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Streptococcus parasanguinis causes invasive diseases. However, the mechanism by which it causes disease remains unclear. Here,
we describe the complete genome sequence of S. parasanguinis C1A, isolated from a patient diagnosed with an acute exacerba-
tion of chronic obstructive pulmonary disease. Several genes that might be associated with pathogenesis are also described.
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Viridans streptococci are a group of Gram-positive bacteria
that have been reported to cause infective endocarditis (1).

The mechanisms by which viridans streptococci, specifically
Streptococcus parasanguinis, cause infections remain unclear.
Here, we describe the genome sequence of S. parasanguinis, iso-
lated from an individual diagnosed with an acute exacerbation of
chronic obstructive pulmonary disease. We also investigated sev-
eral putative virulence factors that might be associated with the
pathogenesis.

The bacteria were isolated from a sputum sample from a con-
senting subject and were then characterized by Microflex matrix-
assisted laser desorption ionization–time of flight mass spectrom-
etry (MALDI-TOF MS) (Bruker Daltonik GmbH, Leipzig,
Germany) equipped with the flexControl and Bruker MALDI Bio-
typer real-time classification softwares (2). The genomic DNA of
the bacteria was extracted using the MasterPure Gram-positive
DNA purification kit (Epicentre, Madison, WI), according to the
manufacturer’s protocol. Whole-genome sequencing was per-
formed using an Illumina MiSeq sequencer (Illumina, Inc., CA).
The generated reads were trimmed and assembled de novo using
CLC Genomics Workbench 6.0 (CLC bio, Denmark) (3) and an-
notated by Rapid Annotations using Subsystems Technology
(RAST) (4). Targeted sequences were investigated using the NCBI
Basic Local Alignment Search Tool, MEROPS peptidase, and In-
terPro Databases (5–7).

A total of 79 contigs with an average coverage of 68.7� were
generated. The N50 and G�C content of the draft genome are
39,293 bp and 42.0%, respectively. RAST analysis indicated that
the closest neighbor of S. parasanguinis strain C1A is S. parasan-
guinis ATCC 15912. Besides a fibronectin/fibrinogen binding
gene, a collagen-binding surface protein-encoding gene was iden-
tified. This provides insight into the possible mechanism of adher-
ence to the host cell. Another adherence tool, namely, adhesin
protein, was observed, highlighting the wide spectrum of adhesins
used by S. parasanguinis (8). An oligopeptide-binding protein

SarA-encoding gene, which is important for colonization, was also
identified (9).

Other virulence factors, such as genes encoding serine pro-
tease, which has been implicated in the pathogenesis of various
infections (10, 11), were discovered. The InterPro and MEROPS
databases suggest this cell wall-associated S8A serine protease car-
ries a peptidase S8 domain (PF00082) and a catalytic triad in the
order aspartic acid, histidine, and serine in the sequence is likely to
be involved in pathogenesis (5). Also, it carries a bacterial
immunoglobulin/albumin-binding domain (IPR009063) and an
extracellular matrix-binding protein domain, Ebh (IPR011490),
near the C terminus. The enolase gene, which plays a role in cat-
alyzing the reversible conversion of 2-phosphoglycerate into
phosphoenolpyruvate, was found in the genome. It has been re-
ported to bind to plasminogen, potentially facilitate the bacterium
in surface-associated proteolytic activity, and contribute to the
degradation of the extracellular matrix (12, 13). In addition, anti-
biotic resistance-related gene products were discovered, namely,
tetracycline resistance protein TetM, multidrug transporter, and
aminoglycoside phosphotransferase. The elimination of this bac-
terium might be challenging due to the presence of antibiotic re-
sistance genes. Thus, the drug regime used in the treatment of
viridans streptococci-related infection might be a major chal-
lenge.

Nucleotide sequence accession number. The genome se-
quence of S. parasanguinis C1A has been deposited in GenBank
under the accession no. JMRV00000000. The version described in
this paper is the first version.
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