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Abstract: Heart failure (HF) frequently coexists with atrial fibrillation (AF) and dysfunction of the
sinoatrial node (SAN), the natural pacemaker. HF is associated with chronic adrenergic stimulation,
neurohormonal activation, abnormal intracellular calcium handling, elevated cardiac filling pressure
and atrial stretch, and fibrosis. Pulmonary veins (PVs), which are the points of onset of ectopic
electrical activity, are the most crucial AF triggers. A crosstalk between the SAN and PVs determines
PV arrhythmogenesis. HF has different effects on SAN and PV electrophysiological characteristics,
which critically modulate the development of AF and sick sinus syndrome. This review provides
updates to improve our current understanding of the effects of HF in the electrical activity of the SAN
and PVs as well as therapeutic implications for AF.

Keywords: heart failure; atrial fibrillation; sinoatrial node dysfunction; pulmonary veins;
sinoatrial node

1. Introduction

Heart failure (HF) and atrial fibrillation (AF) are increasing endemic and frequently coexist in part
due to common risk factors, such as age, diabetes, hypertension, coronary artery disease and valvular
heart disease [1,2], and predispose to each other [3]. According to the results of the Framingham
Heart Study, 26% of patients with AF had a concurrent HF diagnosis. Similarly, 24% of patients with
HF had a concurrent diagnosis of AF [4]. AF precipitates HF through the loss of atrial contraction,
rapid and irregular ventricular rhythm, and decrease in coronary flow reserve [5]. By contrast,
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HF precipitates AF by contributing to atrial electrical and structural remodeling due to adrenergic
stimulation, neurohormonal activation, abnormal intracellular calcium handling, and atrial stretch [6,7].
AF has been identified as a crucial predictor of mortality in patients with HF [8–10]. This is particularly
relevant to patients with less advanced HF and recent AF onset [11]. A recent registry study showed
that AF increased the risk for the composite of mortality and HF hospitalization in HF patients with
preserved or mid-range ejection fraction, but not in HF patients with reduced ejection fraction after
multivariable adjustment [12]. However, HF classification simply by ejection fraction may not be
optimal [13]. Determination of ejection fraction from echocardiography is unreliable with intra and
interobserver variability, and without consideration of loading condition. There were several potential
HF classification methods with considerations for identifying pathophysiological mechanisms and
underlying etiologies [14]. Therefore, using alternate HF classification schemes in assessing the
prognostic impact of AF on HF may lead to different conclusions. An AF treated with rate control
is not associated with more unfavorable clinical outcomes compared to a patient with sinus rhythm
maintained and protected with the use of the rhythm control strategy [15]. It is possible to adopt
strategies that limit the damage caused by AF such as standard HF therapy and stroke prevention [16].
The presence of HF significantly affects therapeutic considerations for AF regarding treatment strategy
and medications for rate or rhythm control as well as the outcomes of cardioversion and catheter
ablation [7].

Pulmonary veins (PVs) contain cardiomyocytes and are ectopic pacemakers. PVs represent the
most crucial AF inducers [17–19]; PVs act as triggers on a susceptible substrate or fire rapidly as
AF-maintaining drivers [20]. AF is associated with electrical and structural remodeling in PVs and atrial
substrates [21,22]. Moreover, dysfunction of the sinoatrial node (SAN), the natural pacemaker, plays a
critical role in the pathophysiology of AF [23,24]. SAN dysfunction enhances PV arrhythmogenesis,
which may increase the risk of AF [25,26]. HF affects the SAN and PVs differently. By modulating the
electrical activity of PVs and the SAN, HF may induce AF and SAN dysfunction. The present study is
a review of the relevant literature for updating our current understanding of the crosstalk between PVs
and the SAN, the role of HF in the distinctive electrical properties of PVs and the SAN, and therapeutic
implications for AF.

2. Distinct Electrophysiological and Structural Characteristics of PVs

PVs contain myocardial sleeves extending from the left atrium (LA) [27,28]. The length of
myocardial sleeves varies considerably from species to species, but it may be 1–4 cm in the human
heart [29]. Previous histological examination in autopsy specimens has shown that PV myocardial
sleeves were found in 100% of patients with AF, compared to 85% of patients without AF [30]. The recent
studies from voltage map showed that the lengths of myocardial sleeves are longer in the left and right
superior PVs but markedly shorter in the left and right inferior PVs [31,32]. Patients with AF have
significant longer myocardial sleeves [30]. The length of PV myocardial sleeves correlates positively
with male sex, body mass index, and body surface area [31,32]. PVs contain cardiomyocytes with
arrhythmogenic activity due to enhanced automaticity, genesis of triggered activity, and induction
of micro-re-entry, which are crucial for the initiation and maintenance of AF [18,33]. Alterations in
the expression levels and functions of cardiac ion channels, abnormal calcium handling, and unique
structural characteristics play critical roles in PV arrhythmogenesis [34].

PV cardiomyocytes have distinct electrophysiological characteristics from those of LA
cardiomyocytes. PV pacemaker cardiomyocytes exhibit a funny pacemaker current (If) [33]. The fast
PV pacemaker cardiomyocytes have a larger If than the slow PV pacemaker cardiomyocytes [35].
PV cardiomyocytes have a considerably lower inward rectifier potassium current (IK1) than do LA
cardiomyocytes, which facilitates pacemaker depolarization due to more positive resting membrane
potential [36]. Moreover, the T-type calcium current (ICa-T) causes the release of calcium from the
sarcoplasmic reticulum (SR) at a low voltage, thus enabling the generation of pacemaker activity.
ICa-T has been demonstrated to be relatively large in the pacemaker cardiomyocytes of PVs than in
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those of the LA [37]. The electrophysiological properties of cardiomyocytes in PVs are characteristic of
enhanced automaticity.

PV pacemaker cardiomyocytes have lower IK1. A low IK1 reduces the resting membrane potential,
which inactivates sodium channels and causes slow conduction, together with abrupt changes in
fiber orientation that promote unidirectional block, slow conduction, and facilitate re-entry. Previous
studies have shown that PV cardiomyocytes may exhibit lower L-type calcium current (ICa-L) than
neighboring LA cardiomyocytes, which leads to a reduction in the action potential duration (APD)
and refractory period [38]. Moreover, rapid atrial pacing was reported to induce fast PV spontaneous
activity, a short APD, large If and Iti, and a high incidence of early afterdepolarization (EAD) and
delayed afterdepolarization (DAD) [39].

Connexins (Cxs) are responsible for electric coupling between cardiomyocytes [40]. Reduced
synthesis of Cxs, which are gap junction proteins, was demonstrated to contribute to arrhythmia
development [32]. PV cardiomyocytes have a lower density of Cx40 than adjacent LA cardiomyocytes,
implying that impaired electrical coupling may result in slow conduction and promote re-entry [41].

2.1. Autonomic Nervous System in PV Electrical Activity

PVs receive extensive autonomic innervation [20]. Cardiac autonomic inputs pass across the
epicardial ganglionated plexuses, which are located close to the PV ostia. Both sympathetic and
parasympathetic nerves exist in the same location and exhibit intrinsic activities, which are independent
of extrinsic neural inputs [42]. The stimulation of the autonomic nervous system induces PV
arrhythmogenesis. Isoproterenol accentuates spontaneous activity in PVs, and by contrast, acetylcholine
hyperpolarizes the membrane and attenuates spontaneous activity [39]. Moreover, isoproterenol was
shown to induce EAD and DAD in PVs [43]. Stress disorder, such as anxiety is an important risk factor
of AF [44]. Patients with stress disorder may have increased activity of sympathetic nervous system,
inducing PV arrhythmogenesis and promoting the onset, progression, and maintenance of AF.

2.2. Calcium Homeostasis in PV Cardiomyocytes

Abnormal calcium handling plays a crucial role in PV arrhythmogenesis [34]. Compared with
those without isoproterenol-induced EAD, PV cardiomyocytes with isoproterenol-induced EAD exhibit
a larger increase in the ICa-L after isoproterenol stimulation [43]. ICa-T is larger in PV pacemaker
cardiomyocytes than in PV non-pacemaker cardiomyocytes or LA cardiomyocytes [37]. An increase in
the transient inward current (Iti) and sodium/calcium exchange (NCX) current was shown to enhance
EAD in canine PVs [45]. PV electrical activity was reported to be reduced by KB-R7943 (an NCX
inhibitor), which reduces the Iti amplitude and SR calcium store [46]. Calcium influx from inward NCX,
ICa-L and ICa-T can trigger a release of large amounts of calcium from the SR; these findings indicate
that abnormal calcium handling plays a crucial role in PV arrhythmogenesis. Moreover, dysfunction of
the ryanodine receptor (RyR) causes a diastolic calcium leak and activates a calcium spark, which lead
to membrane depolarization and DADs. Studies have demonstrated that a low dose of ryanodine
can induce PV burst firings [47]; FK-506, which dissociates the RyR-FKBP 12.6 complex and inhibits
calcineurin activity, can induce RyR dysfunction and PV burst firings [19]. By contrast, K201 (an RyR
stabilizer) may reduce the diastolic calcium leak, which causes a reduction in the PV burst firing rate,
DADs, and Iti [48]. An increase in the SR calcium store and calcium spark with the activation of NCX
induces DADs and enhances PV arrhythmogenic activity [49]. Accordingly, abnormal intracellular
calcium handling may play a pivotal role in PV arrhythmogenesis.

2.3. Role of Renin Angiotensin System in PV Electrical Activity

PVs are affected by the activation of the atrial renin angiotensin system (RAS). Angiotensin II
increases If and inhibits Ik1, resulting in increased PV automaticity [50]. Moreover, angiotensin II
increases the ICa-L, delayed rectifier potassium current, Iti, and NCX current, thus enhancing triggered
activity in PV cardiomyocytes. The increased automaticity and triggered activity in PV cardiomyocytes
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were reported to be attenuated by pretreating cardiomyocytes with angiotensin II receptor blockers [50];
this finding suggests the critical role of RAS in the PV arrhythmogenesis and the pathophysiology of
AF. Additionally, a direct renin inhibitor (aliskiren) reduces the PV spontaneous activity and ICa-L and
causes a decrease in the calcium content in PV cardiomyocytes [51]. Accordingly, activation of RAS
directly affects PV arrhythmogenesis through the dysregulation of calcium homeostasis.

2.4. Mechanoelectrical Feedback on PV Arrhythmogenesis

The mechanoelectrical feedback indicates a phenomenon in which a mechanical load on the
myocardial tissue changes the electrical activity of cardiomyocytes because of increased automaticity or
triggered activity [52]. Patients with AF were found to have dilated PVs compared with those without
AF [53–55]. PV dilatation not only provides structural support for re-entry but also significantly
changes the electrical properties of PVs [56]. Dilated PVs were reported to be associated with
a high stretch level, which may induce membrane depolarization and prolong APD in isolated
PV cardiomyocytes [52,57]. The stretch increases the PV firing rate and increases the incidence of
spontaneous and triggered activities of PVs (Figure 1) [58]. These arrhythmogenic effects caused by
high stretch levels in PVs were reported to be attenuated by stretch-activated ion channel blockers,
gadolinium and streptomycin. These findings indicate that stretch-induced PV arrhythmogenesis may
contribute to AF development [59]. Significant dilation of both superior PVs was demonstrated in
patients with AF; however, only 28% of the trigger foci arose from the largest PVs [57]. Previous studies
have shown that higher number of AF foci arise from relatively longer PV myocardial sleeves [17,18],
suggesting a relationship between the extent of PV myocardial sleeves and ectopic foci of AF initiation.
It was speculated that the anatomic and geometric differences of PVs may participate in the firing of
PVs in AF, and PV size may not sufficiently predict the origin of AF firing [57].
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Figure 1. Effects of stretch on the electrical activity and the action potential (AP) configuration of the
pulmonary veins (PVs). (A) Stretch force dependently increased the firing rate of the spontaneous
activity of the PVs. (B) Superimposed tracings of PVs in which stretch force dependently decreased
the amplitude and duration of the AP and induced delayed afterdepolarization (asterisk). (C) Stretch
induced early afterdepolarization and burst firings in PVs. Arrow indicates electrical stimuli (2 Hz).
“Modified with permission from Chang, S.L., et al. [58]”.

2.5. Interaction of PV Cardiomyocytes and Fibrosis

The extent of fibrosis in myocardial sleeves in PVs was greater in patients with AF than in those
without AF [29]. Information regarding mechanisms underlying fibrosis development within PVs in
individuals without underlying heart disease, traditional risk factors, or a long history of AF is limited.
Cell loss with interstitial fibrosis replacement is frequently found in the aged LA [60]. Fibrosis of PVs
induces an increase in resistance to traveling electrical impulses as well as slow conduction; together
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with the nonuniform anisotropy, increased resistance may cause re-entry and play a critical role in PV
arrhythmogenesis [61]. Furthermore, collagen, the major element of the fibrotic tissue, could directly
increase the If, late sodium current (INa-Late), IK1, and small-conductance calcium-activated potassium
current, leading to enhanced automaticity and triggering the PV activity [62].

3. Distinct Electrophysiological and Structural Characteristics of the SAN

The SAN, composed of clusters of pacemaker myocytes, is a crescent-shaped structure located at
the junction of the superior vena cava and right atrium (RA) along the sulcus terminalis. The SAN
complex is formed by pacemaker cells interspersed with nerves and capillaries, scaffolded by dense
connective tissue [63]. The interspersed fibrous matrix with surrounding fatty insulation of the SAN
provides insulation and prevents the suppression of pacemaker automaticity from the surrounding
atrial myocardium [64]. The position of the leading pacemaker site in the SAN shifts depending on
numerous conditions, such as autonomic nerve stimulation, age, and underlying heart diseases [64].
The more superior the position of the leading pacemaker site, the higher the heart rate is. Stimulation
of the sympathetic nervous system causes the leading pacemaker site to shift to a relatively superior
position and results in an increase in the heart rate [65].

Numerous ion currents are involved in the activation of the SAN. Action potentials with a slow
upstroke initiated in the SAN center spread peripherally into the musculature of the terminal crest.
The main inward current in the center of the SAN is the ICa-L, whereas the sodium current (INa) operates
in the periphery of SAN for providing a sufficient inward current to depolarize the atrial tissue [66].
The If triggers spontaneous and repetitive diastolic depolarization to activate ICa-L within the SAN.
The absence of IK1 in the SAN enables membrane repolarization below the If threshold. The slow decay
of IKr and IKs results in a slow downstroke of SAN action potentials [66].

The distribution of Cx channel varies within the SAN. In the center of the SAN, electrical coupling
is weak because Cx40 and Cx43, which form large and medium conductance channels, are sparingly
expressed or absent. However, Cx45, which forms small-conductance channels, is expressed in the
center of the SAN. However, in the periphery of the SAN, Cx40, Cx43, and Cx45 are all present because
strong electrical coupling is needed to drive the atrial myocardium [40].

3.1. SAN Dysfunction in AF

SAN dysfunction is common in patients with AF [67]. In a canine model with pacing-induced AF,
persistent rapid atrial pacing for more than two weeks resulted in SAN dysfunction characterized by a
slow intrinsic heart rate and prolonged SAN recovery time, which gradually recovered after termination
of rapid atrial pacing [68]. In human volunteers, rapid atrial pacing for only 10 to 15 minutes was
reported to impair SAN function, which suggests that short durations of atrial pacing or paroxysmal
episodes of AF are associated with SAN remodeling and SAN dysfunction in humans [69]. Accordingly,
AF can result in SAN dysfunction. Electrical, structural, and autonomic remodeling should contribute
to SAN dysfunction in patients with AF. In a canine model, atrial tachypacing has been shown to
downregulate the mRNA expression of HCN4 and reduce SAN If [70], suggesting that AF results
in electrical remodeling of SAN. Furthermore, AF induced by rapid atrial pacing is associated with
atrial structural change characterized by marked bi-atrial dilation, an increase in mitochondrial size
and number, and disruption of the SR [71]. The atrial dilation combined with rapid atrial rate may
predispose atrial ischemia and SAN dysfunction [72]. In addition, loss of muscle fibers in the SAN
was found in AF patients in an autopsy study [73]. The structural remodeling of SAN from repeated
episodes of AF or prolonged persistence of AF can result in atrial cardiomyocyte apoptosis with
progressive atrial fibrosis and dilation [66]. Accordingly, structural remodeling of SAN can contribute
to SAN dysfunction in patients with AF.

Autonomic nervous system is a major regulatory factor of SAN automaticity and sinoatrial
conduction. Autonomic dysfunction is a common cause of SAN dysfunction [74]. Adrenergic or
cholinergic dysregulation may contribute to pacemaker and conduction abnormality within the
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SAN [75]. Tachycardia-bradycardia syndrome is the extreme expression of a continuum, characterized
by a substantial loss of integrity of the SAN function. AF is a disease also caused by a defective
function of the SAN. If SAN could be less torpid, it would be capable of antagonizing the tendentially
predominating activity of PVs, and AF would not arise.

3.2. Crosstalk Between PVs and the SAN

Slow heart rate predicts occurrence of AF [76,77] and recurrence of AF after catheter ablation [78].
Clinical studies have shown that SAN dysfunction is frequently associated with the genesis of AF
and atrial flutter, and tachycardia-bradycardia syndrome [67,79]. Up to 50% of patients with SAN
dysfunction are accompanied by AF [80,81]. It is speculated that SAN dysfunction and AF share
similar risk factors and pathophysiological processes [82].

Electrical activity of the SAN has been demonstrated to modulate PV arrhythmogenesis. In a
guinea-pig model, the action potentials recorded from PVs were dominated by the SAN, and rapid
pacing in PVs could overdrive the SAN [83]. This laboratory evidence suggested putative crosstalk
between PVs and the SAN. An animal study revealed that when the connection between the SAN and
PVs was disrupted, PVs exhibited a higher number of burst firings and triggered activity in response
to provocative agents than did the control SAN-PV preparation in which the SAN-PV connection was
intact (Figure 2) [26]. Moreover, heptanol (a gap junction inhibitor) was demonstrated to modulate the
electrical activity of the SAN and PVs, as evidenced by a reduction in the beating rate of the SAN and
the induction of PV burst firings [84]. Accordingly, a decrease in the electric activity of the SAN and
cellular uncoupling not only results in SAN dysfunction but also facilitates PV arrhythmogenesis by
causing a loss of overdrive suppression from the SAN, which may result in the development of AF.
PVs exhibit different electrophysiological properties compared with the SAN. Table 1 summarizes the
distinct electrophysiological characteristics of PVs and the SAN.
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show the simultaneous recordings (arrows) at the SAN and PVs in intact (Panel A) and disconnected
(Panel B) SAN-PV preparations before and after the treatment of Anemonia sulcata toxin (ATX)-II. Burst
firings (right middle panel) and early afterdepolarizations (EADs, right bottom panel) were induced in
isolated PV preparation after being separated and superfused with ATX-II. The asterisks indicate burst
firings and the arrowhead indicates EAD. “Modified with permission from Chen, Y.C., et al. [26]”.
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Table 1. The distinct electrophysiological characteristics of pulmonary veins and sinoatrial node.

Calcium
Regulation

Pacemaker
Current

Connexin Stretch
Channel

Vascular
Property

Autonomic
Control40 43 45

PVs +++ + + ++ ++ + + +

SAN ++ ++ + - ++ + - +

PVs = pulmonary veins; SAN = sinoatrial node.

3.3. HF Differentially Modulates Electrical Activity in the SAN and PVs

HF induces significant changes in the atrium, which facilitate the development of AF. Various
mechanisms, including atrial stretch, abnormal calcium handling, autonomic and neuroendocrine
dysfunction, play a critical role in the pathophysiology of AF [11]. These changes cause a reduction
in the atrial refractory period, retard atrial conduction, or increased heterogeneous repolarization,
thus producing a substrate for the initiation and perpetuation of AF [11]. Rhythm control with
antiarrhythmic drugs is not superior to rate control in patients with concomitant HF and AF [15].
However, catheter ablation has been associated with positive outcomes in patients with coexisting AF
and HF [85–88]. In the CASTLE-AF trial, all-cause mortality, cardiovascular death, and hospitalization
for HF were significantly reduced by catheter ablation (PV isolation: 100%, additional lesions: 51.7%),
suggesting that PV trigger might play a crucial role in the initiation of AF in patients with HF [88].
However, the detrimental role that the massive destruction of atrial cardiomyocytes by radiofrequency
can play, thus disturbing the mechanical activity of atrial chamber, is the region that radiofrequency
ablation would aim to protect. Catheter ablation can cause further injury to the LA and impair the
reservoir, conduit, and transport functions of the LA. The benefit-to-risk of catheter ablation in patients
with HF remains to be established [89].

By using a conventional microelectrode system, in our studies, we have reported that HF PVs
exhibited higher beating rates in isolated PV preparations than control PV preparations, and a
higher incidence of DADs was observed in HF PVs but not in control PVs [90,91]. Moreover, with a
multi-electrode array system, a higher incidence of high-frequency irregular electrical activity was
recorded in the HF PVs than in the HF LA; high-frequency irregular electrical activity was not observed
in control PVs and LA [92]. The high-frequency irregular electrical activity of HF PVs might be
associated with a higher incidence of accelerated spontaneous activity, DAD and EAD, and a higher
depolarized resting membrane potential compared with control PVs [92]. These findings suggest that
HF can induce arrhythmogenesis through enhanced automaticity and triggered activity, and PVs play
a crucial role in the initiation and maintenance of AF in HF.

Patients with HF exhibit significant remodeling of the SAN function characterized by a decrease
in the intrinsic heart rate, prolonged corrected SAN recovery time and sinoatrial conduction time,
and a caudal shift of the leading pacemaker site [93]. The decreased intrinsic heart rate and prolonged
corrected SAN recovery time result from decreased diastolic depolarization rate, which are attributed
to attenuated If [94]. The decrease in If in HF is associated with mRNA and protein downregulation of
HCN4 [95]. In HF, the SAN exhibits a lower expression level of sodium channel protein, which may
reduce the pacemaker rate and sinoatrial conduction velocity. The effects of tetrodotoxin (an INa

inhibitor) on reducing the SAN pacemaker rate and action potential amplitude are more prominent in
the SAN in HF, thus suggesting that impaired INa causes SAN dysfunction in HF [96].

HF may enhance PV automaticity and triggered activity through the overactivation of sympathetic
nerve system, which may partly contribute to the development of AF in HF. Our study revealed that
isoproterenol increased PV firing rate and reversed the direction of the electrical conduction between
the SAN and PVs [90], which is different from the known effects of isoproterenol in healthy SAN-PV
tissue preparation, whereas isoproterenol increases SAN and PV beating rates without changing
SAN-PV electrical conduction. Accordingly, overactivation of sympathetic nerve system may have a
greater effect on PVs than the SAN in HF.
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3.4. HF Differentially Induces Calcium Homeostasis Dysregulation in PVs and the SAN

HF PV cardiomyocytes exhibited an increase in Iti, the calcium store in the SR, and the spontaneous
calcium leak level, and a higher diastolic calcium concentration [88]. An increase in diastolic calcium
concentrations under SR calcium overload might promote NCX activity, activate Iti, induce DAD,
and lead to PV arrhythmogenesis in HF. Moreover, as compared with control PV cardiomyocytes,
HF PV cardiomyocytes have a greater width, longer duration, and longer decay time of the calcium
transient (Figure 3) [91]. In addition, HF PV cardiomyocytes demonstrated a decrease in INa, an increase
in INa-Late, and a reverse mode of NCX current [91], which may lead to calcium overload and higher
arrhythmogenesis in PV cardiomyocytes with enhanced triggered activity.Int. J. Mol. Sci. 2019, 20, x 9 of 19 
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Figure 3. Intracellular Ca2+ transient (Ca2+i) and the calcium stores from the control and heart failure
(HF) pulmonary vein (PV) cardiomyocytes. HF PV cardiomyocytes with (panel A) or without (panel B)
pacemaker activity have a larger Ca2+i and calcium stores measured from caffeine (20 mM)-induced
Ca2+i than control PV cardiomyocytes with or without pacemaker activity, respectively. “Modified
with permission from Chang, S.L., et al. [91]”.
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Impaired rhythmic spontaneous calcium release from the SR (calcium clock) plays a pivotal role in
SAN dysfunction in HF [23]. HF suppresses the calcium clock, which is characterized by an attenuated
intrinsic heart rate, late diastolic calcium elevation, and superior shift to isoproterenol and caffeine
stimulation [97]. Furthermore, these findings suggest that AF is a disorder caused by a defective and
inefficacious SAN. The SAN is really sick not only in sick sinus node syndrome but also in the vast
majority of cases of AF occurring in the elderly. However, the SAN function is not usually explored in
elderly patients with AF.

3.5. HF-enhanced Fibrosis and Stretch Differentially Regulates PV and SAN Electrical Activity

Fibrosis is common in HF SAN and PVs. However, fibrosis may have different effects on the
SAN compared to that on PVs. In a rabbit model, our study revealed that the SAN in HF exhibited
an automaticity exit block, SAN-PV conduction block, and severe fibrosis (Figure 4) [90]. Therefore,
the abnormal conduction may be attributed to increased fibrosis in SAN [98]. Differently, extracellular
protein matrix (collagen) may increase PV arrhythmogenesis through calcium overload via the
activation of P38 [62].
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Figure 4. Effects of heart failure (HF) on sinoatrial node (SAN) electrical activity and pulmonary vein
(PV) arrhythmogenesis. There is SAN to PV electric conduction in the control SAN-PV preparation (top
left panel). SAN automaticity exit blocks (asterisks, bottom left panel) and SAN-PV conduction blocks
(arrows, top right panel) with absence of PV electrical activity were found in HF SAN-PV preparations.
Bottom right panel shows delayed afterdepolarizations (DADs; arrows) in a HF SAN-PV preparation.
In top left panel, dashed lines indicate the peaks of SAN electrical activity. “Modified with permission
from Chan, C.S., et al. [90]”.

The increase in left ventricular end diastolic pressure in HF causes an increase in the intra-atrial
pressure and atrial stretch, which not only results in atrial electrical remodeling but also induces
atrial dilatation [99,100]. Increased intra-atrial pressure caused by HF induces PV electric remodeling.
Dilated PVs enhance PV arrhythmogenesis through the mechanoelectrical feedback [58,59]. Stretch of
the SAN increases heart rate, however, dilation of RA is unusual in HF [101,102]. The higher expression
level of heat shock protein-70 caused by the effects of low-oxygenated blood provides RA protective
effects against oxidative stress and inflammation [103]. It is unclear why HF on the left side of the
heart causes dysfunction in the SAN located on the right side of the heart [98]. Both neurohormonal
activation and atrial stretch may play a critical role [93].
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3.6. Electrolyte Disturbance Differentially Regulates PV and SAN Electrical Activity

Electrolyte disturbance is common in HF patients since hypokalemia and/or hyponatremia may
be caused by the use of diuretics or fluid overload. Hypokalemia results in a reduction in the SAN and
PV beating rates but induces PV burst firings and DADs. Hyponatremia induces PV burst firings and
DADs but exhibits a minimal effect on the SAN and PV beating rates [104]. Accordingly, electrolyte
imbalance differentially regulates SAN and PV electrical activity, which may contribute to the high risk
of AF in HF.

4. Therapeutic Implication for AF

Patients with HF may have electrophysiological evidence of impaired SAN function even in the
absence of clinical features of sick sinus syndrome [93]. This condition may be aggravated by the use
of negative chronotropic drugs. β-blockers are a standard treatment for HF and the first-line choice for
patients with HF and concomitant AF with a rapid ventricular response; however, β-blockers have not
demonstrated a substantial reduction in mortality and HF hospitalization [7,105]. Digoxin reduces
HF-related hospitalization and is recommended as the second-line choice for rate control of AF in
HF [7]. However, in the presence of β-blocker and digoxin, clinical SAN dysfunction is common and
may reflect an impaired SAN function in patients with HF [93]. Propafenone causes more severe SAN
dysfunction because of its additional β-blocking effect [66]. Dronedarone is also contraindicated in
patients with HF and SAN dysfunction. Therefore, antiarrhythmic drugs for rhythm control in patients
with AF and HF are limited to amiodarone [105]. However, amiodarone exhibits inhibitory effects on
multiple ion channels (Ito, IKr, IKs, ICa-L, and INa) and the β-adrenergic system, which may impair SAN
function. Consequently, in the presence of SAN dysfunction, the use of all antiarrhythmic drugs is
often restricted because of the risk of deteriorating SAN dysfunction [66].

Ivabradine is licensed for the treatment of HF [106]. Ivabradine inhibits the If in cardiac pacemaker
cells and reduces the heart rate [107]. Ivabradine increases stroke volume by increasing the diastolic
time, reduces myocardial oxygen demand, reverses LV remodeling, and prevents disease progression
in patients with HF [108,109]. However, there is accumulating data indicating that there is increased
risk of AF incidence during ivabradine treatment. The SHIFT, BEAUTIFUL, and SIGNIFY trials,
three landmark trials of ivabradine, all revealed an increased incidence of AF in the group with
ivabradine, compared with the placebo group [110–112]. In a meta-analysis of eight randomized,
controlled trials involving patients with HF or chronic coronary artery disease, ivabradine was
associated with a 15% increase in the relative risk of AF [113]. Moreover, an analysis revealed a 39%
higher risk of AF in patients who had received an aggressive dosage regimen of ivabradine than in
control patients [112]. Accordingly, the inhibition of If by ivabradine may increase the risk of AF in
patients with HF. The highlights of prescribing information suggest that ivabradine-treated patients
should receive regular monitoring for the occurrence of AF. The normal SAN and HF SAN were reported
to exhibit different responses to ivabradine. Ivabradine causes a greater reduction in the pacemaker
rate and diastolic depolarization rate in the HF SAN than in the normal SAN, which suggests that
the HF SAN can be more susceptible to the effects of ivabradine [90]. Moreover, ivabradine increases
the incidence of SAN automaticity exit block and SAN-PV conduction block in HF (Figure 5) [90].
Accordingly, ivabradine reduces the SAN rate and disrupts the SAN-PV electrical connection in HF,
leading to an increase in ectopic foci in the PVs by avoiding the overdriving suppression from the SAN
and an increase in AF risk in HF.

Ranolazine is used to treat chronic angina. Ranolazine attenuates sodium-dependent calcium
overload by inhibiting INa-Late and reduces tension in the heart wall, leading to reduced oxygen
requirement during myocardial ischemia [114]. Ranolazine has been reported to exhibit antiarrhythmic
effects in studies on ischemia and HF [115,116]. An animal study revealed that ranolazine inhibited the
SAN function in HF and normal rabbits, suggesting that INa-Late can have a role in the electrophysiology
of the SAN [96]. However, whether ranolazine might induce SAN dysfunction in clinical HF setting
remains unanswered.
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Figure 5. Effects of ivabradine on the electrical activity of control and heart failure (HF) sinoatrial
node (SAN)-pulmonary vein (PV) preparations and PV arrhythmogenesis. (A) SAN automaticity
exit blocks (asterisks) (top left panel) and SAN-PV conduction blocks (arrows) (bottom left panel)
in HF SAN-PV preparations after ivabradine administration. Bottom right panel shows delayed
afterdepolarizations (arrows) in HF SAN-PV preparations after ivabradine administration. (B) Left
panel shows that isoproterenol (1 µM) accelerated electrical activity in SAN-PV preparation without
change of the direction of SAN-PV electrical conduction. Right panel shows that the direction of
electrical conduction between the SAN and PV reversed in HF SAN-PV preparation in the presence
of isoproterenol (1 µM) with ivabradine (10 µM). Dashed lines indicate the peaks of SAN electrical
activity. “Modified with permission from Chan, C.S., et al. [90]”

5. Conclusions

HF is commonly associated with AF and SAN dysfunction. HF induces chronic adrenergic
stimulation, neurohormonal activation, abnormal intracellular calcium handling, elevated cardiac
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filling pressure with atrial stretch, and fibrosis, which cause electrical and structural remodeling of PVs
and the SAN and contribute to AF and SAN dysfunction. PVs exhibit a higher level of arrhythmogenesis
than LA in HF. HF-enhanced PV arrhythmogenesis might play a critical role in the initiation and
maintenance of AF. The effects of HF on the SAN modulate the electro-pharmacological responses
of the SAN, which may result in SAN dysfunction. In the presence of SAN dysfunction, the use of
antiarrhythmic drugs for treating AF in HF patients has been restricted, and these drugs should be
used cautiously.
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