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Abstract

DNA polymerases are present in all organisms and are important enzymes that synthesise

DNA molecules. They are used in various fields of science, predominantly as essential com-

ponents for in vitro DNA syntheses, known as PCR. Modern diagnostics, molecular biology

and genetic engineering need DNA polymerases which demonstrate improved perfor-

mance. This study was aimed at obtaining a new NeqSSB-TaqS fusion DNA polymerase

from the Taq DNA Stoffel domain and a single-stranded DNA binding-like protein of Nano-

archaeum equitans in order to significantly improve the properties of DNA polymerase. The

DNA coding sequence of Taq Stoffel DNA polymerase and the nonspecific DNA-binding

protein of Nanoarchaeum equitans (NeqSSB-like protein) were fused. A novel recombinant

gene was obtained which was cloned into the pET-30 Ek/LIC vector and introduced into E.

coli for expression. The recombinant enzyme was purified and its enzymatic properties

including DNA polymerase activity, PCR amplification rate, thermostability, processivity

and resistance to inhibitors, were tested. The yield of the target protein reached approxi-

mately 18 mg/l after 24 h of the IPTG induction. The specific activity of the polymerase was

2200 U/mg. The recombinant NeqSSB-TaqS exhibited a much higher extension rate (1000

bp template in 20 s), processivity (19 nt), thermostability (half-life 35 min at 95˚C) and higher

tolerance to PCR inhibitors (0.3–1.25% of whole blood, 0.84–13.5 μg of lactoferrin and 4.7–

150 ng of heparin) than Taq Stoffel DNA polymerase. Furthermore, our studies show that

NeqSSB-TaqS DNA polymerase has a high level of flexibility in relation to Mg2+ ions (from 1

to 5 mM) and KCl or (NH4)2SO4 salts (more than 60 mM and 40 mM, respectively). Using

NeqSSB-TaqS DNA polymerase instead of the Taq DNA polymerase could be a better

choice in many PCR applications.
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Introduction

With advances in science, there is a growing use of thermostable DNA polymerases. Many

new enzymes have been identified and described, predominantly those which were isolated

from genera such as Thermus, Thermococcus and Pyrococcus. Depending on their origin and

genetic variation, polymerases have different properties and be used for various purposes. Taq
DNA polymerase isolated from the thermophilic eubacterium Thermus aquaticus [1] has revo-

lutionized molecular biology and has become one of the most commonly used polymerases. It

is the first thermostable enzyme ever used in PCR [2]. The native Taq DNA polymerase is iso-

lated from Thermus aquaticus and its recombinant form is manufactured commercially using

E.coli as a host. It has a relatively short half-life as compared to other thermostable polymerases

isolated from Archaea. Studies have shown that it takes 45–50 minutes to deactivate half of

polymerase molecules at 95˚C and 9 minutes at 97.5˚C [3]; hence, the quest for the shortest

possible denaturation times to be used during amplification [4]. In 1 kb products, the amplifi-

cation efficiency of Taq DNA polymerase is estimated at approx. 80%, with the CG content

varying from 45 to 56% [5]. The amplification efficiency decreases with amplicon size increas-

ing above 1 kb. As a result there is a requirement to engineer Taq DNA polymerases for

enhanced processivity and improved performance, which is achieved by combining polymer-

ases with thermostable DNA-binding proteins. It has been shown that the covalent combina-

tion of a DNA polymerase with the Sso7d protein of Sulfolobus solfataricus significantly

increases its processivity [6]. Taq DNA polymerases are widely used in diagnostics. The ampli-

fication of clinical and/or environmental samples becomes more and more problematic. Taq
DNA polymerases become completely inhibited when a PCR mixture contains 0.004% of

blood [7]. It seems that hemoglobin and lactoferrin play an important role in the inhibition of

the amplification process. BSA was found to be the most efficient amplification facilitator [8].

Research to date has shown that proteins which naturally bind to single- or double-stranded

DNA in a PCR reaction mix, improve the yield of amplification and efficiency of long PCR

products [9,10]. When polymerase is fused with such proteins, their functional properties

improve considerably without affecting their stability or activity, [6, 11, 12]. In our study, we

decided to fuse a Nanoarchaeum equitans protein with the N-terminal end of Taq Stoffel DNA

polymerase.

We have recently identified a Nanoarchaeum equitans protein (a NeqSSB-like protein)

which was found to naturally bind to DNA [13]. This protein has a single OB fold and consti-

tutes a biologically active monomer which is similar to SSBs isolated from certain viruses.

NeqSSB-like proteins are highly thermostable and have the ability to bind to any form of DNA

(ssDNA, dsDNA) and, surprisingly, to mRNA, without any structure-dependent preferences.

The half-life of the ssDNA binding activity at 100˚C is 5 min and its melting temperature (Tm)

is 100.2˚C [13].

The aim of this study was to clone and overexpress an E. coli fusion protein composed of a

Taq Stoffel DNA polymerase and a NeqSSB-like protein, to purify the resulting gene product,

study its biochemical properties and suitability for use in PCR, and to see how it compares to a

Taq Stoffel DNA polymerase.

Materials and methods

Construction of recombinant plasmids

A nucleotide sequence of the Thermus aquaticus gene encoding a Stoffel fragment of the Taq
DNA polymerase was obtained from the GenBank database (accession number J04639.1). The

T. aquaticus strain (ATCC25104) was used to isolate a genomic DNA which was then used as a
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template to amplify a taq Stoffel fragment gene by using the standard PCR amplification proto-

col with a Hypernova DNA polymerase (BLIRT SA, Gdansk, Poland). A DNA fragment of the

taq Stoffel corresponding to nucleotides 997 to 2626 was obtained in PCR using the primers: F

5’ AATTTTGTTTAACTTTAAGAAGGAGATATACATATGGCCCTGGAGGAGGCCC (forward)

and R 5’ GCAAGCTTGTCGACGGAGCTCGAATTCGGATCCTTAatggtggtggtggtggtg
CTCCTTGGCGGAGAGCCAG (reverse). The primers contained sequences which were comple-

mentary to the taq Stoffel gene (underlined), a sequence complementary to pET-30 Ek/LIC

vector (italics), and an oligohistidine tag sequence (lowercase). A stop codon (TTA) was added

to the reverse primer immediately after the oligohistidine sequence. After amplification, the

PCR product (1703 bp) was mixed with the DNA of pET-30 Ek/LIC vector (Novagen, Madi-

son, WI, USA) which was digested by BamHI and NdeI enzymes (NEB, UK) and, following

this, the mixture was used in a cloning experiment in which the OverLap Assembly kit was

used (A&A Biotechnology, Poland). The E. coli TOP10 (Invitrogen, USA) cells were trans-

formed with the help of a cloning mixture and several colonies were examined for the presence

of a recombinant plasmid using a gel retardation assay and the restriction analysis.

Fusion with a NeqSSB-like gene on the N-terminal end of a taq Stoffel fragment correspond-

ing to nucleotides 997 to 2626 was obtained in PCR with the use of the primers: F1 5’ GAGA
GGCCGATGGAGGGGTCGACATGATCGCCCTGGAGGAGGCCC (forward) and R1 5’ GCAAGCT
TGTCGACGGAGCTCGAATTCGGATCCTTAatggtggtggtggtggtgCTCCTTGGCGGAGA
GCCAG (reverse). The primers contained sequences complementary to the taq Stoffel gene

(underlined), a sequence complementary to the pET-30 Ek/LIC vector (italics), a sequence for

6 amino acid linker residues (bolded) and a oligohistidine tag sequence (lowercase). The stop

codon (TTA) was added to the reverse primer immediately following the oligohistidine

sequence.

The DNA of pBAD/NeqSSB-likeHT plasmid [13] was used as a template for the amplifica-

tion of the NeqSSB-like gene using the standard PCR amplification protocol. The forward

primer was F2 5’ ATTTTGTTTAACTTTAAGAAGGAGATATACATATGGATGAAGAGGAACT
AATACAACTAATAATAGAAAAAACT (it contained a sequence which was complementary to

the NeqSSB-like gene (underlined) and a sequence which was complementary to the pET-30

Ek/LIC vector (italics)), whilst the reverse primer was R2 5’ TCCTCCAGGGCGATCATGTCGA
CCCCTCCATCGGCCTCTCCTTTAAAAGCTTTTA (it contained a sequence which was comple-

mentary to the NeqSSB-like gene (underlined) and a sequence for 6 amino acid linker residues

(bolded). As a result of the PCR amplification, the following two products were obtained: a taq
Stoffel gene (1703 bp) and a NeqSSB-like gene (793 bp). Following this, the PCR products were

mixed with the DNA of the pET-30 Ek/LIC vector (Novagen, Madison, WI, USA) which was

digested by BamHI and NdeI enzymes (NEB, UK) and the resulting mixture was used in a

cloning experiment in which the OverLap Assembly kit was used (A&A Biotechnology,

Poland). The cloning scheme of the fusion NeqSSB-TaqS polymerase is shown in S1 Fig.

E. coli TOP10 (Invitrogen, USA) cells were transformed with the help of the cloning mix-

ture and several colonies were examined for the presence of a recombinant plasmid using a

gel retardation assay and the restriction analysis. The resulting pET30/NeqSSB-TaqS plasmid

contained a complete NeqSSB-like sequence, a 6 amino acid linker (GGVDMI), a sequence

of the Taq Stoffel DNA polymerase (amino acid residues from 317 to 832) and as His tag

domain which enables the purification of the recombinant protein using the metal affinity

chromatography.

The nucleotide sequences of the resulting recombinant plasmids, pET30/TaqS and pET30/

NeqSSB-TaqS were confirmed by the DNA sequencing (Genomed, Poland).

Fusion of Taq DNA polymerase with protein of Nanoarchaeum equitans

PLOS ONE | https://doi.org/10.1371/journal.pone.0184162 September 1, 2017 3 / 17

https://doi.org/10.1371/journal.pone.0184162


Expression and purification of TaqS and NeqSSB-TaqS DNA

polymerases

The pET30/TaqS and pET30/NeqSSB-TaqS plasmids were transformed into the E. coli BL21

(DE3) RIL (Novagen, USA). The cells with a recombinant plasmid were grown to an OD600 of

0.4 in Luria-Bertani medium at 37˚C, with the addition of kanamycin and chloramphenicol at

a concentration of 50 μg/ml each, and were induced by IPTG at the final concentration of 1

mM for 24 h. The cells were centrifuged at 5000xg for 12 min and the pellets were resuspended

in 20 ml of buffer A (50 mM Tris-HCl pH 9, 0.5 M NaCl and 5 mM imidazole). The samples

were disintegrated five times for 45 s at 4˚C, and centrifuged at 10000xg for 15 min. The super-

natant was heat-treated at 70˚C for 15 min and the denatured host proteins were removed by

centrifugation. Following this, the protein was purified in a one-step process. We used the Ni2

+-affinity chromatographic technique. The supernatant and the enzyme which was produced

were put into a His•Bind Column (Novagen, USA), which was earlier prepared and equili-

brated using buffer A. The recombinant proteins were washed two times using the washing

buffer B (50 mM Tris-HCl pH 9, 0.5 M NaCl and 40 mM imidazole) and then eluted with the

elution buffer C (50 mM Tris-HCl pH 9, 0.5 M NaCl and 300 mM imidazole). The eluted frac-

tions were dialyzed three times against buffer D (100 mM Tris-HCl pH 8, 100 mM KCl, 0.2

mM EDTA). The trace amounts of the genomic bacterial DNA were removed using 25 U of

Benzonase (Merck, Darmstadt, Germany) and MgCl2 at the final concentration of 5 mM. Fol-

lowing this, the protein sample was incubated at 37˚C for 1 h. The enzyme was inactivated, by

incubation at 70˚C for 15 min whilst the denatured proteins were removed by centrifugation.

The final formulation was prepared for storage (50 mM Tris-HCl pH 8, 50 mM KCl, 1 mM

DTT, 0.1 mM EDTA, 1% Tween 20, 1% Nonidet P-40 and 50% glycerol).

DNA polymerase activity assay

As directed in the EvaEZ Fluorometric Polymerase Activity Assay Kit Manual (Biotium, Hay-

ward, USA), the DNA polymerase activity was assayed in an isothermal reaction at 72˚C using

MyGo/Pro Real-Time PCR instrument (IT-IS International Ltd., UK) in accordance with the

definition of one unit of enzyme activity (“One unit of DNA polymerase activity is convention-

ally defined as the amount of enzyme that will incorporate 10 nmol of nucleotides during a

30-min incubation” [14]). The active DNA polymerase extended the primer to form a double-

stranded product able to bind the EvaGreen dye with the resulting increase in fluorescence.

The level of fluorescence was correlated with the polymerase activity and the number of bound

nucleotides [14–16]. The activity was determined in relation to a commercial Taq DNA poly-

merase (Thermo Scientific, USA) with an activity of 1 U/μl.

Optimization of PCR amplification

We optimized the working conditions for NeqSSB-TaqS DNA polymerases. Reactions were

carried out using different buffer compositions with various pH values, which included various

concentrations of MgCl2, KCl and (NH4)2SO4. In all these reactions, we used 1 mM of each

dNTP, 0.4 mM of each primer, and a miniprep plasmid DNA as a PCR template with a unique

known target sequence and size (PCR product of 300 bp). PCR was performed using 1U of the

purified NeqSSB-TaqS DNA polymerase or TaqS DNA polymerase in 20 μl of the reaction

mixture containing 5 ng of a DNA template. PCR was conducted as follows: an initial denatur-

ation at 94˚C for 1 min; 25 cycles of denaturation at 94˚C for 15 s, annealing at 55˚C for 15 s

and elongation at 72˚C for 15 s. After the final cycle, the sample were incubated for 5 min at

72˚C.
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To determine the optimum MgCl2 concentration, the PCR was performed at increasing con-

centrations of MgCl2 (0–9 mM) with the use of a Tris–HCl buffer. Furthermore, the PCR was car-

ried out using various concentrations of KCl and (NH4)2SO4 (10–90 mM) for various pH values

ranging from 7.0 to 9.0 for a Tris–HCl buffer (pH values were measured at a temperature of 25˚C).

Thermostability was assayed as described by Dabrowski and Kur [17]. The purified

NeqSSB-TaqS and TaqS DNA polymerases were heated up to 95˚C and 99˚C for 1, 5, 10, 20,

40 and 60 minutes.

In all our experiments, we amplified a 300 bp target fragment in a PCR using the same

amount of the enzyme in the optimal conditions. We applied 10 μl of each PCR product for

visualization by agarose gel electrophoresis. The relative activity of the polymerase was evalu-

ated by densitometry with the use of GelAnalyzer 2010a program (http://www.gelanalyzer.

com/). The program measured the area below the peak representing intensity of light emitted

by the band on the gel. The peak of the largest field (the highest optical density) represents a

100% polymerase activity. Peaks with smaller fields (less intensive light) were compared with

the largest peak and their activity was determined as a percentage of this value.

PCR amplification rate assay

The PCR amplification rate was measured, after some modifications, using the method

described by Lee et al. [11]. We used the DNA of a pET 30 plasmid containing the known tar-

get sequences as a template for the PCR in order to obtain the products with a length of 300,

500 and 1000 bp.

Amplification was performed using NeqSSB-TaqS and TaqS DNA polymerases in the opti-

mal conditions for a PCR. Each PCR included the initial denaturation at 94˚C for 2 min, and

25 cycles at 94˚C for 15 s, at 55˚C for 15 s and at 72˚C for 5, 10, 15,. . .60 s. The PCR products

were electrophoresed using the standard 1% agarose gel.

Processivity analysis

The processivity test was carried out as described in [18], after some modifications. Eighty

five μl of 20 mM Tris-HCl pH 8.3, 10 mM KCl, 10 mM (NH4)2SO4, 0.1% Triton X-100,

290 μM of each of the four dNTPs, 40 nM primer-template (50-GGGGATCCTCTAGAGTCG
ACCTGC and 5’ TATCGGTCCATGAGACAAGCTTGCTTGCCAGCAGGTCGACTCTAGAGGA
TCCCC), 3 μl of EvaGreen Fluorescent DNA stain (Jena Bioscience, Jena, Germany) and 1 U

of the tested polymerase were pre-incubated for 5 min at 50˚C. The reactions were initiated by

the simultaneous addition of 7.5 μl of 50 mM MgCl2 and 7.5 μl of a 0.6 mg/μl heparin trap, and

the polymerization was allowed to proceed at 72˚C. Aliquots (10 μl) were withdrawn after 0, 1,

2, 5, and 10 min to cool the thermoblock (4˚C) and the lengths of the extended products were

determined by a melting point using a MyGo/PRO Real-time PCR instrument (IT-IS Interna-

tional Ltd., GB). The reaction included the following stages: a pre-melt hold for 10 s at 95˚C

(a ramp rate of 5˚C/s), the initial 60-second stage at 60˚C (a ramp rate of 4˚C/s) and the final

1-second stage at 97˚C (a ramp rate of 0.201˚C/s). The processivity was determined by com-

paring the melting temperature profiles of different length products serving as markers. The

marker product was obtained in a PCR using the same primer as that described above and the

synthetic templates which allowed the formation of products with a length exceeding the prim-

er’s length by 1, 2, 3 through up to 20 nt.

Primer-template binding

The binding of polymerases to the primer-template (5’-CTTCATTACACCTGCAGCTCTand

5’-CACAGCCCTGTCCCTCTTCTTC) occurred at various annealing temperatures ranging
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from the optimal 55˚C up to 72˚C, with the use of primers for the PCR amplification of a

human CCR5 gene [19].

Resistance to inhibitors

The effect of PCR inhibitors such as 0.84 μg to 54 μg of lactoferrin (Sigma-Aldrich, St. Louis,

USA), 4.7 ng to 600 ng of heparin (Sigma-Aldrich, St. Louis, USA), and human blood (from a

healthy volunteer) in concentrations ranging from 0.15% to 10%, on the catalytic activity of

NeqSSB-TaqS and TaqS DNA polymerases was assessed in a PCR using the genomic DNA of

Staphylococcus aureus as a template and primers for the specific nuc gene [20].

Furthermore, resistance to inhibitors present in the whole human blood was tested using

primers for the amplification of human CCR5 gene [19] without the addition of any templates.

PCRs were assayed as described by Kermekchiev et al. [21] with the addition of blood to the

mixture (at concentrations ranging from 0.15% to 10%).

DNA binding preferences

To demonstrate the ability of DNA polymerases to bind different types of DNA (ssDNA and

dsDNA) and their preferences for binding single- or double-stranded DNA, we performed the

electrophoretic mobility shift assay test of the polymerase DNA complexes. The test was per-

formed using fluorescein-labelled oligonucleotides (dT) 76 at the 5’ end, and a PCR product

with a length of 100 bp, as described in the method outlined by Olszewski et al. 2015 [13]. The

output products were analyzed using a 2% agarose gel ethidium bromide in the UV light.

Results

Expression and purification of TaqS and NeqSSB-TaqS DNA

polymerases

The gene encoding the Stoffel fragment of a Taq DNA polymerase was cloned into the vector

pET-30 Ek/LIC to generate a pET30/TaqS plasmid which led to the expression of the enzyme as

a protein with a C-terminal polyhistidine tag. The PCR products of the taq Stoffel and NeqSSB-
like genes were mixed together with the DNA of the pET-30 Ek/LIC vector in order to obtain

the pET30/NeqSSB-TaqS plasmid which encodes the enzyme as a fusion protein containing the

complete NeqSSB-like sequence, a 6 amino acid linker (GGVDMI) and a sequence of the Taq
Stoffel DNA polymerase with a C-terminal polyhistidine tag. E. coli BL21 (DE3) RIL cultures

with pET30/TaqS and pET30/NeqSSB-TaqS plasmids were harvested and presonicated.

Recombinant DNA polymerases were purified by passing a heat-denatured supernatant

through a His•Bind Ni2+ affinity column. The purified TaqS and NeqSSB-TaqS DNA polymer-

ases were found to have a specific activity (according to the definition proposed by Habig et al.

[22]) of 1600 U/mg and 2200 U/mg respectively. These results show that the NeqSSB fusion

did not have any negative effect on the catalytic activity of the TaqS DNA polymerase.

We recovered approximately 46% and 44% of TaqS and NeqSSB-TaqS DNA polymerases

from the sonicated extracts, respectively. The degree of polymerase recovery and each DNA

polymerase purification step were monitored with the help of SDS-polyacrylamide gel electro-

phoresis (Fig 1).

We observed major protein bands of 62 and 90 kDa for TaqS and NeqSSB-TaqS, repec-

tively, corresponding to molecular masses of 61.8 and 89.9 kDa (the calculations were made

based on the amino acid sequences). The E. coli overexpression system used in this study

allowed the production of 30 mg of a TaqS DNA polymerase and 18 mg of a NeqSSB-TaqS

fusion protein per 1 l of induced culture. Most of the native thermostable enzymes were
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synthesized by thermophilic bacteria at low levels and consequently they were difficult to

purify [23, 24]. Another factor which contributed to such a low output was the toxicity of the

overexpressed DNA-interacting proteins in the E. coli host cells. This phenomenon is common

not only in DNA polymerases and SSB proteins, but also in other enzymes including restric-

tion endonucleases [25, 26]. Several thermostable DNA polymerases in the biologically active

form were produced using the same E. coli systems as those used in this study. Their expression

levels in E. coli were in a range from 2.25 mg/l to 50 mg/l [27–29]. Hence, the production effi-

ciencies of TaqS and NeqSSB-TaqS DNA polymerases achieved in this study were satisfactory.

Characterization of fusion NeqSSB-TaqS DNA polymerase

The activity rather than concentration of enzymatic proteins should be compared because dur-

ing the purification process the same amount of enzyme may become deactivated and then the

activity will not be equivalent to concentration Hence, to obtain reliable and accurate results,

this characteristic of the polymerase was assessed by the activity assay. In the subsequent

experiments, the 1 U/μl activity for the TaqS and NeqSSB-TaqS DNA polymerases was deter-

mined by comparing it with a commercial Taq DNA polymerase with an activity of 1 U/μl,

using a EvaEZ Fluorometric Polymerase Activity Assay Kit (Biotium, Hayward, USA), in an

isothermal reaction at 72˚C on a real-time PCR apparatus (IT-IS International Ltd., UK).

For characterization purposes, the polymerase activity was measured in a PCR for different

buffer compositions with various concentrations of MgCl2, KCl or (NH4)2SO4 and various

pHs (Fig 2). The activity of the DNA polymerase was highly dependent on MgCl2, whereby the

maximum activities for TaqS DNA polymerases were within a range of 2 to 5 mM MgCl2 and

for NeqSSB-TaqS DNA polymerases within a range of 1 to 5 mM MgCl2 (Fig 2A). The DNA

polymerase activity was completely inhibited when KCl concentrations exceeded 20 mM for

TaqS DNA polymerases and 60 mM for NeqSSB-TaqS DNA polymerases (Fig 2B). (NH4)2SO4

also had an adverse effect on TaqS and NeqSSB-TaqS DNA polymerase activities, inhibiting

them completely when concentrations exceeded 20 and 40 mM, respectively (Fig 2C).

The amplification efficiency for various PCR buffers depending on the composition of salt

is shown in Fig 3. KCl was used at the optimum concentration of 10 mM, whilst (NH4)2SO4

Fig 1. The expression and purification of TaqS (A) and NeqSSB-TaqS (B) DNA polymerases. The proteins were analyzed on a 10%

polyacrylamide gel (SDS-PAGE). Lane M: Unstained Protein Weight Marker (Fermentas, Lithuania), molecular masses highlighted.

Lane 1: the sonicated extract of induced cells; Lane 2: heat treatment; Lane 3: a by-product after the second washing with the use of

the buffer B; Lane 4: purified protein after elution with the buffer C.

https://doi.org/10.1371/journal.pone.0184162.g001
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Fig 2. Characterization of a fusion NeqSSB-TaqS DNA polymerase in comparison to a TaqS DNA polymerase. The effect of (A) MgCl2, (B)

KCl, (C) (NH4)2SO4, (D) pH and (E) temperature on the polymerase activity. The results for the NeqSSB-TaqS DNA polymerase are marked with

black circles, whilst for the TaqS DNA polymerase with black tringles. Error bars for the TaqS DNA polymerase have the end bar whilst for the Neq-

TaqS DNA polymerase does not have the end bar.

https://doi.org/10.1371/journal.pone.0184162.g002

Fig 3. Amplification efficiency for DNA polymerases depending on the composition of salt in PCR. Differences in the

amplification efficiency for the fusion NeqSSB-TaqS DNA polymerase (A) and TaqS DNA polymerase (B) depending on the

composition of salt in the PCR buffer (10 mM KCl plus 0; 10; 20; 30; or 40 mM of (NH4)2SO4. Lane M: the DNA molecular size marker

HyperLadder II (Bioline, UK).

https://doi.org/10.1371/journal.pone.0184162.g003
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was applied at concentrations varying from 10 to 40 mM. The positive effect of the reaction

buffer at the optimum salt concentrations, 10 mM KCl and 10 mM (NH4)2SO4 was observed

for both polymerases. However, the tolerance of the fusion NeqSSB-TaqS DNA polymerase to

salt has increased. When NeqSSB-TaqS DNA polymerases were used, amplification was effi-

cient over a broad range of KCl concentrations. These results were consistent with the results

obtained for Sso7d fused with Taq and Pfu DNA polymerases which were also tolerant to high

KCl concentrations [6].

The effect of pH on TaqS and NeqSSB-TaqS DNA polymerase activities was evaluated using

buffers with a pH ranging from 7 to 9. The highest enzyme activities were observed for pH 7.5

for both polymerases (Fig 2D).

The results of the above-mentioned experiment show that the optimal buffer for NeqSSB-

TaqS DNA polymerases consists of 20 mM Tris–HCl (pH 8.0), 4 mM MgCl2, 10 mM

(NH4)2SO4 and 10 mM KCl.

The thermal stability of TaqS and NeqSSB-TaqS DNA polymerases was determined by mea-

suring a decrease in their activity after preincubation at 95˚C or 99˚C. The thermal stability of
NeqSSB-TaqS DNA polymerase was remarkably higher. The half-lives of TaqS and NeqSSB-

TaqS DNA polymerases at 95˚C were found to be 15 and 35 min, respectively (Fig 2E).

PCR amplification rate and processivity

The fusion NeqSSB-TaqS DNA polymerase replicated the template strand at a faster rate than

the TaqS DNA polymerase (Fig 4). The NeqSSB-TaqS DNA polymerase replicated a 300 bp

template within 5 s, 500 bp within 10 s and 1000 bp within 20 s, whilst the TaqS DNA polymer-

ase within 20 s, 35 s and 60 s respectively. This suggests that the fusion of a NeqSSB protein

with a TaqS DNA polymerase can provide a more efficient DNA amplification within a shorter

reaction time.

The polymerase processivity is the number of dNTPs incorporated per each binding event.

To ensure the correctness of measurements, polymerase molecules should associate to DNA

only once and, under such single hit conditions, the processivity is expressed by the number of

the incorporated dNTPs. In our experiments, heparin was used to sequester polymerase after

Fig 4. Evaluation of PCR amplification rate. Comparison of the PCR amplification rates of a fusion

NeqSSB-TaqS DNA polymerase for 300 bp (A), 500 bp (B), 1000 bp (C) products and a TaqS DNA

polymerase for 300 bp (D), 500 bp (E), 1000 bp (F) products. The elongation times used for the PCR

amplification are indicated at the top. Lane M: the DNA molecular size marker (50–2000 bp).

https://doi.org/10.1371/journal.pone.0184162.g004
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it dissociated from the primer-template [30]. To determine processivity, the hot start condi-

tions were created by pre-incubating the reaction mixture in the absence of Mg2+ and the reac-

tions were initiated by the simultaneous addition of metal ions and a heparin trap. Following

this, the processivity was determined by comparing the melting temperature profiles of prod-

ucts which had different known lengths and served as markers. The NeqSSB-TaqS DNA poly-

merase had a prominent melting peak at 80,49˚C after the incorporation of 19 nucleotides,

which represented processivity (Fig 5). The control TaqS DNA polymerase showed a lower

processivity with the prominent melting peak at 77,27˚C after the incorporation of 9 dNTPs

(Fig 5). This suggests that the fusion of the TaqS DNA polymerase with the NeqSSB consider-

ably improved processivity. The processivity values determined with the use of a heparin trap

were much lower than the values previously published for the Taq DNA polymerase [31, 32]

and were within a range of 80 nt to 160 nt. In these studies, no trap was used to protect against

polymerase rebinding and against a repetition of the extension cycle. The differences in the

results obtained may be explained by the changes in the protocol that we used.

Primer-template binding

The influence of the fusion of a NeqSSB and a TaqS DNA polymerase on the primer-template

binding was determined using PCR reactions at various annealing temperatures ranging from

the optimal temperature of 55˚C up to 72˚C. As shown in Fig 6, the binding affinity for the

fusion polymerase increased considerably. The specific PCR product for the NeqSSB-TaqS

DNA polymerase was observed at the annealing temperature of 72˚C, whilst for the TaqS

DNA polymerase at 65.5˚C. This suggests that the fusion enzyme containing DNA which

binds to NeqSSB protein, probably creates a much stronger bond to the primer-template than

that created by the TaqS DNA polymerase.

Tolerance of the fusion NeqSSB-TaqS DNA polymerase to PCR

inhibitors

The fusion NeqSSB-TaqS enzyme and the TaqS DNA polymerase were PCR-tested in the pres-

ence of serial dilutions of whole human blood, lactoferrin and heparin which all have been

Fig 5. Determination of processivity based on the melting temperatures of DNA products created in the presence of a heparin trap. (A)

Melting curves of the resulting products for the DNA polymerases. (B) Melting temperature of the elongated products.

https://doi.org/10.1371/journal.pone.0184162.g005
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reported to inhibit PCR [7, 8, 21, 33,34]. It was shown that the fusion NeqSSB-TaqS DNA poly-

merase was much more resistant to all the tested inhibitors than the TaqS Stoffel enzyme was.

NeqSSB-TaqS and TaqS polymerases remained functional in the presence of 0.3–1.25% and

less than 0.3% of whole blood, respectively (Fig 7A), 0.84–13.5 μg and 1.68 ng of lactoferrin,

respectively (Fig 7B), and 4.7–150 ng and 9.4 ng of heparin, respectively (Fig 7C).

Resistance to inhibitors including whole human blood was also tested in a PCR in which

primers were used to amplify a human CCR5 gene without the addition of any template (the

template came directly from the blood). As shown in Fig 7D, the fusion NeqSSB-TaqS DNA

polymerase amplified the human gene target in blood concentrations of 2.5%, whilst the TaqS

DNA polymerase was strongly inhibited at any tested blood concentration.

DNA binding preferences

The preference test in the form which was proposed by Olszewski et al. 2015 [13] allowed us to

demonstrate the DNA polymerase’s ability to bind single or double stranded DNA. Further-

more, the test indicated the DNA polymerase’s preferences for the particular types of DNA:

ssDNA is represented by oligonucleotides (dT)76 (green shine), whereas dsDNA is represented

as a PCR product (100bp) (pink shine). The results of gel electrophoresis of enzyme-DNA

complexes are shown in Fig 8A and 8B.

The results indicate that the NeqSSB-TaqS fusion DNA polymerase has a greater ability to

bind both with ssDNA and dsDNA. Partial ssDNA binding is already seen at 3.3 pmol of the

NeqSSB-TaqS DNA polymerase (Fig 8B, lane 13), whilst the full ssDNA binding occurs at 26.4

pmol (Fig 8B, lane 16). The binding of dsDNA is observed at 52.8 pmol of the fusion DNA

polymerase (Fig 8B, lane 17).

In the case of the TaqS DNA polymerase, an interaction with DNA starts to be observable

when it has a 7.5-fold higher concentration than the fusion DNA polymerase (Fig 8A). The

TaqS DNA polymerase has been shown to have partial ability to bind to both single and double

stranded DNA at a concentration of 24.6. pmol, without clearly indicated preference. The

NeqSSB-TaqS fusion DNA polymerase shows a noticeable preference for ssDNA over dsDNA.

Furthermore, the results indicate that polymerases interact with DNA in a completely different

way. The fusion polymerase creates distinct complexes typical of the interaction between SSB

protein and DNA [13]. Such complexes do not occur for TaqS DNA polymerase. These obser-

vations suggest that if the NeqSSB-TaqS polymerase contains NeqSSB protein then it creates a

significantly higher level of affinity between the NeqSSB-TaqS fusion polymerase and ssDNA.

Fig 6. The primer-template binding for NeqSSB-TaqS and TaqS DNA polymerases. The binding of fusion NeqSSB-TaqS (A) and native TaqS (B) DNA

polymerases to a primer-template measured at various annealing PCR temperatures (indicated in each lane at the top of the gels). The amplified products

were analyzed on a 2% agarose gel stained with ethidium bromide.

https://doi.org/10.1371/journal.pone.0184162.g006
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Fig 7. DNA polymerase tolerance to PCR inhibitors. The effect of blood (A), lactoferrin (B) and heparin (C) inhibitors on DNA

amplification with the use of the genomic DNA of S.aureus as a template and primers for specific nuc gene detection. The effect of

whole human blood on the DNA amplification with the use of primers for the amplification of a human CCR5 gene (D). No inhibitors

were used in control reactions. Lane M: DNA standards ladder (100–1000 bp). The amplified products were analyzed on a 2%

agarose gel stained with ethidium bromide.

https://doi.org/10.1371/journal.pone.0184162.g007
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Discussion

Currently, the PCR method is in common use in diagnostics, molecular biology and genetic

engineering. Amplification efficiency is strongly dependent on DNA polymerase and reaction

conditions. Modern diagnostic methods and genetic engineering techniques require the use of

new types of DNA polymerases with better properties as regards higher processivity and/or

amplification rates.

Available research suggests that the binding of enzymes to the template DNA is a very

important stage in the polymerization process. It induces a conformational change in the

thumb subdomain, creating a close fit with a DNA molecule. Another conformation change

occurs inside the enzyme during the binding of dNTP.

It has a bearing on the formation of a "closed" conformation, rotating the structural compo-

nents inside the fingers subdomain towards the 3’ end [35, 36]. By improving any of the

above-mentioned steps we can strongly influence the final performance of the whole process.

For this reason, we modify the reaction conditions for the known DNA polymerases to facili-

tate the first step which involves the binding of a polymerase to a DNA strand. Such modifica-

tions include the addition of SSB or PriB proteins [9, 13, 37–40]. A better example of such a

modification is the creation of fusion DNA polymerases which include proteins that bind nat-

urally to single and double stranded DNA. In our studies, to achieve proper fusion, we used

the NeqSSB protein of Nanoarchaeum equitans, which binds both types of DNA. The NeqSSB

is a small protein which has the unique properties of a hyperthermophilic protein and is active

as a monomer; therefore it can be used in PCRs at denaturation temperatures exceeding 90˚C.

We fused the polymerase with DNA binding proteins on the N-end using 6 amino acid linker

(Gly-Val-Asp-Met-Ile) in a similar way to that used in the fusion polymerase patented in 2013

[41]. The linker creates a more flexible and ‘relaxed’ fusion polymerase. Steric hindrances are

avoided which may be crucial for the stable association of the fusion polymerase with the DNA

template which is essential for the polymerisation process. Some studies [6, 11, 12] and our

tests have shown that the covalent linking of a DNA binding protein to a DNA polymerase can

strongly enhance the polymerase processivity. We have shown that a fusion polymerase which

included the NeqSSB protein increased the elongation rate threefold and improved processivity

from 9 nt to 19 nt. Inhibitors present in the tested material or which are a residue from the

Fig 8. A mobility shift assay for TaqS DNA polymerase (A) and NeqSSB-TaqS DNA polymerase (B) with ssDNA and dsDNA.

The output products were analyzed on a 2% agarose gel with ethidium bromide in the UV light. The reaction mix contained 10

pmol Oligo (dT)76 and/or 2.5 pmol PCR product with a length of 100 bp. In panel A: 1. Oligo (dT)76 and 0 pmol TaqS DNA

polymerase; 2. 100 bp PCR product and 0 pmol DNA polymerase; 3–9. Oligo (dT)76 and 100 bp PCR product with 24,6; 49,2;

98,4; 196,8; 393,6; 787,2; 1574,4 pmol of TaqS DNA polymerase, respectively. In panel B: 11. Oligo (dT)76 and 0 pmol

NeqSSB-TaqS DNA polymerase. 12. 100 bp PCR product and 0 pmol NeqSSB-TaqS DNA polymerase. 13–19. Oligo (dT)76

and 100 bp PCR product with 3,3; 6,6; 13,2; 26,4; 52,8; 105,6; 211,2 pmol NeqSSB-TaqS DNA polymerase, respectively.

https://doi.org/10.1371/journal.pone.0184162.g008
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process of isolation of nucleic acid are the most common problem encountered during the

amplification of environmental and blood samples [42]. PCR inhibitors can interact with DNA

or block enzymes by degrading the DNA polymerase, by inhibiting its active centre or by block-

ing access to this centre for cofactors such as magnesium ions [8, 43]. Inhibitors either reduce

the efficiency of PCR or block it completely. The available commercial native polymerases are

not always able to deal with these problems in a PCR. Our study shows that a fusion NeqSSB-
TaqS DNA polymerase created by joining a Taq Stoffel DNA polymerase with the NeqSSB-like

protein of Nanoarchaeum equitans exhibits a much higher tolerance to PCR inhibitors (blood,

lactoferrin, heparin) as compared to Taq Stoffel DNA polymerases. For example, the TaqS DNA

polymerase in a PCR mixture was completely inhibited in all of the tested whole blood concen-

trations and the endogenous CCR5 gene did not amplify at all, unlike the NeqSSB-TaqS DNA

polymerase which was able to amplify in 2.5% whole blood. High-thermostable DNA polymer-

ases have a broad range of applications in molecular biology, especially in the amplification of

GC-rich templates [43]. We showed that thermostability was remarkably higher for the NeqSSB-

TaqS DNA polymerase. The half-life at 95˚C was two times longer for NeqSSB-TaqS than for

TaqS DNA polymerases. Mg2+ ions are a critical parameter in PCRs and the optimization of

their concentration is essential for the native DNA polymerase. Unlike the TaqS DNA polymer-

ase, the NeqSSB-TaqS DNA polymerase exhibited acceptable amplification efficiency within a

wide range of Mg2+ concentrations (from 1 to 5 mM MgCl2). Furthermore, the NeqSSB-TaqS

DNA polymerase had a satisfactory amplification efficiency for (NH4)2SO4 and KCl concentra-

tions which were 2 and 3 times greater, respectively. The above-mentioned results are consistent

with the results obtained in another study in which a fusion DNA polymerase was tested [6].

The improvement in the properties of the NeqSSB-TaqS fusion DNA polymerase results

from a much better affinity to the DNA template and is also due to different binding mecha-

nisms as indicated in the results of the DNA binding assay.

The presence of an additional SSB protein which has a natural binding affinity to both

ssDNA and dsDNA increases the polymerase affinity for both types of the nucleic acids.

Research indicates that the natural binding affinity between the TaqS polymerase and dsDNA,

and especially ssDNA, is significantly lower than that for the TaqS polymerase in fusion with

NeqSSB. The TaqS polymerase started to interact with DNA in a noticeable but very limited

manner at protein concentrations which were at a level at which the fusion polymerase was

already able to completely bind to both single- and double-stranded DNA.

This has also been confirmed by DNA binding experiments in which DNA binding pro-

teins, eg.SSB indicated a higher affinity for DNA than for Taq and TaqS DNA polymerases

[44, 45]. Furthermore, the binding of DNA by a TaqS polymerase occurs in a completely dif-

ferent way than the binding of DNA by a fusion polymerase. In the fusion polymerase, the

NeqSSB protein is responsible for such a strong and preferential DNA binding as was shown in

the case of protein-DNA complexes typical of SSB proteins [13].

The results of the binding assay enable us to better understand the results discussed in the

section entitled Primer-template binding. The results indicate that, compared to TaqS reference

polymerase, the NeqSSB-TaqS fusion polymerase is better able to stabilize the double-stranded

DNA at the moment of the primer hybridization, and a PCR reaction may take place at a

higher primer attachment temperature. Such a stabilization of the double-stranded structure

in the presence of the NeqSSB-TaqS fusion polymerase can increase PCR specificity.

Conclusions

To summarize, a fusion NeqSSB-TaqS DNA polymerase consisting of the Taq Stoffel DNA

polymerase and the NeqSSB-like protein of Nanoarchaeum equitans exhibits a much higher
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extension rate, offers higher processivity and has a higher tolerance to PCR inhibitors as com-

pared to the Taq Stoffel DNA polymerase. For this reason, in many PCR applications, it may

be better to use a NeqSSB-TaqS DNA polymerase instead of a Taq DNA polymerase.

Supporting information

S1 Fig. The outline of the cloning method used to obtain a fusion NeqSSB-TaqS DNA poly-

merase created by joining a Taq Stoffel DNA polymerase and the NeqSSB-like protein of

Nanoarchaeum equitans. A DNA insert for cloning was prepared using two independent PCR

reactions. The amplicon obtained in PCR1 contained the nucleotide sequence of NeqSSB, a

linker coding sequence, an extra sequence complementary to the N-end of TaqStoffel and to

the pET30 EK/LIC plasmid.

The PCR2 amplicon contained the nucleotide sequence of TaqStoffel DNA polymerase, a

linker coding sequence and an extra sequence complementary to the C-end of NeqSSB and to

the pET30 EK/LIC plasmid.

These products and pET30EK/LIc plasmid which were digested by NdeI and BamHI restric-

tion enzymes, was used as a matrix in the Gibson reaction (OverLap Assembly kit).
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