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Abstract
Objective. In electroencephalography (EEG) measurements, the signal of each recording electrode is
contrasted with a reference electrode or a combination of electrodes. The estimation of a neutral
reference is a long-standing issue in EEG data analysis, which has motivated the proposal of different
re-referencing methods, among which linked-mastoid re-referencing (LMR), average re-referencing
(AR) and reference electrode standardization technique (REST). In this study we quantitatively
assessed the extent to which the use of a high-density montage and a realistic head model can impact
on the optimal estimation of a neutral reference for EEG recordings. Approach. Using simulated
recordings generated by projecting specific source activity over the sensors, we assessed to what
extent AR, REST and LMR may distort the scalp topography. We examined the impact electrode
coverage has on AR and REST, and how accurate the REST reconstruction is for realistic and less
realistic (three-layer and single-layer spherical) head models, and with possible uncertainty in the
electrode positions. We assessed LMR, AR and REST also in the presence of typical EEG artifacts
that are mixed in the recordings. Finally, we applied them to real EEG data collected in a target
detection experiment to corroborate our findings on simulated data. Main results. Both AR and
REST have relatively low reconstruction errors compared to LMR, and that REST is less sensitive
than AR and LMR to artifacts mixed in the EEG data. For both AR and REST, high electrode
density yields low re-referencing reconstruction errors. A realistic head model is critical for REST,
leading to a more accurate estimate of a neutral reference compared to spherical head models. With a
low-density montage, REST shows a more reliable reconstruction than AR either with a realistic or a
three-layer spherical head model. Conversely, with a high-density montage AR yields better results
unless precise information on electrode positions is available. Significance. Our study is the first to
quantitatively assess the performance of EEG re-referencing techniques in relation to the use of a
high-density montage and a realistic head model. We hope our study will help researchers in the
choice of the most effective re-referencing approach for their EEG studies.
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Introduction

Electroencephalography (EEG) is a non-invasive approach of
measuring brain activity at high temporal resolution using
electrodes placed on the subject’s scalp. This technique has
been widely used to investigate such domains as perception,
cognition, emotion and attention, given that it can provide
great insights into the neural temporal dynamics underlying
these processes (Carballogonzalez et al 1989, van der Lubbe
et al 2000, Silberstein et al 2001, Porcaro et al 2009). An
important aspect that needs to be considered when evaluating
EEG results is that EEG is a relative measure that compares
the recording site with another (reference) site. The most
commonly used physical references are the vertex (Cz)
reference (Mulert et al 2008), the (left or right) mastoid
reference and the earlobe reference (Flanigan et al 1995). All
of these were suggested to be far enough from all brain
sources to be considered zero-potential references. However,
there is no such point on human body surface (Yao 2001,
Nunez and Srinivasan 2006). All physical electrode sites
involve physiological dynamic processes that will inevitably
affect the temporal dynamic analysis and spectral analysis of
the EEG signal because a non-constant temporal component
is added to it (Yao 2001, Qin et al 2010, Thatcher 2012). The
voltage waveforms and power distribution are not unique
because of their dependence on the choice of a reference,
which may result in quite different conclusions from the same
experiment depending on the reference used (Joyce and
Rossion 2005, Tian and Yao 2013). Therefore, one critical
issue for EEG is to eliminate—or at least minimize—the
effects of residual neuronal activity in the physical reference
by re-referencing the data (Kayser and Tenke 2010). This can
be done by estimating the signal in a virtual reference, typi-
cally combining information from multiple electrodes, and
subtracting it from all recordings.

Several re-referencing schemes were introduced in pre-
vious studies. A popular one is the linked-mastoid re-refer-
encing (LMR), which is obtained by linearly combination of
the potentials measured at mastoid sites (Kornhuber and
Deecke 1965, Nunez et al 1997). However, this reference
strategy has been criticized given that it leads to a substantial
shift of high power regions towards frontal and central posi-
tions (Yao et al 2005). This spatial distortion problem may
strongly limit the neurophysiological interpretability of the
EEG results. Another—potentially less biased—re-referen-
cing approach is the use of the average re-referencing (AR).
This defines the virtual reference as the average of all EEG
signals (Offner 1950). The underlying principle of AR is that
EEG potentials nearly sum to zero if the head is modelled as a
closed surface, with the electrodes being densely sampled

over it (Bertrand et al 1985, Nunez et al 1997). However, the
limited electrode density and incomplete electrode coverage
(the bottom half of the head is not completely sampled) result
in the neutral point being estimated as being higher up on the
head than it should be for vertically oriented fields (Desmedt
and Tomberg 1990). There is no doubt that the EEG montage
influences AR, but it is still unclear to what extent this is the
case. The reference electrode standardization technique
(REST) was proposed as being able to overcome the limita-
tions of AR (Yao 2001, Yao et al 2005). The general idea
behind REST is that, since EEG source localizations do not
depend on the chosen reference, it is possible to rely on them
to reconstruct the reference as being at infinite distance.
Although REST may be in principle more accurate than
alternative approaches, a potential limitation is the sensitivity
to the head model used, which is strictly required for source
localizations. Furthermore, REST, as well as AR, is depen-
dent on both electrode density and coverage. Even though
REST has been shown in several studies to be potentially
more accurate than AR in many situations (Marzetti
et al 2007, Qin et al 2010, Khodayari-Rostamabad et al 2013,
Xu et al 2014), it is unclear if this can still be the case when
no high-density montage is used or no precise information
about the structure of the subject’s head (Valdes-Hernandez
et al 2009) and the relative position of the EEG electrodes
(Russell et al 2005) is available. Accordingly, the choice of a
most appropriate EEG re-referencing technique remains an
open question.

In this study we evaluated the importance of using a
high-density EEG system, and collecting accurate information
about electrode positions and the head structural image, to
conduct event related potential (ERP) analyses. These aspects
are particularly relevant for REST, but can partially affect the
AR technique as well. LMR, which is independent of the
EEG montage and the head model, was included in the study
for comparison. Using simulated recordings generated by
projecting specific source activity over the sensors, we
assessed to what extent the AR, REST and LMR may distort
the scalp topography. We examined what impacts the elec-
trode coverage has on AR and REST, and how accurate the
REST reconstruction is for realistic and less realistic (sphe-
rical) head models, and with possible uncertainty in the
electrode positions. In addition, we used simulated data to
evaluate the accuracy of AR, LMR and REST in the presence
of typical EEG artifacts that are mixed in the recordings.
Finally, we applied REST and AR to real EEG data collected
in a target detection experiment to corroborate our findings on
simulated data.
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Methods

Simulation

The workflow of our simulation, which we used to assess the
characteristics of different re-referencing approaches, is illu-
strated in figure 1. In short, we built a realistic head model by
using a structural magnetic resonance image (Holmes
et al 1998). We registered EEG sensors to the scalp, and we
modelled EEG sources as dipoles arranged as a uniform 3D
grid covering the whole brain. We generated EEG scalp maps
by calculating the potentials over the sensors associated with
single dipolar sources. Each dipolar source was oriented
along the x-, y- or z-axis, respectively. We then applied a

re-referencing technique to the scalp map, and assessed the
correspondence between the original potentials and those
after re-referencing. In this framework, the best re-referencing
technique is the one that minimally alters the original scalp
map, i.e. the one that yields the smallest relative error (RE).

Generation of simulated EEG potentials. First, we created a
template head model in volumetric space by using a three-
layer boundary element method (BEM). To define the head
compartments (i.e. brain, skull, skin), we used the Colin27
image, which is the magnetic resonance image (Holmes
et al 1998) included in SPM8 (Wellcome Trust Centre for
Neuroimaging, London, UK). The conductivities of scalp,

Figure 1. Workflow for the generation and analysis of simulated EEG data: the head model is built based on the structural MR image, and
then the simulated scalp potential is calculated from the one dipole with orientations along the x-, y- or z-axis respectively. The re-referencing
technique is then applied to the simulated scalp signals. The resulting intensities are compared with the original ones based on the relative
error.
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skull and brain were set to 1, 0.0125 and 1 s m−1, respectively
(Rush and Driscoll 1968, Ahlfors et al 2010b). Electrode
positions for a 256-channel Electrical Geodesics (Eugene,
USA) system, which were defined in the same space, were
also extracted from SPM8. Using information from the head
model and the electrode positions, we generated a leadfield
matrix G using the BEMCP approach (Phillips 2000). This
matrix has dimension [3M×N], where M is the number of
brain voxels and N is the number of channels, and permits to
reconstruct the sources S along the x-, y- and z-directions from
the recordings. The relationship between the sources S and the
recordings V can be modelled by using the equation:

V G S. 1( )= ⋅

Notably, the scalp map associated with a specific dipole
position and orientation can be obtained by selecting the
corresponding row in the leadfield matrix (Yao 2001). Due to
the linear relationship between V and S expressed in
equation (1), we considered only one time sample in our
analysis as representative for the whole EEG (and ERP) time
courses. To assess the performance of the re-referencing
techniques unbiased by the position of the dipole, we
analysed 100 dipole positions randomly selected across the
brain space.

Re-referencing techniques. The re-referencing technique is
based on the idea of a reference

V V V R V , 2re ref ref re ref ( )= - = ⋅- -

where V is the measured scalp signal, Vref is the reference
signal, Vre–ref is the re-referenced signal and Rre–ref is the re-
referencing (or transfer) matrix.

As for LMR, the reference signal V v v ,ref
1

2 LM RM( )= +
where vLM and vRM are the signals for the left and right
mastoid channels respectively. The re-referencing matrix to
be used in the formula V R VMLMR LMR= ⋅ can be written as
R I K .LMR LMR= - I is an identity matrix with N-by-N
dimension (N is the number of channels), and KLMR is a N-by-
N matrix with all elements equal to 0 except for the columns
of the left and right mastoid channels, which are equal to 0.5.

As for AR, the reference signal is V v ,i
N

iref
1

2 1= å = where
vi is the ith channel of brain signal. The re-referencing matrix
to be used in the formula V R VAR AR= ⋅ can be written as
R I K ,AR AR= - with KAR being a N-by-N matrix with all
elements equal to 1/N.

REST is a mathematical method that approximately
transforms the EEG recordings with a scalp point reference to
recordings with a reference at infinity. The latter is meant to
be a point far from all the possible neural electric sources
(Yao 2001, Yao et al 2007). The reconstructed signal
referenced at infinity, namely VREST, can be modelled as:

V G S, 3REST
ˆ ( )= ⋅

where Ŝ is the estimate of source S in equation (1), and G is
the lead-field matrix. Based on the equivalent source
technique (EST), the inverse problem solution is not affected
by the choice of the reference (Pascual-Marqui and

Lehmann 1993, Geselowitz 1998). Accordingly

S G V G V , 4AR AR
ˆ ( )= ⋅ = ⋅+ +

where GAR
+ denotes the generalized Moore–Penrose inverse of

demeaned G (Yao 2001, Yao et al 2007). Combining
equation (3) and (4), we obtain

V G G V G G R V . 5REST AR AR AR AR ( )= ⋅ ⋅ = ⋅ ⋅ ⋅+ +

Accordingly, the re-referencing matrix to be used in the
formula V R VREST REST= ⋅ can be calculated with the
formula R G G R .REST AR AR= ⋅ ⋅+ Note that this matrix
depends on the chosen head model, the location and the
direction of the dipoles comprising the source model and the
electrode coverage.

Performance measurement. The simulated EEG scalp map
was compared with the one obtained after re-reference in
terms of RE (Yao 2001, Marzetti et al 2007). In our study, we
used two related but different measures: the global RE (gRE)
for all channels together and the channel-based RE (cRE) for
single-channel signals. The definition of gRE for a single time
sample is as follows

V i V i

V i
gRE . 6i

N

i

N

1 re ref
2

1
2

( )( ) ( )

( )
( )

å

å
=

-
= -

=

It should be noted that the value of gRE is always
positive. In order to explore the RE distribution over the scalp
and the increase or decrease of intensity for single-channel
signals, we defined the cRE for the ith channel as follows:

V i V i

V i
cRE . 7re ref ( ) ( )

( )
( )=

--

To examine the effectiveness of the re-referencing
approaches for the different dipole locations and orientations,
simulations were conducted for each voxel of a discrete cubic
grid as a source position with each of the three unit dipoles
(Px, Py, Pz) directed along the three Cartesian coordinate (x,
y, z) directions separately. Since the transformations shown in
equation (2) are linear, we only needed to check the
performance according to the potential of a single dipole
and noise independently.

Methods validation. First, we examined the amplitude
distribution of the simulated EEG data before and after re-
referencing. The referencing strategies used included LMR,
AR and REST, which are the commonly used re-referencing
methods in the EEG literature. The Cz reference (CzR) was
included in the analysis as well. To assess the performance of
the re-referencing techniques unbiased by the position of the
dipole, we analysed 100 dipole positions randomly selected
across the brain space. After examining the general features of
the EEG signals using the four kinds of reference, we
investigated the performance of AR and REST with respect to

4

J. Neural Eng. 12 (2015) 056012 Q Liu et al



more specific aspects. First, we evaluated the impact of the
number of channels available for the calculation of the new
reference. To this end, we produced three additional montages
with respect to the 256-channel one: a 21-channel montage
corresponding to the 10/20 system, an 71-channel montage
corresponding to the 10/10 system, and a 128-channel
montage (see figure S1).

We subsequently analysed to what extent the head model
influenced referencing performance. This analysis was only
conducted on the REST data, given that the average reference
is not affected by this factor. To conduct this analysis, we
generated a single-sphere model and a three-concentric-
sphere model (Rush and Driscoll 1968) in addition to the
three-layer realistic BEM head model. The relative dimen-
sions of the three concentric spheres were 0.87, 0.92 and 1,
respectively. The conductivities were 1, 0.0125 and 1 s m−1,
respectively. For each head model, we calculated the
reference standardization matrix RREST and then
applied REST.

REST can be dependent on the accuracy of the EEG
electrode positions. We also investigated this aspect by
introducing either random or systematic across-electrode
shifts of 1, 2 and 4 and 8 mm in the montage coordinates,
and then applying REST. The systematic shifts were
optionally corrected by rigid-body transformation using the
headshape information. This was done using a dedicated
algorithm implemented in SPM8. We generated ten different
cases of each type of electrode shifts. For each realization, we
measured the increase in the gRE introduced by these small
errors in the electrode positions and then we averaged them to
increase the accuracy of our estimates.

Finally, we tested the effect of non-neuronal signals
mixed in the scalp EEG on the re-referencing results.
Specifically, we investigated whether the re-referencing
techniques under investigation, i.e. LMR, AR and REST,
are influenced by artifacts, and to what extent they are capable
of attenuating them. To address this question, we modified the
EEG scalp maps generated by single dipoles, adding the
following kinds of spatial patterns (figure 2): (1) a patch of

activity concentrated over the frontal region, which is
comparable with the non-neuronal activity generated the eye
movements; (2) a homogeneously distributed signal over the
scalp, which could mimic the spatial distribution of the 50 Hz
power line; (3) uncorrelated Gaussian white noise all over the
scalp. We calculated an artifact reduction index (ARI), which
was defined as the ratio between the average artifact power
across all channels, after and before re-referencing.

EEG experiment

We also analysed actual ERP/EEG data to evaluate the
quality of the signal reconstructed using the different re-
referencing techniques. In particular, we were interested in
understanding to what extent the signal intensity is preserved
in the ERPs, and whether the noise level is also influenced.

Participants and task design. Seventeen right-handed
subjects (age 27.6±5.9 yr, 4 males and 13 females)
participated in the experiment. All participants reported
normal or corrected-to-normal vision, had no psychiatric or
neurological history, were free of psychotropic or vasoactive
medication. Before undergoing the examination, they gave
their written informed consent to the experimental
procedures, which were approved by the local Institutional
Ethics Committee of ETH Zurich.

The EEG experiment was performed, in accordance with
the approved guidelines, in a quiet, air-conditioned laboratory
with soft natural light. The task consisted of a visual oddball
paradigm, with the presentation of 80% of frequent stimuli
and 20% of rare stimuli respectively (Mantini et al 2009). The
subjects were asked to press the button as soon as possible
after the rare event appeared (target). The stimuli consisted of
purple circles of 3.2° and 1.6° of the visual angle for frequent
and rare events respectively, appearing on a black background
with 7 ms duration. The inter-stimulus interval was 2 s and
with 3–5 frequent stimuli randomly presented between rare
stimuli (6–10 s interval between rare targets) (O’Connell
et al 2012, Murphy et al 2014). To reduce eye movements

Figure 2. Topography of three kinds of artifactual patterns used in the simulations: localized over part of the scalp (artifact pattern 1),
homogeneously distributed over the scalp (artifact pattern 2) and randomly distributed over the whole scalp (artifact pattern 3).
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and blinks, subjects were instructed to keep fixation on the
centre of screen during the experiment.

EEG data acquisition. EEG signals were recorded by the
256-channel HydroCel Geodesic Sensor Net using Ag/AgCl
electrodes provided by Electrical Geodesics (EGI, Eugene,
Oregon, USA). The EGI system uses the vertex (Cz) electrode
as physical reference. EEG recordings were sampled online at
1000 Hz. All sensors and three fiducial positions were
localized prior to the EEG acquisition by using a Geodesic
Photogrammetry System (Russell et al 2005). Electric
reference signals were collected in parallel to EEG data:
those included electrooculograms for horizontal and vertical
eye movements respectively, and an electromyogram for the
muscular noise associated with swallowing.

The T1-weighted MRI of each subject was acquired in a
separate experimental session using a Philips 3T Ingenia
scanner with a turbo field echo sequence (Barttfeld
et al 2014). The scanning parameters were: TR=8.25 ms,
TE=3.8 ms, 8° flip angle, 240×240×160 field of view,
1 mm isotropic resolution.

EEG data analysis. A realistic forward model was created
for each subject using a three-layer BEM applied to individual
MRI data. Conductivities of brain, skull and skin were 1,
0.0125 and 1 s m−1. EEG electrodes were aligned on the head
model using the locations of the three fiducials and the head
shape extracted from the MR image, using the dedicated
algorithm implemented in SPM8.

The experimental EEG data were filtered in the band
0.5–20 Hz and further processed using independent compo-
nent analysis (ICA) for the removal of ocular and muscular
artifacts (Mantini et al 2008). After ICA decomposition, the
artifactual ICs were automatically detected by correlating
their power time-courses with the power time courses of the
electric reference signals: the horizontal electrooculogram, the
vertical electrooculogram and the electromyogram (MEG) at
the base of the neck. Then, we applied each of the different
re-referencing techniques on the cleaned EEG data. Finally,
we calculated ERPs for the rare events only, as these are the
ones supposedly showing the P300 response (Picton 1992,
Mantini et al 2009). Based on the results of the ERP analysis,
we excluded one subject for which the P300 response was not
clearly visible.

Using the preprocessed EEG signals, we measured the
P300 activity and the noise levels on the averaged data. The
P300 activity was defined as the maximum amplitude in the
post-stimulus (from 200 to 500 ms) interval, while the noise
amplitude was calculated as the average root mean square of
the signal corresponding to the pre-stimulus (from −200 to
0 ms) interval. We conducted this analysis for each single
channel, but we then focused on 41 electrodes over the
parietal region (see figure S2), where the P300 (P3b) activity
is typically most prominent (Picton 1992).

Results

Simulated data

First, we examined the properties of different EEG re-refer-
encing methods, specifically LMR, AR and REST, by means
of simulated data. We generated a set of unbiased scalp maps
by calculating the sensor potentials corresponding to single
dipoles in the brain, and then we compared them to the same
after re-referencing. This allowed us to quantify the error
induced by the specific re-referencing method, both globally
(gRE) and locally (cRE). Importantly, we assessed the char-
acteristics of different re-referencing approaches considering
the cases where the dipole is oriented along the x-, y- or z-axis
(figure 1). By using a common colorbar for all references, we
revealed that AR and REST provide scalp maps that are
qualitatively similar to the original map, whereas significant
distortions characterize both CzR and LMR. In particular,
much less accurate reconstructions were obtained for dipoles
oriented along the y-axis than the x-axis, and even less for
those along the z-axis (figures 3 and S3). When we analysed
the results of LMR, AR and REST in a quantitative manner,
we also noticed that much lower errors could be achieved
with REST compared to the other methods. This result did not
depend on the orientation of the dipolar source (table 1).

We also analysed the spatial distribution of the potential
alterations induced by the different re-referencing method. In
doing so, we focused on AR and REST, which are the two
approaches with relatively better performance. Our analysis
confirmed that, in general, AR altered signal amplitudes more
than REST. More importantly, it revealed that AR generally
led to signal increases over the frontal regions and decreases
over central, parietal and occipital regions (table 2). The
increases/decreases depended not only on the locations of the
active sources but also on their orientation (for examples, see
figures S4 and S5).

Then, we investigated to what extent the electrode den-
sity and coverage affect the AR and REST performances, as
well as to what extent the accuracy of the head model affects
the REST performance (figure 4). As expected, the AR and
REST reconstructions were more precise with an increasing
number of EEG channels. REST provided better results with a
realistic head model than with one-layer and three-layer
spherical models, except in the case of a 21-channel montage.
The reconstruction error of REST with a realistic head model
was always lower than that of AR. When a three-layer
spherical model was used, the performance of REST was
better than that of AR for the 21-channel, 71-channel and
128-channel systems, but not for the 256-channel system.

The former results were obtained in ideal conditions,
without considering the effects of noise. On the other hand,
different sources of noise can affect the performances of AR
and REST and account, at least in part, for the differences
between them. Notably, in contrast to AR, the results of
REST depended on the accuracy of electrode position infor-
mation. We assessed this aspect by measuring the recon-
struction error obtained after adding either random or
systematic shifts to the electrode positions. We also examined
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Figure 3. Effect of EEG data referencing. This illustrative example shows the scalp map generated by a dipolar source in the thalamus (MNI
coordinates [−6 −13 5]), with orientation along the x, y, z-axis respectively. The simulated data, which are reference-free, are compared with
those obtained using the CzR, LMR, AR and REST.

Table 1.Global relative error (gRE) values for CzR, LMR, AR and REST reconstructions. The values in the table are the average gRE and its
standard error (in brackets) across 100 dipoles at different locations of the brain, and oriented along the x-, y-, z-axis respectively.

X Y Z XYZ

CzR 35.65% (2.44%) 40.91% (3.12%) 156.84% (5.81%) 77.82% (2.55%)
LMR 31.67% (5.22%) 57.21% (3.84%) 76.25% (3.31%) 55.04% (2.64%)
AR 3.22% (0.30%) 7.13% (0.32%) 4.96% (0.39%) 5.10% (0.22%)
REST 0.64% (0.12%) 0.45% (0.08%) 0.66% (0.09%) 0.58% (0.06%)

Table 2. Channel-based relative error (cRE) for different brain regions, calculated for AR and REST respectively. The values shown in the
table are the average cRE and standard error (in brackets) across 100 dipoles at different locations of the brain, and oriented along the x-, y-, z-
axis respectively. Negative values, indicating a reduction of signals after re-referencing compared to the simulated data, are shown in bold.

X Y Z XYZ

Frontal AR 2.32% (0.75%) 7.14% (0.63%) −5.53% (1.75%) 1.31% (0.73%)
REST 0.48% (0.21%) 0.10% (0.08%) −0.32% (0.21%) 0.09% (0.08%)

Central and parietal AR 1.98% (0.56%) −2.15% (1.26%) −2.09% (0.71%) −0.75% (0.53%)
REST 0.23% (0.18%) 0.033% (0.12%) −0.16% (0.10%) 0.03% (0.10%)

Occipital AR −2.92% (4.20%) −5.50% (0.41%) −5.13% (1.92%) −4.52% (1.54%)
REST −0.18% (0.45%) 0.01% (0.07%) 0.49% (0.49%) 0.11% (0.22%)
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to what extent error induced by systematic shifts could be
attenuated by using the headshape information, as extracted
from the structural image of the subject’s head. As expected,
the level of noise negatively impacted on the reconstruction
performances (figures 5 and S6). This effect was more pro-
nounced for the 256-channel montage than for the 21-channel
and 71-channel montages. Furthermore, REs induced by
systematic shift without headshape correction were the most
prominent, and reduced to levels comparable to those of
random shifts when headshape correction was applied. Also
notably, for the 256-channel montage the RE of REST
obtained with electrode position uncertainty above 2 mm was
comparable to the RE that characterized AR (i.e. 5.1%).

Furthermore, we investigated the effects of non-neuronal
signals added to the EEG data, thereby testing whether the re-
referencing techniques are able to attenuate noise and artifacts
and whether their performances depend on data quality. We
analysed three different artifact spatial patterns: (1) localized
over part of the scalp (patch); (2) homogeneously distributed
over the scalp; (3) randomly distributed over the whole scalp
(figure 2). This analysis revealed that the patched pattern
could not be eliminated by LMR, but its power could be
attenuated by about 20% both by AR and REST (figure 6).
Furthermore, when dealing with a randomly distributed spa-
tial artifact, REST led to a limited reduction of the artifact
power, AR left the signals largely unchanged and LMR even
yielded a substantial artifact power increase. Finally, the
homogenous artifact pattern could be completely eliminated
by LMR, AR and REST.

Experimental data

The quantitative analysis we conducted on ERP data from
sixteen young healthy volunteers confirmed the results of our
simulations. We calculated ERP responses at the Pz channel
in each subject, as obtained either after AR or REST, and then
performed a Wilcoxon Signed Ranks Test across subjects.
The analysis of the time-courses revealed larger signal
intensity for REST than AR, but also larger inter-subject
variability (figure 7(A)). We then focused on the latency of
maximum intensity, which ranged between 325 and 470 ms
across subjects, and calculated channel-by-channel a Wil-
coxon Signed Ranks Test on the corresponding signal
intensity. We found a similar spatial distribution for AR and
REST, with strongest activity over the parietal region.
Nonetheless, Z-values were generally larger for REST com-
pared to AR (figure 7(B)). Signal and noise levels for ERP
data over the parietal region, as obtained after AR and REST,
followed a similar trend (Spearman’s correlation, r=0.815,
2-tailed p<0.001 for signal; r=0.876, 2-tailed p<0.001
for noise). Signal amplitude using REST was significantly
larger than the one using AR (Wilcoxon Signed Ranks Test,
Z=2.896, 2-tailed p=0.004), whereas no significant dif-
ference between noise levels from REST and AR was found
(Z=1.758, 2-tailed p=0.079) (see figure S7).

Discussion

In this study we have assessed the most commonly used EEG
re-referencing techniques, such as REST, AR and LMR,
focusing in particular on the importance of using a high-
density montage and a realistic head model. We primarily
used simulated EEG data to examine the reconstruction
accuracy in relation to electrode coverage, head model pre-
cision, uncertainty of electrode positions, and the presence of
artifacts in the EEG data. We also analysed experimental
high-density EEG data, thereby obtaining results largely
consistent with those of our simulations. Notably, Yao pre-
viously conducted a comparative assessment of REST, AR
and LMR using different EEG montages and head models

Figure 4. Accuracy of AR and REST with different EEG montages
and head models. The bar plots show the average gRE and its
standard error of re-referenced EEG data across 100 dipoles,
obtained using 21-channel, 71-channel, 128-channel, 256-channel
montages, respectively. The average gRE of AR and REST from
one-layer spherical model (1-s), three-layer spherical (3-s) model
and realistic (r) three-layer BEM are calculated for each of the four
montages.

Figure 5. Accuracy for REST in the presence of noise in the
electrode positions. The graph shows descriptive statistics about the
increase of global relative error obtained by systematic shifts either
corrected (SSc) or not (SSu) and random shifts (RS) across 100
dipoles oriented along the x-, y- and z-axis, with noise level equal to
1, 2, 4 and 8 mm. This analysis was conducted for 10 different
realizations, using a three-layer BEM and an EEG montage with 256
channels.
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(Yao 2001; Zhai and Yao 2004). In the paper introducing
REST, 32-, 64- and 128-channel EEG systems were exam-
ined using a homogenous spherical head model; then, a
comparison was made between a homogenous spherical head
model and a three-layer spherical head model with 128-
channel EEG only (Yao 2001). In a subsequent study, the
performance of REST with a realistic head model was
assessed in relation to AR and LMR. Specifically, the com-
parison was conducted using a BEM and a three-layer sphe-
rical head model, using a 128-channel EEG only (Zhai and
Yao 2004). In both studies mentioned above, the effect of
randomly distributed noise over the sensors was also eval-
uated. Accordingly, this manuscript expands on these pre-
vious studies in a number of ways: (1) in addition to the
analysis of randomly distributed noise, we have investigated
the effects of additional artifacts that are either localized or
homogeneously distributed over the EEG sensors; (2) we
have investigated the interaction between the number of EEG
channels and the kind of head model used during referencing.
This includes studying the reconstruction error of different re-
referencing approaches for a 256-channel EEG system which
is as yet not reported; (3) we have shown that electrode
position inaccuracies can introduce additional errors for
REST. This is an important consideration when evaluating its
performance against that of AR and LMR, but it is also
important that EEG practitioners who wish to use REST are
aware that recording single subject electrode positions greatly
improves the accuracy of the reconstruction and as such
signal detection.

The general theory about the ideal EEG reference posits
that it should be neutral, i.e. should contain no brain activity.
Under this condition, true brain signals can be accurately
recovered by re-referencing (Dien 1998). The comparison
between the scalp map of simulated EEG data with those
transformed in LMR, AR, and REST provided important
insights into the performance of each re-referencing solution.
In line with the previous literature (Dien 1998, Kayser
et al 2007), our analysis revealed that CzR and LMR have
substantially altered signal distributions (figures 3 and S3).

The fact that LMR may induce a spatial shift of potentials
towards frontal and central regions is particularly relevant to
interpret a large number of studies that used this re-referen-
cing solution for ERP studies (Light et al 2010, Hor-
vath 2013, Zizlsperger et al 2014). Notably, it is not the first
time that LMR is called into question, as it was previously
reported that LMR can artificially inflate or deflate the cor-
relation between electrodes (Dien 1998), and can induce the
detection of primary visual responses over the mid-cen-
troparietal region (Kayser et al 2007). Importantly, our ana-
lyses pointed out the fact that the EEG data re-referencing can
lead to spatial distortions that depend not only on the dipole
position, but also on its orientation. This result is largely
consistent with the previous studies on the waveform dis-
tribution (Scherg 1990) and power sensitivity (Ahlfors
et al 2010a) of EEG sources.

As for the performances of AR and REST, our qualitative
analyses showed a very good correspondence with the
simulated data. Nonetheless, more detailed, quantitative
analyses clearly revealed that REST could provide more
accurate reconstructions than AR (figure 3 and table 1) in a
noise-free condition. The comparison between AR and REST
across different regions of the scalp not only confirmed that
the spatial distortions introduced by AR are generally bigger
than REST, but also clarified that these distortions may either
result from an over- or an under-estimation of the true
potentials. Potential increases/decreases were largely vary-
ing, and depended both on the orientation of the dipole and its
position with respect to the scalp (table 1). In this regard, it is
worth noting that previous studies raised concerns about the
use of AR when EEG sources were expected to be following
the z- orientation, e.g. the auditory evoked N1 and P2 com-
ponents (see for instance Tian and Yao 2013), because AR do
not survey the bottom half of the head volume (Tomberg
et al 1990, Dien 1998). Another important aspect to be con-
sidered is the consistency of the results from simulated data
with those from experimental data. For instance, we revealed
significantly stronger P300 signals over the parietal cortex
using REST rather than AR. Along the same line, our

Figure 6. Artifact reduction index (ARI) for three kinds of artifactual patterns: localized over part of the scalp (artifact pattern 1),
homogeneously distributed over the scalp (artifact pattern 2) and randomly distributed over the whole scalp (artifact pattern 3). The bar plots
show the corresponding ARI for LMR, AR and REST, respectively.
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simulations suggested that the use of AR leads to a more
prominent potential attenuation than REST over this region
(see table 2).

Since REST is calculated using the leadfield matrix (for
more details, see equation (5)), its validity obviously depends
on the accuracy of the head model. Extending previous stu-
dies that focused on REST either with a spherical (Yao 2001,
Marzetti et al 2007) or a realistic (boundary element model,
BEM) head model (Zhai and Yao 2004), we conducted a
comparative analysis of the REST reconstruction error for a
one-layer spherical, three-layer concentric spherical and a
three-layer BEM constructed using the individual MR image
of each subject. This last, more realistic head model provided
the best performance on simulated data, especially for the
high-density 256-channel EEG montage (figure 4), although it
had relatively good performance also with a three-layer
spherical model (Yao 2001, Zhai and Yao 2004). Our study is
the first one that compared different re-referencing approach
with a 256-channel EEG montage. It is worth noting that, this
is rarely adopted in the current practice due to the relatively
long preparation times and the volume conduction problem
affecting neighbouring channels. Recent technological solu-
tions are however overcoming part of these and other issues,
so that high-density EEG might gain in the future a more
widespread use in brain imaging research, as a potential
alternative to magnetoencephalography (Michel and Murray
2012). As for the analysis of experimental data collected
using a 256-channel EEG system, we observed a significantly

larger ERP intensity, with no change in noise level, for REST
with realistic head model compared to AR. Taken together,
the results mentioned above highlight the importance of an
accurate head model and a high-density montage when
using REST.

It should be considered that not only an imprecise defi-
nition of the head model compartments, but also the uncer-
tainty in the electrode locations can negatively impact on
REST (Zhai and Yao 2004). Our results from simulated data
are perfectly in line with this (see figures 4 and 5). To the best
of knowledge, this is the first study to assess the impact of
electrode misplacement on REST, although previous studies
already showed that this reduces the accuracy of EEG source
localisations (Van Hoey et al 2000, Wang and Gotman 2001).
Importantly, our data showed that the impact of random and
systematic electrode shifts is not negligible, and therefore
needs to be considered when evaluating the performance of
REST against that of AR and LMR. For instance, random and
systematic position shifts above 2 mm introduced a cumula-
tive error for REST larger than 5% (see figure 5). In turn, in
the absence of electrode position shifts (figure 4), the differ-
ence in error between AR and REST with 256-channel EEG
was below 5% regardless of the head model adopted. Based
on this observation, we argue that AR may be as robust as
REST for high-density EEG, particularly in the absence of
precise electrode position information.

Many studies reported that the sampling and geometry of
the EEG montage must be considered for the choice of the re-

Figure 7. Comparison of ERP responses reconstructed by AR and REST. We assessed the reliability of the P300 response across sixteen
subjects. (A) ERP signals and related standard error (in shaded grey) across subjects for the Pz electrode; (B) topography of the Z-values for
the P300 peak intensity across subjects, estimated using a Wilcoxon Signed Ranks Test.
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referencing approach (Yao 2001, Zhai and Yao 2004). These
have a direct impact on the accuracy of AR and REST, but do
not affect other approaches based on EEG channels at specific
spatial locations, as for example LMR. AR has been pre-
viously recommended in the case of high-density EEG
(Nunez et al 1997), based on the consideration that the
average of all recorded EEG activity will be approximately
null if the spatial sampling is both dense enough and suffi-
ciently covers all the EEG signal space (Nunez and Sriniva-
san 2006). However, our analyses on AR across a large
number of source positions suggested that a residual error of
about 5% would still be present when using a 256-channel
EEG system, and this error can go up to about 20% for a 10/
20 standard EEG system (see figure 4). On the other hand, the
RE obtained with REST (obtained in noise-free conditions
and with a realistic head model) was typically lower then AR,
and ranged between 0.6% (high-density EEG) and 14% (low-
density EEG). Overall, our findings showed that having a
high-density EEG montage is important for both AR and
REST (figure 4) and suggested that REST with a realistic
head model has superior reconstruction performance com-
pared to AR. However, in the absence of reliable information
about electrode positions and/or head tissue compartments,
the reconstruction performance of REST may drop to a level
comparable or even lower than AR for a 256-channel system
(see figures 4 and 5). Notably, the use of a 256-channel
system is most favourable for AR, which requires dense
electrode sampling and wide coverage of the head. It should
be mentioned that, in contrast to REST, AR is algorithmically
simple, does not require the construction of a leadfield matrix
and does not depend on its correctness. As such, we posit that
there may be a clear advantage in the use of REST only in the
specific situation of low channel account and availability of
accurate information on head model and electrode positions.

It is worth noting that re-referencing approaches are not
conceived to address the problem of artifacts inevitably pre-
sent in the EEG data. However, we conducted a specific
examination of the effect of temporal artifacts in our study, as
we reasoned that this was an important element to guide the
choice of the re-referencing technique in the analysis of real
EEG data. Our results confirmed the idea that various re-
referencing approaches may not be influenced by artifacts in
the same manner. For instance, REST was found to be gen-
erally less sensitive than AR to different kinds of artifacts
(figure 6). Additional errors in the reference estimation were
substantially larger when the artifact was concentrated over a
specific region of the scalp, as for example in the case of
ocular artifacts. It is also important to consider that, on the
other hand, a homogenously distributed artifact was com-
pletely cancelled by using AR, REST, and LMR. If the arti-
fact has random distribution over the sensors, which is likely
the case of hardware noise, AR and REST showed to be better
solutions than LMR. Overall, our analyses suggested AR to
be slightly more sensitive than REST to artifact-induced
errors.

Although this study comprehensively investigated the
importance of high-density EEG and realistic head model for
REST and AR, there are still some limitations to be

mentioned. First, we have built our simulations based on the
Colin image, which is a high-resolution MR image often used
in simulations studies (Collins et al 1998). This MR image of
a human head is a template, and can be therefore considered
as representative of many MR images of the same kind.
However, it should be mentioned that we could have built our
simulations based on any structural MR image, even one of
our experimental subjects. Second, our study revealed the
importance of using a realistic head model rather than sphe-
rical head models. Nonetheless, we investigated only a three-
layer BEM head model for the group of realistic head models.
Other realistic head models, such as finite element models
(FEMs) or a finite difference models (FDMs), have been
proposed (Hallez et al 2007). These are possibly more
accurate than BEMs, in particular if the different conductivity
of compact and spongy bone in the skull is considered
(Akhtari et al 2002, Dannhauer et al 2011, Strobbe
et al 2014). It is worth noting, however, that BEMs are cur-
rently implemented as default solution in the most used
software tools for EEG analysis (e.g. SPM, FieldTrip,
BrainStorm). Accordingly, we hope that our findings will be
found useful by other researchers. Future developments in
EEG volume conduction modelling are however warranted.
Indeed, it should be considered that head models such as
BEMs, FEMs and FDMs are at best approximate, and the
nature of the error will be unknown until techniques to obtain
in-vivo estimates of conductivity across the head become
available (Seo and Woo 2014). Finally, we tested with our
simulations the RE for AR and REST associated with four
montages with different number of channels, as well as we
studied the performances of these re-referencing techniques in
the presence of three artifactual patterns. Future studies are
warranted to assess the influence of EEG montages and arti-
factual patterns on the reconstruction performances of AR
and REST.

Conclusion

To the best of our knowledge, our study is the first to examine
how much using a high-density montage and a realistic head
model is essential for estimating a neutral reference on EEG
signals. We observed that both AR and REST have relatively
low reconstruction errors compared to LMR, and that REST
is less sensitive than AR and LMR to artifacts mixed in the
EEG data. For both AR and REST, high electrode density
permits to achieve low re-referencing reconstruction errors. A
realistic head model is critical for REST, leading to a more
accurate estimate of a neutral reference compared to spherical
head models. With a low-density (e.g. 21-channel or 71-
channel) montage REST shows a more reliable reconstruction
than AR either with a realistic or a three-layer spherical head
model. Conversely, with a high-density (e.g. 256-channel)
montage AR yields better results unless precise information
on electrode positions is available. It is our hope that our
quantitative investigation can help other brain imaging
researchers in the choice of the most effective re-referencing
approach for their future EEG studies.
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