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ABSTRACT

The life cycle of temperate phages includes a lyso-
genic cycle stage when the phage integrates into the
host genome and becomes a prophage. However,
the identification of prophages that are highly di-
vergent from known phages remains challenging. In
this study, by taking advantage of the lysis-lysogeny
switch of temperate phages, we designed Prophage
Tracer, a tool for recognizing active prophages in
prokaryotic genomes using short-read sequencing
data, independent of phage gene similarity search-
ing. Prophage Tracer uses the criterion of overlap-
ping split-read alignment to recognize discriminative
reads that contain bacterial (attB) and phage (attP) att
sites representing prophage excision signals. Perfor-
mance testing showed that Prophage Tracer could
predict known prophages with precise boundaries,
as well as novel prophages. Two novel prophages,
dsDNA and ssDNA, encoding highly divergent major
capsid proteins, were identified in coral-associated
bacteria. Prophage Tracer is a reliable data min-
ing tool for the identification of novel temperate
phages and mobile genetic elements. The code for
the Prophage Tracer is publicly available at https:
//github.com/WangLab-SCSIO/Prophage Tracer.

INTRODUCTION

Temperate phages can integrate into the bacterial chromo-
some to become prophages and enter lysogeny, maintaining
a long-term association with their bacterial hosts. Lysogeny

may be more prevalent than lytic cycles in bacteria-phage
interactions and may become increasingly important in
ecosystems with high microbial densities (1,2). Majority of
commensal bacteria within the human and murine gut, as
well as in coral microbiota (3–5), were found to be lyso-
gens, and prophages can be spontaneously induced as ac-
tive phages (4). Prophages may constitute up to 20% of a
bacterium’s genome (6) and serve as regulatory switches
that regulate bacterial genes via genome excision (7,8). A
novel family of non-tailed dsDNA viruses, Autolykiviridae,
was identified recently and revealed a large number of pre-
viously unrecognized prophages in various bacterial taxa
(9). Although the metagenomic analysis of geographically
diverse samples contributes to the identification of new
viruses (10,11), identifying novel prophages in prokaryotic
genomes remains challenging.

Many tools have been developed to predict prophages
using various strategies (12–18). Most of these meth-
ods, including Phage Finder, PHASTER, VirSorter and
Prophage Hunter, are mainly dependent on sequence simi-
larity searching against a built-in validated dataset contain-
ing known phages to recognize phage-related gene enriched
regions. However, phages are highly divergent and evolve
rapidly. Sequence conservation among phage structural
proteins, such as major capsid proteins (MCPs), decreases
rapidly, even over short evolutionary distances (19,20),
and therefore may not indicate readily detectable similar-
ity with identified phages. In addition, known phages may
represent only a small portion of phage diversity (10,11),
and a previous analysis demonstrated that most identified
prophages are derived from a small number of host phyla
(21). Furthermore, auxiliary metabolic genes are prevalent
in phages (11,22,23), which may also blur the boundaries
between prophages and host genome sequences. Therefore,
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sequence-similarity-independent approaches are needed to
identify novel temperate phages.

Compared to obligate lytic phages, the life cycle of tem-
perate phages includes a lysis-lysogeny decision-making
process. The lytic conversion of active prophages can af-
fect individual cells, as well as entire communities, and is
central to bacterial physiology, metabolism and evolution.
Cryptic prophages, which are incapable of forming plaques,
can also provide multiple benefits to the host for surviv-
ing adverse environmental conditions (24). We previously
discovered that the cryptic prophage CP4So in Shewanella
oneidensis excises specifically to increase the survival of
host at cold temperatures (25), and recently we further re-
vealed that the excision of CP4So relies on temperature-
dependent phosphorylation of the host H-NS (26). Indeed,
the spontaneous induction of various prophages at low rates
has been observed in various bacterial taxa (27–29). More-
over, stress conditions, such as UV and oxidative stress, and
biofilm formation also trigger prophage induction and/or
prophage excision (24,30,31). Conventional whole-genome
sequencing or the resequencing of microbes can generate
millions of pieces of short-read or long-read DNA sequenc-
ing data. Among these reads, a large number are not prop-
erly aligned when mapped to the reference genomes, which
may be attributable to horizontal gene transfer, genome re-
arrangement, and the activities of mobile DNA elements
(32). These improperly aligned reads, including split reads
and discordant read pairs, are usually overlooked during
the genome assembly process. However, they may provide
extra information on prophage induction and/or excision.
Therefore, we reasoned that the split reads generated from
prophage induction and/or prophage excision may pro-
vide an important genetic resource to identify unknown
prophages hidden in various microbial hosts.

Therefore, we designed Prophage Tracer, a simple algo-
rithm that uses overlapping split-read alignment to iden-
tify active and cryptic prophages hidden in DNA sequenc-
ing data. The basic logic of Prophage Tracer is that the at-
tachment sites of direct repeats (attL and attR) are recom-
bined to form bacterial (attB) and phage (attP) att sites (att
sites representing attL/R/B/P common core sequences),
and reads containing attB or attP can generate overlapping
split-read alignments. These discriminative signals can fa-
cilitate the prediction of prophages, requiring a minimum
of only one split read. In this study, utilizing the simulated
reads and DNA sequencing reads of a variety of bacterial
species, we demonstrate that Prophage Tracer can predict
known and novel active prophages that are highly diverse
with precise boundaries. This approach is independent of
phage gene similarity search. Taking advantage of DNA se-
quencing data, Prophage Tracer is a reliable data mining
tool and is complementary to other current state-of-the-art
tools for the study of prophages.

MATERIALS AND METHODS

Prophage workflow

For the chromosome-level assembled genome, split reads
and discordant read pairs were extracted from the align-
ment in SAM (Sequence Alignment/Map) format gener-
ated by Burrows-Wheeler Aligner (BWA-mem algorithm)

(33,34). Split reads cannot be represented as a linear align-
ment that can be split into more than two parts that are
aligned to different parts of the reference genome. First,
split reads were preliminarily extracted according to FLAG
strings matching aSbM and CIGAR strings matching 145,
81, 99 or 163 or FLAG strings matching aMbS and CIGAR
strings matching 97, 161, 147 or 83. The integer values of
a and b were allowed from 10–150 for paired-end reads
(2 × 150 bp) generated by commonly used Illumina in-
struments. These reads were extracted for further BlastN
(35) searching against the reference genome. If one read
split into two parts spanning R1–R2 and R3–R4 on the
query read, the integer values of these locations should be
R1 < R3 < R2 < R4 and were aligned to two different re-
gions of the reference genome by BlastN, ensuring an over-
lapping split-read alignment. Reads containing attB or attP
can be differentiated by the FLAG strings and the align-
ment locations on the reference genomes. The R1 to R4 loca-
tions represent the endpoints of attL and attR of prophage
candidates. These filtered reads were subsequently clustered
and summarized according to the R1 to R4 locations. Fur-
thermore, discordant read pairs were extracted according to
FLAG strings matching dM (integer values of d > 130) and
CIGAR strings matching 97, 145, 81 or 161 and merged to
the previously clustered split reads according the values of
POS and MRNM fields in the SAM file and whether they
spanned the R1 to R4 locations. The positions between dis-
cordant read pairs representing attB and attP were also con-
sidered in the clustering process. The positions of represen-
tative extracted discordant read pairs are shown in Supple-
mentary Figure S1. Finally, prophage candidates were fil-
tered according to att site length (default > 2 bp), prophage
size (default >5000 and <150 000 bp), and attB/attP event
count (default both ≥1). The default parameters of att site
length and prophage size were established according to pre-
vious studies (17,18).

For contig-level assembled genomes, further steps were
employed to extract split reads and discordant read pairs.
Briefly, if an intact prophage was located in two sepa-
rate contigs, in consideration of four possible orientations,
FLAG strings matching aSbM and CIGAR strings match-
ing 113 or 117 or FLAG strings matching aMbS and
CIGAR strings matching 65 or 129 were further used to ex-
tract split reads. FLAG strings matching dM and CIGAR
strings matching 177, 113, 129 or 65 were further used to
extract discordant read pairs.

Comparison with LUMPY using simulated data

To simulate genomes containing prophages, we used a
custom shell script available via Prophage Tracer GitHub
(https://github.com/WangLab-SCSIO/Prophage Tracer).
Genomes with ∼4 M base pairs containing one prophage
each were simulated. The length of the att site was ran-
domly selected from 2 to 145 bp (with a 1–2 bp mismatch
if att site > 2 bp) and prophage size from 5000 to 150 000
bp. The GC content across genomes was allowed to be
20–80%. The corresponding bacterial host genomes with
prophage-excised (containing attB) and circular prophage
genomes (containing attP) were also generated. Paired
reads of 2 × 150-bp with four different sequencing depths
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(10×, 20×, 50× and 100×) were generated using the
sequencing read simulator GemSIM (36) in metagenomic
mode which was used to simulate four different ratios of
the host genome, host genome with prophage excised, and
circular prophage genome (WT: attB: attP). A total of
320 sequencing read data points from 20 genomes were
simulated, and this step was repeated three times. Simulated
sequencing reads were aligned to reference genomes by
Burrows-Wheeler Aligner (BWA-MEM algorithm) (33,34),
and duplicates were removed by sambamba (37). The
outputs were further compared to evaluate the effect of se-
quencing depth on the sensitivity of LUMPY and Prophage
Tracer at various sequencing depths or att site lengths. The
default parameters and pre-processing steps of data used
in LUMPY procedure were the same as indicated on the
LUMPY GitHub (https://github.com/hall-lab/lumpy-sv).

Identification and characterization of prophages in coral-
associated bacteria

The genomes of seven bacteria belonging to Alphapro-
teobacteria, Gammaproteobacteria, and Flavobacteriia
were sequenced by the Illumina and PacBio platforms,
and complete genomes were assembled and annotated by
the NCBI Prokaryotic Genome Annotation Pipeline (38).
Short-read data from Illumina were used to predict ac-
tive prophages with Prophage Tracer, and genome se-
quences were analyzed using the LUMPY, PHASTER and
Prophage Hunter web portals. The prophage excision and
predicted attB and attP sites were confirmed by a PCR-
based assay followed by sequencing using primers flanking
each prophage (Supplementary Table S1). The prophage ex-
cision rate was evaluated by quantitative PCR (qPCR) as
previously described (25). The relative amounts of the ex-
cised prophages were determined using the reference gene
gyrB. qPCR was assayed for technical triplicates of each bi-
ological repeat. Primer pairs are listed in Supplementary Ta-
ble S1. Sequencing depths (i.e. coverage) across the genomes
of seven coral-associated bacteria were plotted using kary-
oploteR with a window size of 1000 bp (39).

Prediction of prophages in publicly available genomes

Prophage Tracer was tested using publicly available
chromosome-level genomes that had their corresponding
short-read sequencing data also deposited in NCBI (Sup-
plementary Table S2). In order to evaluate the capability of
Prophage Tracer on the chromosome-level and the contig-
level of assembled genomes, these genomes were reassem-
bled to the contig-level only using their short-read sequenc-
ing data by Shovill v1.1.0 with default parameters (T. See-
man, https://github.com/tseemann/shovill). Short-read se-
quencing data were pre-processed by Trimmomatic v0.39
(40) to remove low-quality (pred33) regions and adapters.
Predicted prophages from two different levels of genome as-
semblies were manually checked for the presence of phage
structural genes or other phage related genes annotated
using the CDD database (41). Chromosome-level, contig-
level and prophage genomes of each strain were aligned by
QUAST v5.0.2 (42) to confirm the locations of contigs and
prophages on the chromosomes.

Phylogenetic analysis

Each sequence of major capsid protein of representative
prophages was used as a query for PSI-BLAST (43) against
the NR database and sequences with e-value < 0.05 were
collected. All recovered sequences were clustered at 70%
identity using CD-HIT suite (44).The filtered sequences
were aligned by MAFFT (45) and further edited by trimAl
(46). Each final data set was used for the maximum likeli-
hood (ML) phylogenetic analysis by the W-IQ-TREE (47).
The best-fit substitution model was automatically deter-
mined and the reliability of internal branches was tested by
1000 ultrafast bootstrap replicates (48) in the W-IQ-TREE
web interface. The tree was further annotated by the iTOL
tool (49).

RESULTS

Overview of Prophage Tracer

Prophage Tracer employs a simple principle: prophage in-
duction and/or excision can generate genetic structural
variations, including circular prophage DNAs and/or large
genomic deletions on the bacterial chromosome. This pro-
cess leads to some sequencing reads being improperly
aligned to the reference genome during genome assembly.
These improperly aligned reads can be utilized to identify
prophages and to locate prophage boundaries. This strat-
egy does not rely on known phage sequences and has the
potential to identify novel prophages.

The overall Prophage Tracer workflow is shown in Fig-
ure 1A. Prophage Tracer takes aligned reads in SAM for-
mat as input. First, split reads and discordant read pairs are
preliminarily extracted according to FLAG and CIGAR
strings (defined by the SAM specification). As illustrated in
Figure 1B, if the split reads contain attB or attP sites, then
this site matches the attL and attR of the reference genome.
Therefore, alignment of the split read and the correspond-
ing reference genomes generate overlapping regions inside
the split reads, suggesting that this region contains poten-
tial attB or attP sites. The concept of overlapping split-
read alignment is simple but critical for Prophage Tracer to
precisely identify candidate prophages. Next, overlapping
alignment from BlastN output is used to infer the precise
positions of attL and attR sites (Figure 1B and Supple-
mentary Figure S2A). Candidate prophage boundaries are
clustered by judging the proximity of all four of attL and
attR site positions, and discordant read pairs are merged ac-
cording to the candidate prophage boundaries. Meanwhile,
attB/attP events are counted for each candidate prophage.
Finally, candidate prophages are filtered by attB/attP event
count, prophage size and att site length.

This approach can eliminate the overwhelming numbers
of false positive split reads that are generated in mapping
routine bacterial genome sequencing reads by other types
of unknown structural variations. This approach can be ap-
plied to chromosome- or contig-level genomes. For an in-
tact prophage located in a complete-level genome or in one
contig of a contig-level genome, Prophage Tracer can pro-
vide the precise positions of att sites and the lengths of
prophages. For an intact prophage located separately at the
termini of two contigs of contig-level genomes, Prophage
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Figure 1. Prophage Tracer workflow using overlapping split-read alignment to detect prophages. (A) The workflow schematics of Prophage Tracer including
extracting, clustering and filtering steps. (B) Reads containing attB or attP caused by prophage excision can generate overlapping alignments (overlapping
length is approximately equal to att sites), which can be a discriminative signal for prophage detection. SRs: split reads; DRPs: discordant read pairs.

Tracer can also provide precise positions of att sites and the
approximate lengths of prophages, which might be useful
as a screening tool to determine whether contigs are worth
converting contigs to complete-genomes for the extraction
of intact prophages. Furthermore, mobile genetic elements
that rely on site-specific recombinases can also detected by
Prophage Tracer. The requirement of CPU and memory us-
age for Prophage Tracer is low, and the runtime is ∼30–60 s
per run. A typical output of Prophage Tracer contains po-
sitions of attL and attR, evidence counts of attB and attP,
and overlapping split-read alignment to enable the further
manual determination of the potential impact on genes dis-
rupted at the integration sites.

Comparison with LUMPY using simulated data

Since Prophage Tracer employs a strategy based on the de-
tection of split reads and discordant read pairs, we com-
pare it with LUMPY, which employs a similar strategy (50).
LUMPY is designed for the detection of structural variation
and is primarily employed for human genome analysis, as
well as for bacterial resequencing analysis (51,52). Overall,
Prophage Tracer performed better than LUMPY on sim-
ulated data with low prophage excision rates and low se-
quencing depths (Figure 2). Prophage Tracer was able to de-
tect prophage excision signals when the prophage excision
rate (attB/WT) was ∼1/1000 (without replication which
was calculated from attP/attB) at a minimum sequencing
depth of 50× (left panel of Figure 2A). At this excision rate,
if the abundance of circular prophage DNA was 10 times
higher, Prophage Tracer could detect prophage excision sig-
nals when the sequencing depth was as low as 10× (middle
panels of Figure 2A). In comparison, LUMPY required a
higher prophage excision rate and a higher abundance of

circular prophages, and it only performed as well as with
Prophage Tracer when the prophage excision rate (attB/WT
≥ 1%) and replication (attP/attB = 99) were both high
(right panel of Figure 2A).

By manually checking the simulated data, we found that
the Prophage Tracer could detect more split reads than
LUMPY at four different sequencing depths (Figure 2B).
Further simulation analysis (using att site length 2–160 bp)
revealed that Prophage Tracer could extract prophage split
reads with att site lengths ranging from 2 bp to 130 bp, while
LUMPY can only extract the split reads from 2 to 50 bp
(Figure 2C and Supplementary Table S3). In addition, the
ability to detect split reads by LUMPY was greatly reduced
with the increase of att site length when att site length >20
bp. We further checked the scripts of LUMPY found that
the algorithm used by LUMPY to recognize split reads re-
lies on the previously assigned of the ‘SA’ or ‘XA’ tags by
BWA-MEM in SAM files. According to the BWA-MEM
and the SAM format specification (33,53), an alignment
of a read can be linear or chimeric. For a chimeric align-
ment, it contains a set of alignments that do not have large
overlaps. If a chimeric alignment contains two linear align-
ments spanning R1–R2 and R3–R4 on the query read (Sup-
plementary Figure S3), the assignment of ‘SA’ or ‘XA’ tags
to the alignment depends on the length the overlaps (R2–R3)
and the proportion of the overlaps in each linear alignment
[(R2 – R3)/(R2 – R1) and (R2 – R3)/(R4 – R3)]. This lim-
its the ability of LUMPY to detect split reads containing
att sites larger than 50 bp. Instead, we employed BlastN to
generate reliable overlapping alignments from the output of
BWA-MEM and a custom algorithm to extract split reads
in Prophage Tracer. This strategy enabled Prophage Tracer
to precisely detect prophage induction or excision signals as
long as the discriminative split reads contain attB or attP,
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Figure 2. Performance comparison of Prophage Tracer and LUMPY using simulated data. (A) Comparison of sensitivity for prophage detection. Sensi-
tivity is defined as the average ratio of positive hits of three rounds of simulated data (each round with 20 genomes). The ratio of the host genome, host
genome with prophage excised and circular prophage genome (WT: attB: attP) is on the top of each panel. (B) The average relative ratio of recovered split
reads between LUMPY and Prophage Tracer. (C) The recovered split reads by Prophage Tracer and LUMPY from simulated data with att sites ranging
from 2 to160 bp. Expected split reads in the SAM file using simulated data was extracted according to CIGAR strings of aMbS or aSbM (integer values
of a and b from 1–149) mapping at expected prophage positions. Detailed information on the simulated data is listed in Supplementary Table S3.

Table 1. Prediction of known prophages in four representative strains

Strains Prophage Contig attL start attL end attR start attR end Size (bp)
Length of

att site References

Pseudomonas aeruginosa
PAO1

Pf4 NC 002516.2 785288 785336 797699 797747 12411 49 (54)

Shewanellaoneidensis
MR-1

CP4So NC 004347.2 1501853 1501946 1538064 1538157 36211 94 (25)
LambdaSo NC 004347.2 3074594 3074605 3126435 3126446 51841 12 (57)

Escherichia coli K-12 rac NZ CP009273.1 1406156 1406198 1429216 1429258 23060 43 (24,55,56)
Listeria monocytogenes
10403S

�10403S NC 017544.1 2319845 2319847 2357456 2357458 37611 3 (8,58)

even with a low prophage excision rate and a low sequencing
depth.

Validation of the Prophage Tracer workflow

To validate the capability of Prophage Tracer to pre-
dict prophages, publicly available whole-genome sequenc-
ing data of bacterial isolates with identified prophages were
utilized. Active and cryptic prophages, including the Pf4
prophage in Pseudomonas aeruginosa PAO1, the CP4So
and LambdaSo prophages in S. oneidensis MR-1, the rac
prophage in Escherichia coli K-12 and �10403S in Liste-
ria monocytogenes 10403S, were successfully detected by
Prophage Tracer (Table 1 and Supplementary Table S4).

Split reads representing the attP events of Pf4 were detected,
which was consistent with the presence of replicative form
Pf4 molecules in the liquid culture of P. aeruginosa PAO1
(54). Using published E. coli K-12 resequencing data (55),
the prophage rac was identified, and only a small number
of split reads representing attP events were observed in var-
ious samples, suggesting that rac can be spontaneously in-
duced at low ratios, which was consistent with the results
of our previous research (24,56). Using our resequencing
data of S. oneidensis MR-1 cultured at 4◦C, both the CP4So
and LambdaSo prophages were predicted. In contrast, only
LambdaSo prophages were predicted at 30◦C. This result
was in agreement with the results of our previous study,
which demonstrated that CP4So was induced only at low
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Table 2. Comparison of outputs of the predicted active prophages by Prophage Tracer with PHASTER or Prophage Hunter in seven coral-associated
bacterial strainsa

Prophage Tracer

Strain name Prophage attL start attL end attR start attR end Size PHASTERb Prophage Hunterc

Erythrobacter aquimaris
SCSIO 43205

Pea1 1888722 1888741 1936851 1936870 48129 Questionable (70): Active (0.9): 1885416–1903092
1895962–1915899 Active (0.97): 1888722–1936870

Active (0.91): 1917844–1948048
Ruegeria conchae SCSIO
43209

Prc1 1373446 1373460 1379997 1380011 6551 - Inactive (0.12):1362384–1392851

Halomonas meridiana
SCSIO 43005

Phm1 292609 292683 333351 333425 40742 Intact (150): Inactive (0.14): 274307–310741
293153–331437 Active (0.9): 292613–333425

Phm2 1064123 1064145 1100156 1100178 36033 Intact (150): Ambiguous (0.73): 1064268–1100128
1075299–1101737

Phm3 2090511 2090576 2139945 2140010 49434 Incomplete (20): Active (0.93): 2077440–2104589
2090437–2116834 Active (0.97): 2090511–2140010

Ambiguous (0.76): 2124591–2138678
Vibrio nigripulchritudo
SCSIO 43132 (contig1)

Pvn1 353280 353303 367745 367768 14465 - Ambiguous (0.77): 350448–374105

Marixanthomonas ophiurae
SCSIO 43207

Pmo1 2643352 2643371 2676198 2676217 32846 - -

Mesoflavibacter sabulilitoris
SCSIO 43206

Pms1 2668021 2668042 2679241 2679262 11220 - Inactive (0.34): 2648530–2674443

Zunongwangia mangrovi
SCSIO 43204

Pzm1 1472262 1472314 1512357 1512409 40095 Incomplete (30): Ambiguous (0.72): 1461300–1484415
1486303–1511274 Active (0.92): 1469187–1485662

Active (0.95): 1487346–1517819
Inactive (0.26): 1510309–1532089

aFull outputs of these three tools and LUMPY are shown in Supplementary Table S6.
bOutputs of prophage regions predicted by PHASTER (the scores are in parenthesis and the predicted ends are shown). ‘–’ indicates ‘not detected’.
cOutputs of prophage regions predicted by Prophage Hunter (the scores are in parenthesis and the predicted ends are shown). ‘–’ indicates ‘not detected’.

temperatures (25) and that LambdaSo had a relatively high
excision rate (57). Furthermore, the impact of prophage ex-
cision on genes at the integration loci was determined in the
Prophage Tracer output. It was demonstrated that the exci-
sion of CP4So caused the deletion of a U at the 3′-end of the
tmRNA (SsrA), destroying this G·U wobble base pairing
(25) (Supplementary Figure S2B). Furthermore, the inte-
gration of prophage �10403S within comK in L. monocyto-
genes 10403S (8,58) was also predicted, and it contains a 3-
bp att site and a serine-type recombinase. Overall, Prophage
Tracer is able to precisely predict known active prophages.

Comparison with PHASTER/Prophage Hunter/LUMPY
to predict prophages

PHASTER (12) and Prophage Hunter (18) are designed for
the detection of prophages in prokaryotic genomes using
similarity searching. To evaluate the potential of Prophage
Tracer to predict prophages, seven different bacterial strains
isolated from the stony coral Galaxea fascicularis (11,59,60)
were sequenced and analyzed by Prophage Tracer and
these two methods. In total, nine candidate prophages were
predicted by Prophage Tracer (Table 2). In comparison,
LUMPY missed four of them because the number of split
reads was too low or the length of att sites was too long to be
detected by LUMPY, which was consistent with our tests on
the simulated data above (Supplementary Table S5). In ad-
dition, among these nine candidate prophages, PHASTER
also identified five of them and Prophage Hunter identi-
fied eight of them to some degree (Supplementary Table
S5). The annotation of these five prophages demonstrated
intact phage structural and regular proteins, such as cap-
sid, head, tail, terminase, portal and integrase (Supplemen-
tary Table S6). Next, we checked the boundaries and attach-
ment sites of these prophages using PCR primers to specifi-
cally amplify the region containing the attB or attP region,

and we subsequently sequenced these regions (Supplemen-
tary Figure S4). The boundaries and attachment sites of
these prophages predicted by Prophage Tracer agreed well
with the results of the PCR-based assay (Supplementary Ta-
ble S7). In contrast, some prophage boundaries predicted
by Prophage Hunter or PHASTER were not accurate (Ta-
ble 2).

Among the five prophages, Phm3 is integrated into the
tRNA-Leu of Halomonas meridiana SCSIO43005 (Sup-
plementary Table S7). Further analysis showed that this
prophage was similar to a metagenomic assembled prokary-
otic dsDNA virus (MK892487.1) (Supplementary Figure
S5 and Supplementary Figure S6) from the virome obtained
during the Tara Oceans and Malaspina research expedi-
tions (61,62), indicating that this dsDNA virus is a temper-
ate phage. The MCP of Phm3 showed ∼30% sequence iden-
tity with the MCPs of characterized Myoviridae viruses.

Capability to predict novel prophages

For the nine prophages predicted by Prophage Tracer,
three of them may represent novel temperate phages (Ta-
ble 2). The annotation of the potential capsid proteins
of these prophages only showed remote homologs with
other viruses (Supplementary Table S6). In particular, these
three prophages were not detected as prophages (intact,
incomplete or questionable) by PHASTER. As Prophage
Hunter generated up to 106 ambiguous or inactive can-
didate prophage regions for the seven strains tested, we
found that some ambiguous or inactive prophages partially
overlapped with the three novel prophages predicted by
Prophage Tracer. However, these hits either had low scores
or were far away (> 10 kb) from the ones predicted by
Prophage Tracer (Table 2 and Supplementary Table S5).

Prophage Prc1 in Ruegeria conchae SCSIO 43209 has a
6 551-bp circular genome with nine predicted genes within
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Figure 3. Gene maps and phylogenetic analysis of major capsid proteins of representative prophages. Gene maps of Pcr1 (A), Pvn1 (B) and Pms1 (C).
Gene orientation of circular genomes was adjusted to make the aligned major capsid proteins. All the genomes are on the same scale as indicated. Genes
are represented by block arrows and are colored according to gene function. Homologs of hypothetical proteins in (B) are indicated in black. Unrooted
maximum likelihood trees of MCP homologs of Pcr1 (D), Pvn1 (E) and Pms1 (F). MCPs from isolated or uncultured viruses are highlighted in the trees,
and MCPs from prophages are indicated as branches. Branch lengths are proportional to the number of amino acid substitutions.

the Microviridae family according to the genome content
and phylogenetic analysis of MCPs (Figure 3AD). Closely
related homologs of Prc1 MCP were found in other Al-
phaproteobacteria and metagenomic assembled Microviri-
dae spp. and fell into a separate clade different from
two members of the Microviridae subfamily (Gokushoviri-
nae and Bullavirinae) and the recently identified Ruege-
riap phage vB RpoMi-Mini (63) and Citromicrobium phage
vB Cib ssDNA P1 (64). Temperate Microviridae phages
are prevalent in the human gut and have been found to
be integrated in the genomes of Firmicutes, Bacteroidetes,
and Proteobacteria (65). Similarly, Microviridae sequences
were dominant in coral virome communities (66), and their
abundance increased in stressed/bleached corals (67,68).
These results suggested that temperate Microviridae phages
in coral are more diverse than previously thought.

In addition, prophage Pvn1 in Vibrio nigripulchritudo
SCISO 43132 has a 14 465-bp circular genome with 27 pre-
dicted genes, integrated within the tRNA-dihydrouridine
synthase A (dusA) gene and encoding double jelly roll
(DJR) MCP. The genome organization of Pvn1 is similar to
that of Pseudoalteromonas phage PM2 (69) and the recently
identified prophages in Vibrio species (9) (Figure 3BE).
Moreover, prophage Pms1 in Mesoflavibacter sabulilitoris
SCSIO 43206 has an 11 220-bp circular genome with 18
predicted genes (Supplementary Table S6). BlastP search-
ing revealed no sequence similarity of the phage structural
genes to known viruses. Further utilization of the remote
homology detection tool HHpred identified more phage-

related genes in Pms1 (Figure 3C), especially INR78 12270,
which showed undetectable amino acid sequence similarity
but was structurally similar to the MCP of Flavobacterium
phage FLiP (70), and INR78 12275, which showed 27%
identity with the ssDNA replication protein in Cellulophaga
phage phi48:2 (71). FLiP group phages are unusual lipid-
containing ssDNA bacteriophages encoding DJR MCP
that are mainly found in dsDNA bacteriophages (71,72).
One representative FLiP group phage was isolated from
red snapper tissue samples (73). All the MCPs found in the
FLiP group primarily belong to marine Bacteroidetes, and
the MCP of Pms1 was classified into a distinct clade differ-
ent from other known FLiP group phages in the phyloge-
netic tree (Figure 3F). These results indicate that prophage
Pms1 may represent a novel temperate bacteriophage that
is similar to FLiP. Additionally, the Pmo1 element in Mar-
ixanthomonas ophiurae SCSIO 43207 is integrated into the
tRNA gene and contains an integrase. This element con-
tains various transporters, virulence associated protein E,
VirE and outer membrane protein TolC encoding genes,
and no phage structural genes were identified. This suggests
that it may be other type of mobile genetic elements.

Genomes of the seven coral-associated bacteria tested
were complete-level genomes. To further evaluate the capa-
bility of Prophage Tracer to detect prophages using contig-
level genomes, the contig-level genomes of the same seven
strains were re-assembled using their corresponding short-
read sequencing data. In contig-level genomes, an intact
prophage may be integrated into an intact contig sur-
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Figure 4. Prophage Tracer combined with qPCR to estimate the fold-change of prophage excision rate with or without mitomycin C. (A) Read counts
in the outputs of Prophage Tracer of seven coral-associated bacterial strains with or without mitomycin C. SR, split read; DRP, discordant read pair. ‘–’
indicates ‘not detected’ or ‘unable to calculate’. The calculation of the fold-change of excision rate using read counts in the outputs of Prophage Tracer (if
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contig are shown in Supplementary Table S8. (B) Excision rates of Phm1, Phm2 and Phm3 prophages in SCSIO 43005 quantified by qPCR. Fold-change
are indicated for Phm1 and Phm3, and significant changes are marked with one asterisk for P < 0.05. (C) Alignments of prophages to contig-level genomes.

rounded by host sequences, separated at the termini of
two contigs, or assembled into their own contigs. For the
above eight prophages and one mobile genetic element, we
found that six were in one intact contig and three (Pea1,
Phm1 and Phm3) were in the termini of two or three con-
tigs (Figure 4A, C). For Pea1, Phm1 and Phm3, Prophage
Tracer could detect almost identical split reads and discor-
dant read pairs using either complete-level or contig-level
genomes (Figure 4A and Supplementary Table S8). Fur-
thermore, we tested Prophage Tracer using publicly avail-
able chromosome-level genomes that have their correspond-
ing short-read sequencing data also deposited. A total of 81
candidate prophages or other mobile genetic elements with
tyrosine-type recombinases or serine-type recombinases in
51 archaeal and bacterial genomes were predicted (Sup-
plementary Table S2). Among them, 32 strains containing
48 prophage regions with high sequencing qualities were
chosen for further assembling contig-level genomes. Using
these contig-level genomes, Prophage Tracer predicted that
18 prophage regions were integrated into a contig and 15
were separated at the termini of two contigs. The remain-
ing 15 prophage regions were not predicted in contig-level
genomes, partly because they were assembled into their own
separate contigs. These results indicate that our approach
may be useful as a preliminary screening tool for prophages
in contig-level genomes to determine whether it is worth
converting contigs to complete-genomes in order to extract
intact prophages for subsequent study.

Prophage Tracer can not only predict prophages using the
above sequencing data derived from pure culture genomes,
but also from data derived from enriched mixed culture. A
recently discovered manganese oxidation bacterium ‘Candi-

datus Manganitrophus noduliformans’ cannot be isolated
a pure culture, and can only be enriched in a mixed cul-
ture with other bacteria (74). Using the sequencing data
of the mixed culture downloaded from NCBI, Prophage
Tracer detected two potential prophage regions in ‘Candida-
tus Manganitrophus noduliformans’ with accurate bound-
aries (Supplementary Table S2). One potential region con-
tains genes encoding typical phage structural proteins, sug-
gesting that it is an active prophage. Another potential re-
gion does not contain phage genes but contain genes encod-
ing conjugal elements, transposase, and defense systems (i.e.
retron (75) and type 3 BREX system (76)), suggesting that it
is a defense island. Taken together, our results indicated that
Prophage Tracer, which is built-in database-independent, is
a reliable tool for predicting novel prophages and other mo-
bile genetic elements.

Application and limits of Prophage Tracer to detect
prophages

To further explore whether Prophage Tracer can be em-
ployed to detect prophage excision under stressed con-
ditions, H. meridiana SCSIO 43005 was treated with 0.2
�g/mL mitomycin C for 4 hours and subjected to genome
resequencing analysis. As shown in Figure 4A, compared to
the untreated control, the number of extracted split reads
and discordant read pairs containing the att sites of Phm1
and Phm3 relative to the total sequencing reads were much
higher under mitomycin C induced condition. Our analy-
sis on simulated data showed that the number of detected
split reads of a prophage was highly correlated to the att
site length at the same sequencing depth (Figure 2C), thus
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Prophage Tracer is not appropriate for the calculation of
the excision rate of each prophage. However, for one spe-
cific prophage, read counts in the Prophage Tracer output
can be used to estimate the fold-change of the excision rate
under different conditions as shown in Figure 4A. It was
found that mitomycin C induced the prophage excision of
Phm1 and Phm3. Next, we performed qPCR to check the
reliability of detecting the change of prophage excision us-
ing Prophage Tracer. Since Prophage Tracer can accurately
predict the att sites of the prophages (Table 2), two pairs of
qPCR primers were designed for each prophage to amplify
the regions containing attB and attP (product size 200–300
bp; Supplementary Table S1), and used for quantifying the
prophage excision. Consistently, qPCR results showed that
the excision rates of Phm1 and Phm3 of SCSIO 43005 were
greatly increased by mitomycin C (Figure 4B). The fold-
change of excision rate quantified by qPCR was similar to
the ones estimated using the reads values from the outputs
of Prophage Tracer (Figure 4AB). The remaining six strains
were also treated with mitomycin C and resequenced, and
it was found that the excision rate of Pzm1 prophage of
Z. mangrovi SCSIO 43204 was significantly increased with
the mitomycin C treatment (Figure 4A). Thus, Prophage
Tracer can be applied to detect the change of prophage ex-
cision at various conditions. Furthermore, the precise pre-
diction of att sites by Prophage Tracer can then be used to
design qPCR primers for subsequent quantification of the
prophage excision rate by qPCR at a given condition.

Next, we investigated the detection power of Prophage
Tracer to predict prophage with low excision rates and/or
low replication rate at different sequencing depth. From
our real sequencing data, Prophage Tracer can detect
Phm1 (excision rate (attB/gyrB) of 2.6 × 10−3; replica-
tion (attP/gyrB) of 1.4 × 10−2), Phm2 (excision rate of
0.27 × 10−3; replication of 0.81 × 10−3) and Phm3 (ex-
cision rate of 4.2 × 10−3; replication of 1.3 × 10−1) us-
ing ∼290 × sequencing depth in the absence of mitomycin
C (Figure 4). Prophage Tracer can also predict prophage
that is not excisable but can replicate. As shown above, Pf4
prophage was not excised in the liquid culture of P. aerug-
inosa PAO1, but Prophage Tracer detected the presence of
replicative form Pf4 based on the split reads containing attP
at ∼170 × sequencing depth (Supplementary Table S4).
Based on our analysis, in order to detect prophages with low
excision rate, 100–1000× sequencing depth for a genome is
recommended. At this range of sequencing depth, Prophage
Tracer can detect the hidden prophages with excision rates
(attB/gyrB) >10−3 and/or replication (attP/gyrB) >10−3

in host genomes. Otherwise, more efforts should be given to
explore the special conditions that can trigger prophage ac-
tivation or excision in order to detect the hidden prophages
by Prophage Tracer.

Last but not the least, we wanted to explore whether
Prophage Tracer missed any prophages with high excision
rates in the seven coral-associated bacteria through the
analysis of sequencing depth across genomes. Briefly, the
presence of genomic regions with unusually high sequenc-
ing depth indicates the possible presence of a prophage
in this region. As shown in Supplementary Figure S7, the
regions containing the three prophages (Pea1, Phm3 and
Pzm1) with high excision rate or replication showed unusu-

ally high sequencing depths were all predicted by Prophage
Tracer. Indeed, one genomic region also showed high se-
quencing depth in strain SCSIO 43204 but it was missed
by Prophage Tracer. Further analysis showed that this
prophage encodes proteins similar with Gp1 (protease I),
Gp29 (DUF935 family) and Gp36 (DUF1320 family) of
Mu phages, suggesting that it is a Mu-like prophage capable
of packaging host genomes with variable ends (Supplemen-
tary Table S6). Likewise, we used Prophage Tracer to rean-
alyze the phage DNA sequencing data of a published study
in which three mitomycin C induced prophages, BLi Pp2,
BLi Pp3 and BLi Pp6 were experimentally identified in
Bacillus licheniformis DSM13 (77). Prophage Tracer de-
tected BLi Pp3 and BLi Pp6 but not BLi Pp2 (Supplemen-
tary Table S2), and a previous study showed that prophage
BLi Pp2 can randomly package DNA of the host genome
(77). Noticeably, sequencing depth of the six prophages in
the seven coral-associated bacteria were indistinguishable
compared with the rest of host genomes, but they were able
to be captured by Prophage Tracer (Supplementary Fig-
ure S7).

Here, we showed that the power of detecting prophage by
Prophage Tracer is limited by the nature of the prophage, ei-
ther having a very low excision rate or having variable ends.
Collectively, Prophage Tracer can detect hidden prophages
if they can excise with stable att sites at excision rate higher
than >10−3 at the sequencing depth of 100–1000 × with
precise boundaries.

DISCUSSION

Prophage-host interactions are currently recognized as be-
ing often mutualistic, rather than purely parasitic (78).
Prophages are an important component of bacterial
genomes and play critical roles in bacterial adaptation and
evolution (7). The identification of active prophages is of
central importance to the study of phage-host interactions.
Prophage Tracer was validated and outperformed LUMPY
using simulated reads, and it was determined to be supe-
rior to PHASTER and Prophage Hunter in predicting novel
and highly divergent prophages in coral-associated bacte-
ria. Furthermore, the predicted prophage boundaries were
determined to be accurate, and read counts in the output
can be used to estimate the fold-change of the excision
rate under different conditions for one given prophage. The
impact of prophage excision on genes containing attB or
attP can also be manually analyzed in the Prophage Tracer
output of overlapping split-read alignment. The accurate
detection of prophage boundaries is important because
prophages are usually integrated within bacterial functional
genes (e.g. tRNA and tmRNA genes), and integration or
excision may inactivate or reactivate target genes, which
may affect the adaptation of bacterial hosts under diverse
environments (7,79). Recent advances in DNA sequenc-
ing technologies have yielded overwhelming quantities of
publicly available data on bacterial and archaeal genomes
and their corresponding raw sequence reads. Mining active
prophages in these genomes with accurate integrated sites
may facilitate the study of phage ecology. Furthermore, we
also expect that the application of Prophage Tracer will lead
to the discovery of prophages in bacterial or archaeal taxa
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that are slow-growing and hard to cultivate, such as SAR11
(80) and ‘Asgard’ archaea (81). Additional functionality of
the tool includes the identification of other families of mo-
bile genetic elements that rely on site-specific recombinases,
such as phage-inducible chromosomal islands, gene transfer
agents, and integrative elements (82).

Because of the logic of Prophage Tracer, it has a few lim-
itations. First, this tool cannot recognize prophages that do
not excise or replicate during sample preparation for se-
quencing, or whose sequencing depth is too low to cap-
ture even one read containing attB or attP. Second, since
Mu-like prophages excise with variable ends and other
extrachromosomal/plasmidial prophages would not gen-
erate new junctions during their life cycle, they could not
be detected by Prophage Tracer. Third, Prophage Tracer
was designed for prophages with att site lengths shorter
than read lengths. For att site lengths longer than the read
length, discordant read pairs can also be used to estimate
the boundaries. Lastly, Prophage Tracer may miss some
prophages in contig-level genomes that have higher excision
and replication activities and are assembled into their own
separate contigs. In this case, the evaluation of sequencing
the depth of contigs may be useful to distinguish which con-
tigs are prophages. Therefore, Prophage Tracer is comple-
mentary to other tools, such as PHASTER and Prophage
Hunter, and a combined approach would enable a more
accurate prediction of prophages. Additionally, the perfor-
mance of Prophage Tracer on long-read sequencing data
has not been determined. Third-generation sequencing uti-
lizing Pacific Biosciences (PacBio) and Oxford Nanopore
Technologies (ONT) methods can generate long-read se-
quencing data, and these methods are now widely employed
for genome sequencing. Further efforts to optimize the per-
formance using long-read sequencing data could expand
the application of Prophage Tracer.

In theory, circularized prophage sequences resulting from
prophage genome excision can also be recognized by
Prophage Tracer in metagenomic sequencing data. Several
tools have been developed for the identification of viral se-
quences from assembled metagenomic data. Seeker recog-
nizes bacteriophage genomes through deep learning utiliz-
ing Long Short-Term Memory (LSTM) models neural net-
works (83). DeepVirFinder also utilizes deep learning to
identify viral sequences (84). VirFinder employs k-mer fre-
quency and machine learning to distinguish viral from bac-
terial contigs (85). Excised prophages could be an impor-
tant component of the virome in various ecosystems (4,10).
These tools cannot detect viral contigs representing excised
circular or linear prophage DNA unless this prophage is ex-
cised or replicates at a high enough rate to assemble a viral
contig. Prophage Tracer may recognize rare prophage exci-
sion signals in the metagenome if the host genome can be
assembled. In this case, Prophage Tracer could be comple-
mentary to other current state-of-the-art tools for the study
of prophages in metagenomes.

DATA AVAILABILITY

The code for the Prophage Tracer is written in the
shell script including the Unix awk utility and is pub-
licly available (https://github.com/WangLab-SCSIO/

Prophage Tracer). Bacterial genomes and sequencing read
data have been deposited under GenBank BioProject
numbers PRJNA668462 and PRJNA682846.
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