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Heart failure (HF) is a primary cause of morbidity and mortality worldwide. As the
most widely studied and commonly applied natriuretic peptide (NP), B-type natriuretic
peptide (BNP) has the effects of diuresis, natriuresis, vasodilation, anti-hypertrophy,
and anti-fibrosis and it inhibits the renin-angiotensin-aldosterone and sympathetic
nervous systems to maintain cardiorenal homeostasis and counteract the effects of
HF. Both BNP and N-terminal pro B-type natriuretic peptide (NT-proBNP) are applied
as diagnostic, managing, and prognostic tools for HF. However, due to the complexity
of BNP system, the diversity of BNP forms and the heterogeneity of HF status, there
are biochemical, analytical, and clinical issues on BNP not fully understood. Current
immunoassays cross-react to varying degrees with pro B-type natriuretic peptide
(proBNP), NT-proBNP and various BNP forms and cannot effectively differentiate
between these forms. Moreover, current immunoassays have different results and may
not accurately reflect cardiac function. It is essential to design assays that can recognize
specific forms of BNP, NT-proBNP, and proBNP to obtain more clinical information. Not
only the processing of proBNP (corin/furin) and BNP (neprilysin), but also the effects
of glycosylation on proBNP processing and BNP assays, should be targeted in future
studies to enhance their diagnostic, therapeutic, and prognostic values.

Keywords: a disintegrin and metalloprotease, B-type natriuretic peptide, chronic kidney disease, corin, furin,
heart failure, LCZ696, proprotein convertase subtilisin/kexin-6

INTRODUCTION

Heart failure is a primary cause of morbidity and mortality worldwide. As the most widely
studied and commonly applied NP, BNP has the effects of diuresis, natriuresis, vasodilation, anti-
hypertrophy and anti-fibrosis and it inhibits the renin-angiotensin-aldosterone and sympathetic
nervous systems to maintain cardiorenal homeostasis and counteract the effects of HF

Abbreviations: aa, amino acid; ADAM, a disintegrin and metalloprotease; ARNI, angiotensin receptor inhibitor and
neprilysin inhibitor; BNP, B-type natriuretic peptide; CKD, chronic kidney disease; EDTA, ethylenediaminetetraacetic acid;
HF, heart failure; IRMA, immunoradiometric assay; NP, natriuretic peptide; NT-proBNP, N-terminal pro B-type natriuretic
peptide; PCSK6, proprotein convertase subtilisin/kexin-6; POCT, point of care testing; proANP, pro-atrial natriuretic peptide;
proBNP, pro B-type natriuretic peptide; TGF-β, transforming growth factor-β.
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(Semenov and Katrukha, 2016). Both BNP and NT-proBNP are
established as HF biomarkers and recommended by international
guidelines (Thygesen et al., 2012; Fu et al., 2018). Although
affected by age, gender, obesity, renal function, and other factors,
plasma BNP levels are closely related to HF severity and applied
as diagnostic, managing and prognostic tools for HF (Vasile and
Jaffe, 2017). However, due to the complexity of BNP system, the
diversity of BNP forms and the heterogeneity of HF status, there
are biochemical, analytical and clinical issues on BNP not fully
understood (Iwaz and Maisel, 2016).

BIOCHEMICAL ISSUES

The 134-aa preproBNP is synthesized in the cardiomyocytes, and
108-aa proBNP is then produced by removing a 26-aa signal
peptide (Figure 1). Enzyme-mediated processing of proBNP
produces BNP (32-aa) with mature function and NT-proBNP
(76-aa), which are released into the blood when the ventricular
wall is stretched because of increased pressure or volume
overload (Palazzuoli et al., 2010; Semenov et al., 2010). proBNP
is degraded into NT-proBNP and BNP in a 1:1 ratio. NT-proBNP
has no known bioactivity and is present at higher levels than BNP,
perhaps due to slower clearance from blood (Bayes-Genis et al.,
2004).

Corin and furin are the possible proBNP activating enzymes
produced in the cardiomyocytes and both the soluble circulating
and membrane-bound forms may be involved in proBNP
processing (Clerico et al., 2011). Corin and furin are present at the
cell surface with the ability to process proBNP and have soluble
forms in blood raising the possibility of proBNP processing in
blood (Jiang et al., 2011). Corin and furin may produce different
BNP forms: BNP4-32 and BNP1-32, respectively (Semenov et al.,
2011). However, other enzymes cannot be excluded in humans
(Koo et al., 2006; Gladysheva et al., 2008). Soluble corin is
significantly decreased in HF, reminding us that it may have
an attenuated activation and be applied as a biomarker in HF
(Miyazaki et al., 2016). Moreover, corin and furin activation
may correlate with BNP bioactivity, whereas their deficiency may
correlate with hypertension and HF (Chan et al., 2005). Corin
and furin overexpression may be beneficial in experimental HF
models. Unprocessed proBNP has higher levels in patients with
HF, suggesting that their activities are rate-limiting factors in HF
(Gladysheva et al., 2013). The various BNP forms have different
cGMP activating properties and proBNP and NT-proBNP have
reduced cGMP activities (Heublein et al., 2007; Dong et al., 2012).
However, there have been almost no studies with the specific
purpose of assessing proBNP processing in blood (Clerico et al.,
2015a). proBNP processing is significantly disturbed in HF and
may be a novel target for drugs (Del Ry et al., 2013; Clerico et al.,
2015a).

A disintegrin and metalloprotease 10 mediates corin shedding
and decreases corin bioactivity at the cell surface (Jiang et al.,
2011). In humans, corin is expressed not only in the heart, but
also in the kidney (proximal convoluted tubules and medullary
collecting ducts) (Ichiki et al., 2011). In proximal tubular
epithelial cells, corin is expressed in the apical membrane,

whereas neprilysin is expressed in the brush border (Dong et al.,
2016). Reduced renal corin expression and urine soluble corin
in CKD may prevent local function of NPs (Fang et al., 2013).
Reduced renal NP autocrine may contribute to NP resistance and
further disturb cardiorenal homeostasis, if it is not compensated
by increased cardiac NP endocrine (Dong et al., 2016). ADAM
10-mediated shedding may reduce corin levels in the kidney.
Future studies are needed to analyze renal corin expression and
ADAM 10-mediated shedding in patients with HF and/or CKD.

Proteolytic cleavage (Arg801-Ile802) may activate corin, with
PCSK6 as an activating enzyme (Chen et al., 2015; Volpe and
Rubattu, 2016). Among nine members of proprotein convertase
subtilisin/kexin (PCSK) family, PCSK6 overexpression can
enhance corin activation. Meanwhile, selective PCSK6 gene
silencing by small interfering RNAs can abolish corin activation.
PCSK6 gene expression can be detected in cells expressing corin,
and corin variants without the cleavage site for PCSK6 are
resistant to PCSK6 activation (Wang et al., 2008). However,
previous studies have demonstrated that not only proBNP levels,
but also cardiac function and hypertrophy, cannot be changed
by affecting either corin or PCSK6, in spite of reduced proANP
levels and effective control of hypertension (Chen et al., 2015).
PCSK family includes a series of serine endoproteases with
many substrates. Other substrates of PCSK6 are cytokines of
TGF-β family, nodal growth differentiation factor pro-protein
and aggrecanases (Turpeinen et al., 2013). Atrial natriuretic
peptide (ANP) has an anti-hypertrophic effect on the heart
through TGF-β signaling (Calvieri et al., 2012). PCSK6 may
inhibit the cytokines of TGF-β family, and counteract the
anti-hypertrophic effect of ANP. Another member of PCSK
family, PCSK9, mediates degradation of low-density lipoprotein
cholesterol and has been recommended as a target for a novel
lipid-lowering drug (Navarese et al., 2015). As a corin activating
enzyme, PCSK6 may be a novel target for drugs in HF by
mediating proBNP degradation and increasing endogenous BNP
(Volpe et al., 2016).

B-type natriuretic peptide is degraded by neprilysin,
dipeptidyl peptidase-4 (DPP-4) and insulin-degrading enzyme
(IDE) (Ralat et al., 2011). Peptidyl arginine aldehyde protease has
been shown to degrade BNP at the sites with arginine, because
its inhibitors reduce BNP degradation (Belenky et al., 2004).
Meprin has been shown to degrade BNP in animals but not in
humans. Whether other enzymes, including meprin, degrade
BNP remains undetermined in humans (Dickey and Potter,
2010). BNP is degraded by neprilysin at several sites, but not at
these sites simultaneously. proBNP differs from BNP with a 76-aa
N-terminal extension and may not be a substrate of neprilysin,
suggesting potential effects of NP length and N-terminal
extension on neprilysin degradation (Pankow et al., 2009).
Similarly, urodilatin is a N-terminal extended form of ANP and
less rapidly degraded than ANP. D-type NP is not degraded
and has the longest extension among NPs (Pankow et al., 2009).
Neither glycosylated nor non-glycosylated forms of proBNP
are sensitive to neprilysin degradation, suggesting no effect of
glycosylation on proBNP resistance to neprilysin. Moreover,
BNP may be a poorer substrate of neprilysin than ANP (Dickey
and Potter, 2011). However, neprilysin has inconsistent effects
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FIGURE 1 | Biochemical issues of brain natriuretic peptide.

on BNP degradation, perhaps because of different experimental
conditions and race specificities.

Both proBNP and NT-proBNP are glycosylated in blood and
the potential glycosylation sites are Thr36, Ser37, Ser44, Thr48,
Ser53, Thr58, and Thr71 within the N-terminal region (aa residue
1–76), but not within the BNP (aa residue 77–108) (Seferian et al.,
2008). All these glycosylation sites are complete except Thr36 and
Thr58 (Schellenberger et al., 2006). NT-proBNP is glycosylated in
the central region (aa residue 28–56), but not in the C-terminal
region (aa residue 61–76) (Seferian et al., 2008). proBNP is
glycosylated not only in the central region, but also in the
region near the cleavage site (aa residue 63–76) (Semenov et al.,
2009). Percentages of glycosylated proBNP and NT-proBNP are
dependent on the individual. Patients with chronic HF, but not
those with acute HF, have the highest percentage of glycosylated
proBNP (Vodovar et al., 2014). Meanwhile, furin bioactivity,
but not its levels, is greater in patients with acute HF than in
those with chronic HF (Vodovar et al., 2014). proBNP processing
may have different mechanisms: patients with acute HF have
increased BNP production due to more acute fluid overload and
patients with chronic HF have limited proBNP degradation due
to less acute fluid overload. Glycosylation, especially at the Thr71
near the cleavage site, may inhibit corin- and furin-mediated
degradation of proBNP in HF (Schellenberger et al., 2006). This
effect remains undetermined but may correlate with whether
proBNP is processed in blood (Peng et al., 2011; Halfinger et al.,
2017).

ANALYTICAL ISSUES

Current NT-proBNP immunoassays have the same antibodies
and calibrators from RocheTM with small systematic differences
(Clerico et al., 2012). However, current BNP immunoassays

(Table 1) have different antibodies and calibrators with large
systematic differences (Clerico et al., 2005). The most common
BNP immunoassays are sandwich immunoassays with two
monoclonal or polyclonal antibodies binding to two separate
epitopes: one binds to the ring structure to recognize the active
form and the other binds to the N-terminal or C-terminal
region (Franzini et al., 2013). The one binding to the C-terminal
region [ShionogiTM IRMA and Siemens ADVIA for the
Centaur platform] with same monoclonal antibodies (the epitope
27–32 and 14–21) may not recognize cleaved forms of BNP
like BNP1-27, while the one binding to the N-terminal region
[AlereTM and Beckman CoulterTM Triage BNP assays with the
same monoclonal (the epitope 5–13) and polyclonal (the possible
epitope 1–10) antibodies] may not recognize cleaved forms of
BNP like BNP3-32 (Belenky et al., 2004). The single-epitope
sandwich (SES)-BNPTM immunofluorescent assay needs only
one epitope by two different monoclonal antibodies, including
the first monoclonal antibody (24C5) binding to the epitope
11–17, which is the most stable within the ring structure, and the
second monoclonal antibody (Ab-BNP2) binding to the immune
complex (the epitope 11–17 and 24C5) (Tamm et al., 2008). As
a highly sensitive assay, it stabilizes the immune complex and
increases epitope affinity but recognizes not only BNP forms, but
also glycosylated and non-glycosylated forms of proBNP.

Current BNP immunoassays substantially reflect total levels of
proBNP and BNP forms (Liang et al., 2007). Although proBNP
processing occurs before or during secretion, unprocessed
proBNP is present in blood at even higher levels than BNP
and represents a significant part of BNP immunoreactivity in
healthy individuals and HF patients (Costello-Boerrigter et al.,
2013). Corin and furin cannot process all the proBNP when
proBNP production is obviously increased in patients with HF,
or proBNP glycosylation occurs before secretion, especially at
the Thr71 (Clerico et al., 2015a). Because proBNP shares a
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TABLE 1 | Antibodies and standard materials used in commercial B-type natriuretic peptide (BNP) immunoassays.

Methods Capture antibody Detection antibody Standard material

ShionogiTM immunoradiometric
assay (IRMA)

COOH terminus (BC-203), murine monoclonal
AB, aa 27–32

Ring structure (KY-hBNPII)
(Shionogi), murine monoclonal AB

Synthetic BNP

SiemensTM ADVIA method for
Centaur platform

COOH terminus (BC-203), murine monoclonal
AB, aa 27–32

Ring structure (KY-hBNPII)
(Shionogi), murine monoclonal AB

Synthetic BNP

AlereTM Triage NH2 terminus and part of the ring structure
(Scios), murine monoclonal AB, aa 5–13

BNP (Biosite), murine omniclonal
AB, epitope not characterized
(probably N-terminus 1–10)

Recombinant BNP

Beckman CoulterTM Triage BNP (Biosite), murine omniclonal AB, epitope
not characterized (probably N-terminus 1–10)

NH2 terminus and part of the ring
structure (Scios), murine
monoclonal AB, aa 5–13

Recombinant BNP

AbbottTM i-STAT NH2 terminus and part of the ring structure
(Scios), murine monoclonal AB, aa 5–13

COOH terminus, murine
monoclonal AB, aa 26–32

Synthetic BNP

aa, amino acid.

32-aa structure with BNP, proBNP can mediate physiological
functions like BNP. However, as the predominant form of BNP
immunoreactivity in HF, unprocessed proBNP has an obviously
decreased physiological function compared with BNP (Liang
et al., 2007). Meanwhile, due to the cleavage of amino-terminal
dipeptide from BNP1-32 by DPP-4 and neprilysin, BNP3-32
and 5–32 are present in blood. BNP3-32 rather than BNP1-32
may be the predominant form of BNP (Suzuki et al., 2017).
Compared with BNP1-32, other BNP forms, such as BNP3-32,
BNP4-32, BNP5-32, BNP5-31, BNP1-27, BNP 1-26, and BNP
1-25, have an obviously decreased physiological function and
increased degradation rate by neprilysin (Brandt et al., 2006).
However, due to race-specific proteases, BNP forms may have no
effect on the resistance of human BNP to neprilysin (Brandt et al.,
2006). Current BNP immunoassays overestimate BNP1-32 levels,
because they also recognize less active BNP forms (Lewis et al.,
2017).

Antibody detection of NT-proBNP and proBNP may also be
affected by glycosylation (Peng et al., 2011). Glycosylation
suppresses binding of antibodies and makes them lose
immunoreactivity (Luckenbill et al., 2008). Current NT-proBNP
immunoassays cross-react with non-glycosylated proBNP,
and do not detect glycosylated NT-proBNP and proBNP.
NT-proBNP immunoassays may be improved by antibodies
detecting glycosylated or non-glycosylated NT-proBNP and
antibodies detecting NT-proBNP not affected by glycosylation
(Rosjo et al., 2015). In current proBNP immunoassays,
glycosylated proBNP cross-reacts more than non-glycosylated
proBNP with BNP and NT-proBNP (Emdin et al., 2011). There
are inter-individual differences in NT-proBNP and proBNP
glycosylation in patients with and without HF (Saenger et al.,
2017). The N- and C-terminal regions of NT-proBNP and
BNP are degraded in blood, which occurs between Pro2-Leu3,
Leu3-Gly4, Pro6-Gly7, and Pro75-Arg76 of NT-proBNP (Foo
et al., 2013). Thus, detecting N- and C-terminal cleaved forms
of BNP and NT-proBNP is another challenge and it is difficult
to develop an antibody not affected by glycosylation or terminal
cleavage.

A highly sensitive immunoassay for proBNP is not affected
by proBNP glycosylation, because it has a capture monoclonal

antibody binding to the epitope 26–32 of BNP and a detection
monoclonal antibody binding to the epitope 13–20 of proBNP,
neither of which are glycosylation sites (Seferian et al., 2007).
Another immunoassay for proBNP has no significant cross-
reaction with both NT-proBNP and BNP, because it has a
polyclonal antibody binding to BNP and a monoclonal antibody
binding to the cleavage site of proBNP, an epitope only
belonging to proBNP (Macheret et al., 2011). Meanwhile, a
radioimmunoassay for proBNP binds to the N-terminal of
proBNP (the epitope 1–10) and recognizes both proBNP and
NT-proBNP (Goetze et al., 2002). Automated immunoassays
specific for both proBNP and BNP1-32 may be useful to
determine both production and bioactivity of BNP forms.
Moreover, proBNP and BNP immunoassays have been combined
to better predict poor prognosis in patients with HF (Dries
et al., 2010). Two immunoassays can be simultaneously applied
to the same sample. However, BNP1-32 immunoassays with
chromatography and mass spectrometry are unsuitable for
routine application and there is no commercially available
immunoassay that can recognize only active BNP1-32 (Miller
et al., 2011).

Neprilysin inhibition may have varied effects on plasma BNP
levels as a result of different immunoassays. The N-terminal
Met4-Phe5 is the initial cleavage site and no BNP immunoassay
has any antibody binding to it. Another cleavage site is located
within the ring structure (Arg17-Ile18), which is cleaved before
other sites, such as Lys14-Met15, Gly23-Leu24, and Val28-Leu29,
and BNP immunoassays (ShionogiTM and SiemensTM) with
antibodies binding to the epitopes 14–21 may be sensitive to
neprilysin degradation (Clerico et al., 2015b). With only one
epitope and without space between epitopes, SES-BNPTM assay
is not sensitive to neprilysin degradation.

Blood samples for BNP assays should be drawn only in
plastic tubes because BNP is unstable in glass tubes due to
kallikrein activation (Apple et al., 2005). EDTA plasma is the
only recommended specimen for BNP assays and serum is
the recommended specimen for NT-proBNP assays. There are
significant differences between serum and plasma levels of NPs
with various detection platforms. Anticoagulant type is also
significant. BNP is stable during storage at room temperature for
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24 h or at 30◦C for 12 h. Protease inhibitor (aprotinin) can be
added to increase BNP storage time. NT-proBNP is stable during
storage in serum, heparinized plasma or EDTA plasma at room
temperature or at 4◦C for 72 h or at −80◦C for up to 1 year
(Dong et al., 2012). It is essential to validate the effect of freeze-
thaw cycles on the stability of BNP and NT-proBNP assays (Apple
et al., 2005).

CLINICAL ISSUES

Point of care testing is performed near the patients outside of
the central laboratory with a rapid turnaround (Iwaz and Maisel,
2016). POCT for BNP and NT-proBNP can effectively facilitate
not only home-monitoring and community-service outside of
hospitals, but also emergency testing and BNP-guided therapy
in hospitals (Christenson et al., 2014). However, due to poor
performance (particularly sensitivity and precision) compared
with laboratory assays, POCT for BNP and NT-proBNP has not
been finally approved by authoritative organizations and is not
widely available for clinical application (Jungbauer et al., 2012).
POCT for BNP with untreated fingertip capillary whole blood
(AlereTM Heart Check) closely correlates with POCTs for BNP
with venipuncture EDTA plasma (AlereTM Triage) or EDTA
whole blood (AbbottTM i-STAT) (Maisel et al., 2013; Prontera
et al., 2015). AbbottTM i-STAT produces a result within 10 min,
whereas AlereTM Triage and AlereTM Heart Check produces
their results within 15 min. It remains undetermined whether
POCTs have good correlation with and similar precision to
laboratory assays (Shah et al., 2010). AbbottTM i-STAT and
AlereTM Triage reduce HF diagnosis compared with laboratory
assays (Kosowsky et al., 2006). Both POCT and laboratory
assays have systematic differences caused by cross-reaction
with glycosylated or non-glycosylated forms (Clerico et al.,
2015b).

In the emergency room, rapid assay for BNP and NT-proBNP
can discriminate the origin of acute dyspnea (acute HF versus
bronchial asthma) (Fu et al., 2018). A plasma NT-proBNP level of
300 pg/ml is appropriate for ruling out acute HF. Age-dependent
cutoff levels of plasma NT-proBNP are appropriate for ruling in
acute HF: 450 pg/ml in patients <50 years of age, 900 pg/ml in
patients ≥50 years of age, and 1800 pg/ml in patients >75 years
of age (McMurray et al., 2012). Plasma BNP levels of 100 and
400 pg/ml are appropriate for ruling out and ruling in acute HF,
respectively (Dickstein et al., 2008).

The recombinant form of BNP (nesiritide) has been applied
as a conventional drug in HF. It is currently considered to
improve clinical symptoms and cardiac function and has no
effect on patient prognosis (Fu et al., 2012). An angiotensin
receptor inhibitor and neprilysin inhibitor (ARNI, LCZ696)
has been approved as a novel drug in HF by US Food and
Drug Administration (McMurray et al., 2013). Because LCZ696
affects plasma BNP levels through inhibiting BNP degradation
by neprilysin, it makes plasma BNP levels not accurately
reflect cardiac function and produces a challenge for using
BNP as a biomarker, making HF diagnostically ambiguous and
therapeutically misleading (Packer et al., 2015). It could be

argued that NT-proBNP is insensitive to neprilysin degradation
and therefore can be applied as a biomarker in patients with
LCZ696. However, this assumption is based on a simplified
model of a complex biological phenomenon, and more studies
are essential to analyze this biological phenomenon. Due to
the complexity of BNP system (proBNP and BNP forms),
neprilysin inhibition does not have a straightforward effect
on plasma BNP levels (Pemberton et al., 2012). It remains
undetermined how LCZ696 affects plasma BNP and NT-
proBNP levels. Prospective comparison of ARNI with ACEI
to Determine Impact on Global Mortality and morbidity in
Heart Failure (PARADIGM-HF) trial has shown that plasma
BNP levels increase while plasma NT-proBNP levels decrease
in patients with LCZ696. Angiotensin receptor inhibitor and
neprilysin inhibitor (ARNI, LCZ696) may inhibit both BNP
degradation and proBNP processing. Increased BNP levels
may inhibit proBNP production and thus decreased NT-
proBNP levels may not be caused by improved cardiac
function. Moreover, beneficial effects of LCZ696 in HF may be
accomplished by increasing plasma ANP and C-type natriuretic
peptide (CNP) levels but not plasma BNP levels. However,
considering the presence of BNP in blood and its sensitivity
to neprilysin, a relatively modest increase in plasma BNP
levels may also account for improved prognosis with LCZ696
in patients with HF (McMurray et al., 2014). Several studies
have realized improved mortality and admission with BNP-
guided therapy (Valle et al., 2011). However, previous studies
have yielded inconsistent results on NT-proBNP-guided therapy
(Sanders-van Wijk et al., 2014). Current randomized clinical
trials on BNP-guided therapy may further evaluate BNP-
guided therapy in patients with HF (Januzzi and Troughton,
2013).

CONCLUSION

B-type natriuretic peptide metabolism and its forms are
complex and make assays particularly challenging, but critical
to providing future insight into BNP application and HF
heterogeneity. Current immunoassays cross-react to varying
degrees with proBNP, NT-proBNP, and various BNP forms and
cannot effectively differentiate between these forms. Moreover,
current immunoassays have different results and may not
accurately reflect cardiac function. It is essential to design
assays that can recognize specific forms of BNP, NT-proBNP,
and proBNP to obtain more clinical information. Considering
the complexity of BNP system and the heterogeneity of HF
status, not only the processing of proBNP (corin/furin) and
BNP (neprilysin), but also the effects of glycosylation on
proBNP processing and BNP assays, should be targeted in future
studies to enhance their diagnostic, therapeutic and prognostic
values.
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