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Abstract: Spectral detection provides rich spectral–temporal information with wide applications.
In our previous work, we proposed a dual-path sub-Hadamard-s snapshot Hadamard transform
spectrometer (Sub-s HTS). In order to reduce the complexity of the system and improve its performance,
we present a convolution neural network-based method to recover the light intensity distribution
from the overlapped dispersive spectra, rather than adding an extra light path to capture it directly.
In this paper, we construct a network-based single-path snapshot Hadamard transform spectrometer
(net-based HTS). First, we designed a light intensity recovery neural network (LIRNet) with an
unmixing module (UM) and an enhanced module (EM) to recover the light intensity from the
dispersive image. Then, we used the reconstructed light intensity as the original light intensity to
recover high signal-to-noise ratio spectra successfully. Compared with Sub-s HTS, the net-based HTS
has a more compact structure and high sensitivity. A large number of simulations and experimental
results have demonstrated that the proposed net-based HTS can obtain a better-reconstructed
signal-to-noise ratio spectrum than the Sub-s HTS because of its higher light throughput.
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1. Introduction

Spectral detection is widely used in industry, remote sensing, military and many other aspects.
However, the traditional slit spectrometer has a contradiction between fast acquisition and high
signal-to-noise ratio (SNR). If we want to improve the response speed of the system, it will inevitably
reduce the acquisition time of the system, resulting in a decrease in the system SNR. In order to
improve the SNR of detected spectra, researchers have introduced compressed sensing (CS) [1–3],
computational slits [4,5] and deconvolution [6].

Compressed sensing is a representative method to realize snapshot acquisition. Compressed
sensing was first proposed by Donoho, Candes and Tao in 2006 [1,2]. In the same year, Brady et al.
of Duke University proposed a new spectral imaging technology called coded aperture snapshot
spectral imager (CASSI) and developed several CASSI-based snapshot imaging spectrometers in
the following years [7,8]. In the aspect of reconstruction algorithms, a greedy algorithm [4–6],
L1 norm convex optimization algorithm [9–11], L1 norm non-convex optimization algorithm [12],
Bayesian method [13–15] and other reconstruction algorithms have been developed. However,
these reconstruction algorithms all have some drawbacks. Although the greedy algorithm has low
computational complexity, the reconstruction effect is not ideal. The L1 norm minimization method
has good reconstruction performance, but it has high computational complexity. The Bayesian method
lacks a strict theoretical guarantee. Thus, we should develop new reconstruction algorithms.
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Based on the idea of compressed sensing, researchers proposed a static multimode multichannel
spectrometer (MMS), which takes advantage of the noise reduction performance of Hadamard
coding and uses the non-negative least squares method to directly reconstruct the spectrum [16–18].
This method can achieve snapshot measurement and maintain the advantage of high light throughput.
However, compressed sensing is an ill-posed inverse problem, and the measurement results are not
stable enough, which limits its application.

Compared to multiplexing methods, these numerical methods belong to so-called ill-posed
inverse problems and cannot obtain certain and robust SNR improvement. In our previous work [19],
we proposed a dual-path sub-Hadamard-s snapshot Hadamard transform spectrometer (Sub-s HTS)
based on the Hadamard transform spectrometer (HTS) [20,21]. In this Sub-s HTS, all incident light is
encoded simultaneously by the encoding matrix, and an extra imaging path is designed to measure the
intensity distribution of the scene. The spectral measurement problem is transformed into a positive
definite problem so that a stable and reliable SNR enhancement can be obtained and maintain snapshot.

However, there are some problems in our previous work [19]. Firstly, the simultaneous acquisition
of light intensity and dispersion image requires a dual optical path system, which will reduce the overall
light throughput by half and decrease the SNR. Secondly, dual-camera images require pixel-level
registration which will cause a lot of problems and affect the reconstruction results. Finally, the dual
optical path system increases the overall system size and reduces reliability. Therefore, how to use a
single camera to complete the reconstruction process while ensuring the quality of the reconstructed
spectrum becomes a problem that must be solved.

In recent years, the convolution neural network has shown strong fitting ability in many fields.
In order to improve the light throughput of the system and reduce its complexity, we designed
a convolution neural network to recover the light intensity distribution through the overlapped
dispersive spectra and realize the single-path high-sensitivity snapshot spectral measurement.

The main contributions of this paper are as follows:

(1) A light intensity recovery network (LIRNet) to solve the problem of spectral image unmixing
and realize the direct acquisition of light intensity distribution through an overlapped dispersive
spectral image;

(2) The feasibility of using reconstructed light intensity data for sub-Hadamard matrix spectral
detection is proven;

(3) Both simulated and experimental results demonstrated that the performance of the net-based
scheme can achieve similar or even better reconstructed results compared with the dual-path
scheme and can improve the compact of the system.

2. Design of Snapshot Spectrum Detection Framework

In our previous work [19], we proposed a dual-path snapshot Hadamard transform spectrometer.
The implementation and scheme of the snapshot spectrometer are shown in Figure 1a,b, respectively.

The snapshot HTS contains two imaging paths: non-dispersive and dispersive imaging paths.
The non-dispersive imaging path is employed to capture the light intensity at the coding aperture.
The dispersive imaging path is employed to capture the overlapped dispersive spectra. We take the
7 × 7 Hadamard matrix as an example to explain the spectral dispersion overlapping process in the
snapshot spectrometer and show it in Figure 2.

In Figure 2, S1 is the 1st row of the Hadamard-S matrix, I1 is the 1st row light intensity distribution
of the scene, f1 is the spectrum of the 1st row, f11 is the spectrum of the 1st pixel in the 1st row and
m represents its range and the zeros in the spectrum represent shift invariant, which makes processing
easy to understand. The measurement problems of the ith row of snapshot HTS are as follows:

gi = (Si ◦ Ii) fi + nsnapi (1)
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where gi is the overlapping dispersion spectrum of the ith row, Si is the ith row of Hadamard-S
matrix, Ii is the ith row of light intensity distribution, fi is the ith row of the spectrum to be measured
and nsnapi is the measurement noise in ith row measurement. If each row of the scene has the same
spectrum, or we want to measure the average spectrum of each column, i.e., f1 = f2 = · · · = fn or
f11 = f21 = · · · = fn1 = 1

n
∑n

i=1 fi1. Based on this assumption, the whole measurement of snapshot
HTS can be simplified as:

g = (S ◦ I) f + nsnap = Ssnap f + nsnap = (S− Sh) f + nsnap (2)

where Ssnap is the normalized modulation intensity distribution (sub-Hadamard-s matrix or Sub-s
matrix) and Sh is the difference between Hadamard-S matrix and normalized modulation intensity
distribution. Thus, once the light intensity distribution Ssnap is obtained, the spectra need to measure
can be recovered through an inverse process, otherwise, we cannot recover the spectra.

As shown in Figure 2, the extra non-dispersive imaging path is added to measure the light
intensity distribution. The extra imaging path increases the complexity of the system and weakens the
intensity of the measured overlapped spectra. If we can recover the light intensity from the measured
overlapped spectra such as the red arrow in Figure 1b, we can remove the extra imaging path and
improve the performance of the system. We designed a light intensity recovery network (LIRNet) to
recover the light intensity from the dispersive image. The overall structure of the network is shown in
Figure 3.
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In LIRNet, we first designed an unmixing module (UM) to approximate the inverse process of
convolution in the following Equation (3) which reduced the mixture of input pixels and output coarse
unmixed spectral images. We then used an enhanced module (EM) to reconstruct the light intensity for
sharper edges and better details.

3. Network Setup

As shown in Figure 3, in the raw spectral image, the intensity dispersion of each point is overlapped
by grating, and the captured spectral image can be expressed as the overlapped image of each band
spectral image. This process can be expressed by the convolution operator. Each pixel in the spectrum
can be represented as:

f = conv(S, k) (3)

where f is a single pixel in the spectral image, k is a one-dimensional convolution kernel in the spectral
direction, the kernel size of convolution is the number of spectral bands and S is a high-dimensional
spectral image.

From the perspective of spectral dimension, the light intensity of a point is the sum of its dispersive
spectral intensity:

fs =
n∑

i=1

Si (4)

where n is the number of spectral bands. This optical process is equal to the overlapping of a
spectral image.

The UM contains five convolution layers and a deconvolution layer which extracts the primary
features at the spectral dimension. The EM is an encoder–decoder network output feature map of UM,
a further enhancement to supplement more visual information such as image contrast, brightness and
texture features.

While training the network, we used two types of the loss function, intensity loss (IL) and
spectrum loss (SL). IL adopts the mean square error (MSE) based on the online hard example mining
(OHEM) [22] strategy as a loss function and SL adopts the SNR of the reconstructed spectrum as
another loss function.

Euclidean distance is expressed as Di = ‖xi − x̂i‖
2. The total number of samples is N, then:

Loss(xi, x̂i) =
1
N

N∑
i=1

Di (5)
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where xi, x̂i are real and reconstructed samples respectively. In this equation, samples with higher
(high-frequency areas) and lower (low-frequency areas) errors are averaged for network training,
which makes it difficult for the optimizer to optimize in the training stage. To make the optimizer
focus on the harder samples, Wu et al. put forward a method of hard-sample mining for pixel-level
classification tasks [22]. We adopted the idea and modified it to adapt our intensity approximation task.
We selected pixel samples with higher loss values as hard negative samples for training and ignored
others with lower loss values so that the network would not repeat learn samples in low-frequency
areas and would improve the performance in high-frequency areas. In this case, the loss function can
be expressed as:

Loss =
1∑N

i 1{Di < t}

N∑
i

1{Di < t}Di (6)

where t is the threshold, which is the minimum loss value of the first half of the sample with a larger
loss value.

In order to make the intensity approximation consistent with realistic physical processes better,
we used spectrum loss to further fine-tune the network:

Losss = R− SNR(recon(x̂), f ) (7)

where R is the reversal factor, recon is the reconstruction processing of overlapped spectrum and x̂, f is
the real spectrum.

We used 1650 groups of multispectral images with 127 × 127 size for training, 350 groups for
validation and 200 groups that were not involved in the training for testing. The images are padded to
128 × 128 to train conveniently. Finally, a 128 × (128 + n) overlapped spectral image was constructed
where n is the number of spectral bands. The light intensity images that were superimposed by all
bands were used as the training label.

In the UM, the convolution layer with 1 × n convolution kernel was used for unmixing, and
the convolution layer with 3 × 3 convolution kernel and rectified linear unit (ReLU) [23] activation
function was used to extract the primary features. In the enhancement module, the encoder–decoder
network was used to extract the low-level and high-level semantic information of the unmixed feature
map to enhance the unmixing image. The design of the enhance module structure is referred to
as ERFNet [24], as shown in Table 1. The down-sampler layer is a pooling down-sampling process.
The Non-bt-1d is the factorized convolution which decomposes the 3 × 3 convolution into a pair of
1D convolutions, which constitutes a non-bottleneck 1D structure as shown in Figure 4. With a 33%
reduction of parameters, we can achieve the same learning ability and accuracy as the traditional
non-bottleneck structure, improve the network efficiency and contribute to real-time spectral analysis.
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Table 1. Network structure.

Layer Type Out-F Out-Res

SI
M

U
LA

T
IO

N 1 conv(n × 1) 1 128 × 128
2 deconv(1 × 1 × n) n 128 × 128
3 conv+ReLU n/2 128 × 128
4 conv+ReLU n/4 128 × 128
5 conv+ReLU n/8 128 × 128
6 conv+ReLU 1 128 × 128

EN
C

O
D

ER
7 Downsampler 16 64 × 64
8 Downsampler 64 32 × 32

9–13 5 × Non-bt-1D 64 32 × 32
14 Downsampler 128 16 × 16

15–22 8 × Non-bt-1D 128 16 × 16

D
EC

O
D

ER

23 deconv 64 32 × 32
24–25 2 × Non-bt-1D 64 32 × 32

26 deconv 16 64 × 64
27–28 2 × Non-bt-1D 16 64 × 64

29 deconv C 128 × 128

4. SNR Analysis

In order to analyze the denoise performance of the net-based HTS, we set the sub-Hadamard
matrix normalized intensity distribution as Ssnap; S1 is the difference between the network reconstructed
light intensity and Ssnap (S1 � Ssnap). The reconstructed spectra can be written as follows:

f̂ = f + (Ssnap − S1)
−1ns (8)

Based on Equation (8), the SNR of the reconstructed spectrum can be expressed as:

SNR f̂ = 10log


f T f

nT
s (ST

snap−ST
1 )
−1
(Ssnap−S1)

−1
ns

f T f
nT

s ns

 (9)

According to our previous works, SNR f̂ can be sampled as:

SNR f̂ ≥ 10log


(n′s)

T

(1−k)2ST
snapSsnap+

1− k
k

k2ST
snapSsnap

n′s

(n′s)
Tn′s


= 10log

(
(n′s)

TST
snapSsnapn′s

(n′s)
Tn′s

)
+ 10log(1− k)

(10)

where n′s =
(
Ssnap − S1

)−1
ns, k denotes perturbations involving reconstruction errors and actual

light intensity.
The results show that the reconstructed SNR of the network decreases by about 10log

(
1

1−k

)
(dB)

compared with the sub-Hadamard matrix which can accurately obtain the intensity distribution.
Compared with a traditional slit spectrometer, it still has obvious advantages. In practice, the intensity
of overlapped spectra in the single-path snapshot spectrometer is twice the intensity in the original
dual-path snapshot spectrometer. Thus, the actual spectrum can be expressed as:

f̂ = 2 f + (Ssnap − S1)
−1ns (11)
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After a similar deduction, the final SNR can be expressed as:

SNR f̂ ≥ 10log

 (n′s)TST
snapSsnapn′s

(n′s)
Tn′s

+ 10log(1− k) + 10log(2) (12)

Therefore, the proposed method has certain advantages over the dual-path Sub-s HTS.

5. Experiments and Simulations

In order to compare the reconstructed performance of different coding matrices, the full-1 matrix
and Hadamard-S matrix are involved. Additionally, four frames CASSI [25] using two-step iterative
soft threshold optimization (TwIST) are also involved. We present some reconstructed light intensity
results that are different from the testing dataset [26,27] and calculate its peak signal-to-noise ratio
(PSNR). The reconstructed results are shown in Figure 5. The resolution of reconstructed image is
127 × 127. The comparison of PSNR and reconstruction time of different scenes are shown in Table 2.Sensors 2020, 20, x FOR PEER REVIEW 9 of 14 

 

 

(a) (b) (c) (d) 

Figure 5. Reconstructed results of different methods. (The resolution of reconstructed image is 127 × 
127) (a) Ground truth. (b) Reconstructed results of coded aperture snapshot spectral imager (CASSI) 
4 Frame. (c) Reconstructed results of the full-1 matrix (our method). (d) results of Hadamard-S matrix 
(our method). 

Table 2. Comparison of peak signal-to-noise ratio (PSNR) and reconstruction time of different 
scenes. 

Image CASSI 4 Frame Full-1 (Ours) Hadamard-S (Ours) 
a 16.09 dB 22.37 dB 21.39 dB 
b 12.39 dB 21.48 dB 21.13 dB 
c 20.51 dB 20.82 dB 20.60 dB 
d 19.44 dB 23.03 dB 22.90 dB 

Reconstruction time 1.599 s 0.077 s 0.075 s 

It can be seen that the performance of the proposed method is stable under different conditions, 
and the reconstruction quality of the proposed method is better than that of the four frames CS in the 
case of a single frame. The testing images are not involved in the training data, and the reconstructed 
results can also get the expected results, which shows that the network has good generalization 
ability. Additionally, we can find that the PSNR of reconstructed full-1 coding is better than 
Hadamard-S coding since the full-1 coding can use the full information and bring higher throughput. 
However, the full-1 matrix is an irreversible matrix and cannot ensure stable SNR boosting. 

We bought a desktop on JD.com with Intel Core i7 8700K 4.3Ghz, manufactured by Intel, Santa 
Clara, CA, USA; 16GB memory, manufactured by Corsair Memory, Fremont, CA, USA; NVIDIA 
GeForce GTX 1060 6GB, manufactured by NVIDIA, Santa Clara, CA, USA; The reconstructed time is 
0.075 s. It is 20 times faster than traditional methods without additional hardware acceleration. If we 
use a higher-performance GPU such as RTX TITAN, the reconstructed speed will be significantly 
improved, which can basically meet the real-time requirements. 

Figure 5. Reconstructed results of different methods. (The resolution of reconstructed image is
127 × 127) (a) Ground truth. (b) Reconstructed results of coded aperture snapshot spectral imager
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matrix (our method).

Table 2. Comparison of peak signal-to-noise ratio (PSNR) and reconstruction time of different scenes.

Image CASSI 4 Frame Full-1 (Ours) Hadamard-S (Ours)

a 16.09 dB 22.37 dB 21.39 dB
b 12.39 dB 21.48 dB 21.13 dB
c 20.51 dB 20.82 dB 20.60 dB
d 19.44 dB 23.03 dB 22.90 dB

Reconstruction time 1.599 s 0.077 s 0.075 s
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It can be seen that the performance of the proposed method is stable under different conditions,
and the reconstruction quality of the proposed method is better than that of the four frames CS in the
case of a single frame. The testing images are not involved in the training data, and the reconstructed
results can also get the expected results, which shows that the network has good generalization ability.
Additionally, we can find that the PSNR of reconstructed full-1 coding is better than Hadamard-S
coding since the full-1 coding can use the full information and bring higher throughput. However,
the full-1 matrix is an irreversible matrix and cannot ensure stable SNR boosting.

We bought a desktop on JD.com with Intel Core i7 8700K 4.3Ghz, manufactured by Intel,
Santa Clara, CA, USA; 16GB memory, manufactured by Corsair Memory, Fremont, CA, USA; NVIDIA
GeForce GTX 1060 6GB, manufactured by NVIDIA, Santa Clara, CA, USA; The reconstructed time
is 0.075 s. It is 20 times faster than traditional methods without additional hardware acceleration.
If we use a higher-performance GPU such as RTX TITAN, the reconstructed speed will be significantly
improved, which can basically meet the real-time requirements.

In the training strategy, we used the Adam algorithm for gradient optimization; the initial learning
rate was 0.001, the whole training process lasted about 150 epochs when reaching convergence and
batch size was set to 4. The convolution kernel size of the spectral dimension was modulated according
to the dispersion length of the input spectral image.

To verify the effectiveness of reconstructed light intensity, we put the system into implementation
and show it in Figure 6. The spectrum with band-pass filters and the whole spectrum were trained and
tested in the actual optical system to test the influence of overlapping degrees on the reconstructed
effect. In the implementation, the incident light is encoded by a digital micromirror device (DMD).
The DMD (ED01N) has a resolution of 1024 × 768 and a pixel size of 13.68 µm × 13.68 µm. The camera
(Basler acA1920-155 µm) has a resolution of 1920 × 1200 and a pixel size of 5.86 µm × 5.86 µm, and the
dispersion grating is THORLABS GT25-03(300 Grooves/mm, 17.5 deg).
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We also tested the light intensity reconstructed performance by increasing spectral bands, and the
results are shown in Figure 7. A bandpass filter with 100 nm (400–500 nm) was used to truncate the
spectrum, and the results are shown in the first row of Figure 7. The second row of Figure 7 is the
result without any filter. The PSNR of reconstructed light intensity with filter is 25.76 dB and 20.26 dB
without the filter.
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As shown in Figure 7, it can be seen that the proposed method can still reconstruct the light
intensity well. However, with the increase of spectral bands, the overlapping becomes more serious,
and the reconstructed quality will decrease.

In practice, the Sub-s HTS will lose half throughput since it is the extra imaging path, which will
have a negative impact on the SNR of the reconstructed spectrum. According to the theoretical
deduction, the SNR decline is 10log(2) (dB). Thus, we compared the slit-based spectrometer, the Sub-s
HTS [19] and the proposed net-based HTS through simulation and show the results in Figure 8.
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Figure 8. Comparison of different methods.

The results show that the proposed net-based HTS can achieve higher SNR results on the premise
of reducing an optical path while maintaining snapshot. The SNR of dual-path Sub-s HTS is lower
than the proposed net-based HTS which is in accord with the result of theoretical analysis.

The reconstructed quality of light intensity will affect the SNR of the reconstructed spectrum,
and with the iteration of network, the quality of reconstructed light intensity will increase. Thus,
we compared the SNR of reconstructed spectrum with the iteration of network and Sub-s HTS.
The results are shown in Figure 9. It can be seen that as the iterations increase, the SNR of reconstructed
spectra increases. As the quality of reconstruction increases, the advantage of light intensity gradually
manifests, and the SNR is better than that of Sub-s HTS. This accords with the results of the previous
theoretical derivation.
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Figure 9. The SNR of the reconstructed spectrum with the iterations number of the network.

In order to evaluate the performance of the proposed net-based HTS, Sub-s HTS, slit-based
spectrometer, we measured the SNR of each method with a low-level light source. In the experiment,
we used an absorptive neutral density filter to cover an LED to simulate the low-level light source.
We used the slit-based spectrometer to obtain the standard spectrum with the high light of LED and
long exposure time. In order to compare the performance of all methods quantitatively, we set the
same exposure time in all methods. The captured overlapped spectral image is shown in Figure 10,
and the reconstructed spectral data are shown in Figure 11.
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The camera (Basler acA1920-155 µm) provides a maximum analog gain setting of 36 dB that
increases the brightness of the images output. However, with the increase of analog gain, a lot of
electronic noise and temporal dark noise will be introduced. It will be a great influence on the final
image quality.

In Figure 11, it can be seen that due to the advantage of light throughput, the net-based HTS has a
better SNR than the Sub-s HTS in the case of low-level light environment and strong noise interference.
This proves that our system has stronger anti-noise capability. In the case of limited detector capability,
our system can greatly improve the SNR of the detected spectrum.

6. Conclusions

In this paper, we propose a light intensity recover network (LIRNet) to obtain the original image
from overlapped spectra and construct a network-based single-path snapshot Hadamard transform
spectrometer (net-based HTS) system. Its advantages over our previous work (Sub-s HTS) lie in the
following three aspects. First, we proposed a neural network LIRNet to recover the light intensity
distribution from the overlapped dispersive spectra, where the calculation speed is 20 times faster
than the traditional methods. Second, the proposed net-based HTS can solve the drawbacks of Sub-s
HTS such as the pixel-level registration and the loss of light throughput. Third, thanks to the simple
structure of the single-path optical system and the advantage of light throughput, the net-based HTS
can obtain a better performance than Sub-s HTS, which further improves its practicability. Additionally,
our system can greatly improve the SNR of detected spectrum with limited detector performance.

At the same time, the proposed idea of spectral unmixing can be further developed in the
field of computational spectral imaging. We believe that the proposed framework can promote the
development and applications of spectral imaging, with reduced hardware and software complexity.
In our next research, we will introduce it into hyperspectral imaging to obtain clearer hyperspectral
images, which will be an interesting avenue for future work.
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