, energy consumption effect, and technological effect. An increase in EV sales by 1% can increase the market share of 
EVs by 0.0136%, electricity consumption in cities by 0.041%, and the quantity of transportation-related patent applications by 
0.217%. Accordingly, the market diffusion of EVs has the most obvious effect on the substitution effect. In addition, the coefficients of 
LnShare and LnPatent in models (2), (4), and (6) all are significantly negative, while LnElectric is significantly positive. This finding 
shows that the market share of EVs and patent applications in the transportation sector can significantly decrease CO2 emissions, while 
electricity consumption in cities can significantly increase CO2 emissions. Specifically, the widespread adoption of EVs can hinder the 

Table 4 
Spatial spillover effect of EV adoption on CO2 emissions.41  

Variable SDM 

Total effect (1) Direct effect (2) Indirect effect (3) 

LnEV − 0.183*** − 0.096*** − 0.087** 
(-3.43) (-3.92) (-2.42) 

LnGDP − 0.008 − 0.534*** 0.526*** 
(-0.05) (-7.98) (4.14) 

LnOpen − 0.021 0.011 − 0.032 
(-0.49) (0.51) (-0.84) 

LnES 0.616*** 0.413*** 0.203*** 
(11.35) (3.96) (2.60) 

LnInd − 0.750*** − 0.452*** − 0.297** 
(-4.15) (-7.09) (-1.99) 

LnDensity 0.827*** 0.357*** 0.471*** 
(4.55) (6.17) (3.21) 

Urban 0.731*** 0.313* 0.418** 
(3.42) (1.96) (2.37) 

Observations 550 550 550 
R2 0.772 0.772 0.772  

5 The electricity consumption data mentioned here refers to direct emissions, specifically measured in billions of kilowatt-hours (GWh) for each 
city. This measurement unit represents the amount of electricity consumed by the respective cities. 
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market diffusion of ICEVs, which is conducive to reducing CO2 emissions in the transportation sector; higher energy consumption will 
significantly increase the use of fossil fuels, which will increase CO2 emissions; furthermore, some research has found that technology 
advancement is a significant factor influencing CO2 emissions, and it has been regarded as a potential strategy for reducing China’s 
present CO2 emissions [43]. 

According to the above analysis, we can confirm that an indirect effect of EV sales on CO2 emissions exists. In other words, the 
increase in EV sales affects CO2 emissions by affecting the substitution effect, energy consumption effect, and technological effect. 
Although the increase in EV sales increases CO2 emissions by increasing electricity consumption, the results of the benchmark 
regression show that the overall impact of EV sales on CO2 emissions is negative. As a result, the effects of substitution, energy 
consumption, and technology interact, and eventually, the positive and negative effects partially cancel each other out. Additionally, 
the energy consumption effect is exceeded by the sum of the substitution effect and the technological effect. As a result, the market 
share of EVs, electricity consumption in cities, and the quantity of transportation-related patent applications all indirectly contributed 
to the achievement of the CO2 emissions reduction objective. 

5.2. The moderating effect of energy structure on CO2 emissions 

5.2.1. Moderating effect 
The conclusion of 4.4 shows that the increase in EV sales in neighboring cities will reduce local CO2 emissions, i.e., the “export” of 

EVs is not CO2, but a decarbonization effect; the increase in energy consumption in nearby cities will increase local CO2 emissions, i.e., 
the “export” of energy consumption is CO2. Therefore, in Section 5.2, we will continue to explore the evidence and optimization 
measures on the “export” decarbonization effect of EVs and the “export” CO2 of energy consumption from the perspective of energy 
structure. 

Here, we further analyze the moderating effect of energy structure on CO2 emissions. First, we find that there are big differences in 
the energy structure between different cities in China. There are significant differences in the proportion of power generation fuels in 
different regions. In addition, related studies show that energy structure is the industrial basis for CO2 emissions [14]. Cities with 
different energy structures have different CO2 emissions industry bases. Therefore, we take the proportion of renewable energy 
generation (LnGenerate) as a proxy variable for energy structure to analyze the moderating effect of energy structure on the effect of EV 
sales on CO2 emissions. Specifically, we construct the interaction term (LnEV × LnGenerate) between the renewable energy generation 
ratio and LnEV and add it to the panel regression model. The regression results of model (1) in Table 6 show that the moderating effect 
is not significant. 

Then, we analyze the possible reasons: on the one hand, China’s power generation structure shows the characteristics of “power 

Table 5 
The Influence mechanism of EV sales on CO2 emissions.  

Explained variables: LnCO2 in columns (2), (4), and (6), while LnShare, LnElectric, and LnPatent in columns (1), (3), and (5) respectively 

Variable Substitution effect Energy consumption effect Technological effect 

(1) (2) (3) (4) (5) (6) 

LnEV 0.0136*** − 0.033*** 0.041*** − 0.028* 0.217*** − 0.037** 
(9.29) (-2.94) (3.73) (-1.69) (13.73) (-2.12) 

LnShare  − 0.707***      
(-3.05)     

LnElectric    0.317***      
(3.86)   

LnPatent      − 0.132***      
(-4.54) 

LnGDP 0.003 − 0.663*** 0.640*** − 0.657*** 1.024*** 0.421*** 
(0.01) (-10.05) (14.39) (-9.93) (5.76) (4.25) 

LnOpen 0.009*** − 0.651** 0.032*** − 0.010 − 0.038 − 0.071*** 
(3.5) (-2.18) (2.82) (-0.56) (-1.29) (-3.64) 

LnES − 0.248 0.651*** 0.154*** 0.554*** 0.143* 0.393*** 
(-1.64) (10.42) (3.97) (5.96) (1.67) (8.42) 

LnInd 0.044*** − 0.620*** 0.206*** − 0.639*** 0.652*** − 0.671*** 
(4.28) (-9.57) (5.19) (-9.94) (4.24) (-9.59) 

LnDensity 0.442 0.299*** 0.408*** 0.292*** 0.477 − 0.337*** 
(0.55) (5.20) (3.16) (-5.36) (1.05) (-5.79) 

Urban 0.500** − 1.05*** 0.585*** − 0.875** − 0.080 0.085 
(2.12) (-6.82) (6.66) (-5.40) (-0.31) (0.35) 

Observations 550 550 550 550 550 550 
R2 0.215 0.580 0.894 0.633 0.728 0.574 
F 20.8 100.8 348.97 94.75 262.94 43.45  

4 The value in parentheses represents the t value. *** represents 1% significance level; ** represents 5% significance level; * represents 10% 
significance level (the same as other tables below). 
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transmission from west to east”. Cities in the Midwest do most of the generating. On the other hand, China’s eastern cities are major 
power consumers. Accordingly, based on the region of the city (Region, a dummy variable, east: 0; west: 1), we constructed a triple 
interaction term (LnEV × LnGenerate × Region). The results of model (2) show that the coefficients of LnEV, LnGenerate, Region, and the 
interaction term (LnEV × LnGenerate × Region) are significantly negative, indicating that the endogeneity problem caused by the high 
correlation between LnGenerate and LnES has been alleviated. The results not only show that energy structure has a positive 
moderating effect on the effect of EV sales on CO2 emissions after Region is included in the interaction item, but also imply that the 
moderating effect is more obvious in western cities. To be more specific, an increase in LnGenerate by 1% will increase the decar-
bonization effect of EVs by 0.036%. Previous studies show that renewable energy produces significantly lower CO2 emissions than non- 
renewable energy [44,45]. Therefore, cities with a higher share of renewable energy generate less CO2. 

5.2.2. CO2 export 
Based on Section 5.2.1, we further explore the externality of urban energy consumption and the offsetting effect of optimizing 

energy structure. To demonstrate whether energy consumption in neighboring cities increases CO2 emissions in local cities, we divided 
the sample into two groups (Electric output: electricity generation > electricity consumption; electric input: electricity generation <
electricity consumption). The grouped regression results of model (1) in Table 7 show that the coefficient of LnES is only 0.145, which 
is far less than the result of the benchmark regression (0.616). However, the grouped regression results of model (2) show that the 
coefficient of LnES is 0.659, which is close to the benchmark regression. This difference indicates that CO2 emissions from electric 
output cities are generated by itself and other cities, validating the discussion in Section 4.4. Therefore, we believe that urban energy 
consumption can “export” CO2 through the electricity grid. 

6. Conclusions and policy implications 

Traditional transportation and consumption modes represented by ICEVs cause serious air pollution and the greenhouse effect. The 
Chinese government places a high value on the electrification of the transportation industry [46]. To accelerate the adoption of EVs, 
the Chinese government has issued some industry support policies since 2009. From a practical standpoint, it is critical to investigate 
the regional spillover effect and influence mechanisms of EV adoption on CO2 emissions in this environment. Based on panel data of EV 
sales and CO2 emissions in 50 Chinese cities from 2010 to 2020, we empirically investigate the regional spillover effect and impact 
mechanism of EV adoption on CO2 emissions. We derive the following conclusions: 

Firstly, China’s EV sales have rapid increased over the past ten years, effectively curbing the increase in CO2 emissions. Specifically, 
there are direct effects and indirect effects, i.e., a 1% increase in the sale of EVs in a city can reduce CO2 emissions locally by 0.096% 
and by 0.087% in a nearby city. Secondly, we find that the sale of EVs influences CO2 emissions through the substitution effect, energy 
consumption effect, and technological effect. The sale of EVs increases CO2 emissions by increasing the electricity consumption in 
cities while decreasing CO2 emissions by improving the market share of EVs and the number of patent applications in the trans-
portation sector. Thirdly, energy structure has a positive moderating effect on the effect of EV sales on CO2 emissions. And the 

Table 6 
The moderating effect of energy structure on the CO2 emission.  

Variable Moderating effect Adjusted moderating effect 

(1) (2) 

LnEV − 0.013 − 0.036** 
(-0.71) (-2.29) 

LnEV × LnGenerate 0.006 0.000 
(0.95) (0.15) 

LnGenerate − 0.134*** − 0.404*** 
(-5.63) (-8.99) 

LnEV × LnGenerate × Region  -0.036***  
(-3.27) 

Region  − 0.186**  
(-2.22) 

LnGDP − 0.624*** − 0.661*** 
(-10.82) (-12.09) 

LnOpen − 0.061*** − 0.041** 
(-3.69) (-2.37) 

LnES 0.534*** 0.564*** 
(9.91) (11.12) 

LnInd − 0.666*** − 0.475*** 
(-10.95) (-8.74) 

LnDensity 0.320*** 0.403*** 
(6.96) (9.23) 

Urban − 1.218*** − 1.289*** 
(-9.13) (-9.47) 

Observations 550 550 
R2 0.650 0.662 
F 63.82 62.13  
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proportion of renewable energy generation can mitigate the “energy consumption effect”, i.e., the proportion of renewable energy 
generation exerts a negative moderating effect on the increase in CO2 emissions caused by the energy consumption effect. The 
following are three policy implications: 

First, the results of this paper show that the widespread adoption of EVs will be conducive to the decarbonization of the trans-
portation sector in the local region as well as in adjacent regions. Therefore, policymakers ought to extend supporting policies and 
financial support for the EV industry to further accelerate the transition to electrification in the transportation sector. To be more 
specific, policymakers can take cities with the obvious effect of decarbonization of EVs as pilot cities to promote “carbon peaking and 
carbon neutrality” in the transportation sector, which can have a positive demonstration effect on the decarbonization of the trans-
portation sector in other cities. Based on the positive demonstration role of pilot cities, other cities can learn from their advanced 
management, operation, and planning schemes. In this way, the regionally coordinated development of decarbonization in the 
transportation sector will be realized. For instance, financial support and incentives should be increased for cities with obvious 
decarbonization effects by electrifying transportation departments, and meanwhile, scientific punishment measures should be 
implemented for cities with poor CO2 reduction effects. 

Second, we find that the adoption of EVs can mitigate CO2 emissions through the substitution effect and the technological effect. 
Therefore, policymakers should issue a scientific industrial plan with clear targets for EV market penetration. For instance, promote the 
electrification of government official vehicles, public transport, and taxis through administrative orders; increase the number of pilot 
cities banning the sale of ICEVs. Additionally, authorities should keep raising the operational and R&D subsidies they provide to the 
transportation sector, as doing so can raise transportation efficiency and lower CO2 emissions overall. For example, increase R&D 
subsidies and operation subsidies for charging enterprises to improve the convenience of using EVs; further, support the development 
of hydrogen energy vehicles and fuel cell vehicle enterprises. 

Third, we find that improving energy structure can reduce the impact of energy consumption on CO2 emissions as a result of the 
moderating effect of energy structure. The improvement and transformation of the energy structure should be given top priority by 
policymakers. For example, continuously increase the proportion of renewable energy generation by implementing a series of policies 
and demonstration projects such as wind, water, and solar energy. To encourage the coordinated development of EVs and energy 
structures. Firstly, policymakers must pay attention to the research investment in EV charging and discharging strategies, charging 
facility planning, intelligent control of the power system, and other contents to reduce the impact on the safe and stable operation of 
the power system. Secondly, policymakers should accelerate the realization of network-wide intelligent interaction between source, 
network, and load storage, including improving the charging service system, forming an effective vehicle network interaction 
mechanism, and accelerating the market diffusion of vehicle-to-grid technology. Thirdly, the power sector should make great efforts to 
improve the comprehensive regulation ability of the power system and establish multiagent unified and collaborative management 
systems such as an EV charging network, a virtual power plant, distributed generation, and an intelligent microgrid. Fourthly, poli-
cymakers and power departments should further explore the multi-direction interaction of source networks, load and storage, virtual 
power plants, and other integration and aggregation modes to continuously improve the level of energy system security. 

Our study still has limitations for the following reasons: on the one hand, due to the restricted access to data, our findings may be 
more precise if there were access to additional cities and data. In the future, we will include more cities in the data set for further 
research. On the other hand, our study is not yet able to predict the effect of EVs on reducing CO2 emissions. In the future, we will use 
more diversified methods, such as scenario analysis, to refine subsequent research. 

Table 7 
CO2 export.  

Variable Electric output Electric input 

(1) (2) 

LnEV − 0.048** − 0.060*** 
(-2.21) (-2.81) 

LnGDP − 0.296*** − 0.734*** 
(-3.69) (-10.44) 

LnOpen − 0.076*** 0.144*** 
(-3.59) (2.81) 

LnES 0.145* 0.659*** 
(1.82) (11.18) 

LnInd − 0.157 − 0.630*** 
(-1.29) (-8.38) 

LnDensity − 0.363*** 0.431*** 
(-3.54) (7.64) 

Urban − 0.863** − 2.933*** 
(-2.39) (-10.17) 

Observations 242 308 
R2 0.619 0.718 
F 34.68 51.49 

Notes: To keep consistent with the benchmark regression, we control the urban fixed effect and 
time fixed effect in the model (1–2). 
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