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Abstract: In recent years, the management of health systems is a main concern of governments and
decision-makers. Home health care is one of the newest methods of providing services to patients in
developed societies that can respond to the individual lifestyle of the modern age and the increase of
life expectancy. The home health care routing and scheduling problem is a generalized version of the
vehicle routing problem, which is extended to a complex problem by adding special features and
constraints of health care problems. In this problem, there are multiple stakeholders, such as nurses,
for which an increase in their satisfaction level is very important. In this study, a mathematical model
is developed to expand traditional home health care routing and scheduling models to downgrading
cost aspects by adding the objective of minimizing the difference between the actual and potential
skills of the nurses. Downgrading can lead to nurse dissatisfaction. In addition, skillful nurses have
higher salaries, and high-level services increase equipment costs and need more expensive training
and nursing certificates. Therefore, downgrading can enforce huge hidden costs to the managers of
a company. To solve the bi-objective model, an ε-constraint-based approach is suggested, and the
model applicability and its ability to solve the problem in various sizes are discussed. A sensitivity
analysis on the Epsilon parameter is conducted to analyze the effect of this parameter on the problem.
Finally, some managerial insights are presented to help the managers in this field, and some directions
for future studies are mentioned as well.

Keywords: home health care; routing and scheduling; nurse downgrading; Epsilon-constraint
method; bi-objective optimization

1. Introduction

Today, one of the main concerns of policymakers in different societies is the proper
management of health systems. These systems, in addition to having a significant impact
on public health, impose high costs on society. Additionally, with the decreasing birth
rate and increasing elderly population, and the rise of chronic diseases, there is a growing
need for health services, as countries have to spend a significant portion of their existing
budget on the health area. On the other hand, due to resource constraints, planning for
optimal use of the resources seems to be necessary. Furthermore, in many countries, as
family members become busier and far away from each other, we see the pattern of human
life moving towards an individual life, especially for the elderly, which creates the need of
paying special attention to this group of people more than ever before. Therefore, one of
the most effective ways to reduce the use of hospital beds and clinics is to serve patients at
their place of residence. One of the most important solutions to address this problem is to
establish a system for delivering efficient health care at home. Home health care (HHC)
is a wide range of health care services that can be provided in the patient’s home due
to illness, wound, or old age. These services are usually cheaper and more convenient
than those provided in the hospital while being as efficient as the services provided in
the hospital [1]. HHC services can be seen as an essential complement to health care in
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developed countries [2]. In this context, home service providers are often confronted with
contradictions in their goals as they aim to minimize operating costs while they wish to
maximize the level of offering customer service. One of the related problems that costs a
lot for the companies is the optimal routing and scheduling for service providers, which
has received much attention in recent years. The home health care routing and scheduling
problem (HHCRSP) can be described as a dispersed collection of patients in a geographic
area who require home health care, which must be provided by nurses. The HHCRSP
includes designing a set of routes to deliver the scheduled care services within a planning
horizon that minimizes criteria such as cost or maximizes the service quality by taking into
account a number of constraints.

The problem of routing and scheduling of HHC services was first proposed by Fer-
nandez et al. (1974) [3]. Bertels and Fahle (2006) [4], as well as Eveborn et al. (2006) [5],
presented optimization methods embedded in decision support systems (DSS). Bertels
and Fahle introduced a meta-heuristic approach, and Eveborn et al. introduced a heuristic
method and a recurrent matching algorithm for solving the problem. Akjiratikarl et al.
(2007) [6] modeled the problem as a vehicle routing problem (VRP) and used the Particle
Swarm Optimization (PSO) meta-heuristic optimization method. Time window, required
skills, and working time rules are common factors in most HHC routing and scheduling
problems. However, the specific applications of these constraints between different pa-
pers have substantial differences from each other. In the context of when services should
start, most authors have considered a hard type of time window. In addition, the soft
time window can be accessed in a wide range of papers to respect the preferences of the
patient, such as Bertels and Fahle (2006) [4], Eveborn et al. (2006) [5], Trautsamwieser et al.
(2011) [7], Trautsamwieser and Hirsch (2011) [8], Mankowska et al. (2014) [9], Misir et al.
(2015) [10], Yuan et al. (2015) [11], Braekers et al. (2016) [12]. Furthermore, several papers
considered a time window for each nurse (e.g., [13–16]) which determines when a specific
nurse could offer a service to patients. In addition, matching the skills of the nurses and
the needs of the patients is a common feature in HHC optimization, and the domain of
the skills considered may vary depending on the needs of the patients and a specific set
of rules. However, in Bertels and Fahle (2006) [4], additional and non-compulsory skills
are also considered as soft constraints. For example, balancing the distribution of difficult
visits among all nurses is considered. In some cases, downgrading has been permitted
(see, e.g., [7,8,15,17]). This means that a higher-skilled nurse can provide a lower level
of service. While it provides better flexibility in the planning process and reduces travel
costs, the company incurs higher costs for higher-skilled nurses. On the other hand, it can
lead to a dissatisfaction of highly skilled nurses. However, in these previous studies, the
huge effect of downgrading costs on an optimal planning of the HHCRSP and the role
of the decision-maker was not considered. Home health care services are expensive, and
company managers should decide on their acceptable downgrading level and plan their
operations by considering these important downgrading cost aspects. Another issue that is
considered in home health care is hourly labor law, which usually determines 5 to 10 h a
day or a time window is considered. Several authors have taken a time window preference
and calculated the violation by means of a penalty (see, for example, [7,8,18]). Since most
papers consider the HHC routing and scheduling problem as an extension of the VRP,
the main focus is on travel. However, unlike the classic VRPs, where travel distances are
minimized (see, for example, Toth and Vigo (2014) [19]), in the HHC problems, the focus
is often on travel costs, travel time, and the working time of the nurses. For this reason,
most of the works involve overtime and waiting time (see, e.g., [7,8,10,15]). Only a few
studies explicitly minimize the number of nurses at the start of the route (e.g., [11,14]).
Donh et al. (2009) [13] proposed a framework based on a branch and price (B&P) algorithm
for scheduling concurrent tasks. They considered HHC as a practical area that could use
branch and price, but they used examples from airport operations for the computational
experiments. Redjem and Marcon (2016) [20] used heuristic solution methods to manage
real-size samples; they offered a two-step heuristic approach that continuously shifts jobs
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to meet the time constraints. Rodriguez et al. (2015) [21] considered staff dimensioning
aspects of home health care in a tactical horizon to ensure that the HHC company can
meet its required tasks. Spatial dimensions and a combination of nurse skills increased
the complexity of their problem. In their study, demands are non-deterministic, and a
two-stage integer stochastic approach is proposed. Their algorithm can give the number of
nurses needed from each category without any overtime cost or external resources. Liu
et al. (2016) [22] proposed a mathematical model with the consideration of lunch break
requirements and decomposed it into a master problem and several pricing sub-problems.
They used a branch-and-price algorithm (B&P) to solve the problem. In their solution
approach, a label-correcting algorithm is applied to the lunch break constraints, and in
the column generation process, some acceleration strategies are used, as well. Yuan et al.
(2018) [23] proposed a daily HHCRSP considering non-deterministic travel and service
times. These assumptions are derived from possible changes in the patient health status
and road traffic conditions that are valid in the practical world of HHC. First, they used
stochastic programming with recourse, where the recourse action is to skip patients without
services if the nurse arrives later than their latest starting service time. Then, a set partition-
ing model is proposed, and a branch-and-price algorithm is used for solving the problem.
Liu et al. (2018) [24] presented a bi-objective model to minimize the company costs and,
on the other hand, to improve patient satisfaction. Decerle et al. (2019) [25] highlighted
the multi-objective home health care problem with the centrality of practical planning and
applied a memetic algorithm to solve it. Nasir and Dang (2018) [26] extended conventional
HHCRSP to capacity and demand management aspects. To handle this problem, they
proposed a mixed integer programming (MIP) model considering workload balancing, and
then a heuristic method, as well as a variable neighborhood search (VNS) algorithm, were
applied to solve it. Nasir et al. (2018) [27] presented a mathematical model so as to integrate
resource dimensioning issues and assignment aspects considering telehealth-based care
and patients’ group-based care services. Fathollahi-Fard et al. (2018) [28] presented a
bi-objective green home health care model that addresses environmental pollution. Decerle
et al. (2019) [25] presented an algorithm combining memetic and ant colony optimization
techniques that took into account synchronization, workload balance, and time windows.

As one can see from the reviewed literature and to the best of the authors’ knowl-
edge, most of the research did not pay any attention to downgrading cost concepts as an
important home health care aspect. In some previous research, some nurses with high
qualification levels were permitted to provide some usual and low-level services to patients.
However, in these studies, downgrading concepts were not considered from the top-level
home health care managers’ point of view and their huge downgrading costs that are
enforced to their company each day. In the real-world of the home health care industry,
there are various nurse skills that are very expensive, and taking their nursing certificate is
complex and time-consuming. So, the companies should configure their plans to use most
of the potential qualifications of their nurses. In this way, they reduce their hidden costs
and increase the satisfaction level of the nurses. In this study, such requirements led us
to develop conventional models to a bi-objective novel model which can engage down-
grading costs into the home health care routing and scheduling problem. The managers
of a home health care company can make a trade-off between the total nurse traveling
times and the downgrading costs that are very costly and important for the management
of home health care human resources. An Epsilon-constraint-based solution approach
is presented to handle this bi-objective optimization problem. The main purpose of this
approach is to provide feasible and even optimal solutions for the decision-maker. The
decision-maker can adjust different values of the Epsilon parameter to analyze the effects
of various downgrading levels on the objective concerning the total traveling times of the
nurses and the whole planned routes.

The rest of this paper is organized as follows. Section 2 describes the problem and the
mathematical model. Section 3 discusses the solution approach. Experimental results and a
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sensitivity analysis are presented in Section 4. Section 5 suggests some managerial insights,
and finally, some conclusions and future studies are briefly presented in Section 6.

2. Problem Description

In general, in home health care routing and scheduling studies, researchers have
always been trying to enhance the quality of services that are provided to patients while
reducing the costs of the service provider. In addition to the main goals of this problem,
nurse satisfaction is one of the most important and common concerns of the companies.
Ignoring nurse satisfaction can cause huge hidden costs for companies.

In this problem, each of the nurses has different skill levels. The best situation for
assigning nurses to patients is to use all their skills. If the company does not use some of
the skills of the nurses, this could lead to nurse dissatisfaction, and this situation is called
downgrading. In fact, the downgrading concept is the difference between the potential
skills of the nurses and the actual skills that are used in the planning process. In addition to
nurse dissatisfaction, downgrading can enforce huge hidden costs to the company. Nurses
with different qualifications and skill levels have different salaries and other associated
equipment costs. Thus, when some available manpower capacity of the company is not
used, some huge additional costs are compelled to the company.

By investigating the previous research in this area, efforts of decreasing the difference
gap between the potential skills of the nurses and their actual planned services as an opti-
mization goal have not been observed. Therefore, in this study, the necessity of matching
the potential skills of the nurses with their used skills is addressed, and a novel mathe-
matical model is presented that aims to reduce the downgrading costs of the nurses along
with reducing the total traveling time of the nurses. Home health care companies have
incurred different downgrading costs by ignoring various nurse qualifications. Therefore,
the value of each service type is considered as different and is determined by the company’s
decision-maker. The weighted values of various nurse service types are considered by
the parameter ws. In this model, each patient requires a variety of services, where all of
them must be answered by qualified nurses. Because of the sensitivity and importance of a
patient’s health condition, all patients should be served in their optimal time window, and
the sequence of services provided by the nurses should be respected. In addition, HHCRSP
is an extended VRP problem, so it is important to consider the specific features of the VRP
problem in this study. In this model, the starting and ending point of each nurse is the
depot, and each nurse should depart from the patient’s place after serving him/her.

The planning of the new model presented in this study allows the decision-maker to
establish a balance between a reduction of the traveling costs of the nurses in exchange for
the hidden costs of not fully utilizing the skills of the nurses.

The rest of this part is organized as follows. In Section 2.1, the model assumptions are
described. In Section 2.2, the model notations are introduced, and the mathematical model
is presented in Section 2.3.

2.1. Assumptions

• Several different service needs and qualifications are included in the problem.
• All service needs of patients should be provided by qualified nurses.
• Each route of a nurse is started from the depot.
• Each nurse should end its path at the depot after visiting all planned patients.
• Each patient’s acceptable time window should be respected.
• The parameters of the patient demand, traveling time, and service time are known

before the planning and considered to be deterministic.
• The correct servicing sequence of each nurse should be respected by considering

the service time of the previous patient in addition to the time needed for traveling
between the patients’ places.

• A single period planning strategy is considered in the problem.
• Travel sharing and multi-mode traveling concepts are not considered.
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• Emergent situations and urgent service needs are not included in the problem.

2.2. Notations
2.2.1. Subscripts

i Starting node index of each travel (i = 1, 2, ..., n + 1), where n denotes the number
of patients in the planning.

j Ending node index of each travel (j = 2, 3, ..., n + 2), where n denotes the number
of patients in the planning.

k Index for the nurses (k = 1, 2, . . . , V), where V denotes the number of nurses in
the planning.

s Index for the services (s = 1, 2, . . . , S), where S denotes the number of different
services in the planning.

2.2.2. Sets

C Set of patients.
N Set of all nodes that includes patients and the depot.
V Set of nurses.
S Set of services.

2.2.3. Input Parameters

tij Travel time between node i and node j.
tis Required time for offering service s to patient i.
li Lower bound on the patient time window.
ui Upper bound on the patient time window.
aks Input matrix of nurse qualifications, where 1 means that nurse k has the

qualification of doing service s.
gjs Input matrix of patient’s service needs, where 1 means that patient j needs

service s.
ws Weighted value of service s for the decision-maker.
ε′ A small positive number, e.g., 0.1.

2.3. Decision Variables

xijks 1 if nurse k transfers from node i to j for offering service s; 0 otherwise.
Siks Starting time of offering service s to patient i by nurse k.
bks 1 if service s of nurse k is used in the optimal planning; 0 otherwise.

2.4. The Mathematical Model
2.4.1. Objective Function

f 1 : Min z = ∑
i∈N

∑
j∈N

∑
k∈V

∑
s∈S

tij.xijks, (1)

f 2 : Min z = ∑
k∈V

(∑
s∈S

wsaks −∑
s∈S

wsbks). (2)

The first objective function is stated in Equation (1) and minimizes the total traveling
time of all routes of the nurses, and the second objective function that minimizes the
downgrading costs of the nurses is presented in Equation (2).

2.4.2. Constraints

∑
i∈C

∑
s∈S

x1iks = 1 ∀k ∈ V, (3)

∑
i∈C

∑
s∈S

xi1ks = 1 ∀k ∈ V. (4)
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Constraints (3) and (4) are used to guarantee that the starting and ending place of each
nurse is the depot.

∑
i∈N

∑
s∈S

xijks−∑
i∈N

∑
s∈S

xjiks = 0 ∀j ∈ C, k ∈ V. (5)

Constraint (5) ensures that each nurse should depart from the patient’s place after
giving care and go to another patient’s home.

Siks1 + tis1 + tij −M(1− xijks2) ≤ Sjks2 ∀i, j ∈ N, k ∈ V, s1 ∈ S, s2 ∈ S. (6)

Constraint (6) states that a new service should be started after the time of finishing the
previous service in addition to the required time for transferring the nurse to the new place.

li ≤ Siks ≤ ui ∀i ∈ C, k ∈ V, s ∈ S. (7)

Constraint (7) indicates that each patient has an acceptable time window and that the
starting time of a patient’s service should be between the minimum and maximum of this
time window.

∑
k∈V

∑
i∈N

aks.xijks = gjs ∀j ∈ C, s ∈ S. (8)

Constraint (8) is used to guarantee that, if patient j requires service s, exactly one of the
nurses with the required qualifications should go to the patient’s place and give him/her
service s.

xijks = aks.gjs ∀i, j ∈ N, k ∈ V, s ∈ S. (9)

Constraint (9) ensures that for giving service s by nurse k to patient j, the nurse must
have the qualifications of service s, and the given patient must need this service.

ε′. ∑
i∈N

∑
j∈N

xijks ≤ bks ≤ ∑
i∈N

∑
j∈N

xijks ∀k ∈ V, s ∈ S. (10)

Constraint (10) states that, if service s of nurse k is used at least one time in the
planning, the decision variable bks will be one, and otherwise, it will be zero.

bks ≤ aks ∀k ∈ V, s ∈ S. (11)

Constraint (11) indicates that, if the nurse k does not have the qualification of service s,
the variable bks must get the value zero.

xijks, bks ∈ {0, 1}; Siks ∈ int+; i, j ∈ N; k ∈ V; s ∈ S. (12)

The domain of the decision variables of the problem is defined in Condition (12).

3. Solution Approach
3.1. Background

In real-world problems, the decision-maker is always confronted with conflicting
goals to make his/her decision. In the home health care routing and scheduling problem
as a practical problem, the decision-maker tries to make the best possible decision by
balancing the goals.

The Epsilon-constraint approach is one of the most popular methods of multi-objective
optimization, which attempts to optimize the most important goal by considering upper or
lower limit values for the other goals. In fact, in this method, the main goal is considered as
the objective function, and the other goals are added to the constraints of the model. Various
elements of the Pareto front can be obtained by a systematic variation of the constraint bounds.
The basic bi-objective Epsilon-constraint method is presented in Figure 1 [29].
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3.2. Proposed Solution Approach

In this study, a bi-objective optimization method is proposed to make a trade-off
between the reduction of the traveling time of the nurses and the reduction of the down-
grading costs of the nurses. This method allows the decision-maker to increase the traveling
time of nurses in return for reducing the downgrading costs. This solution approach is only
used to obtain correct answers by considering different objectives and complex constraints
of this model. Since this model is the first to consider some assumptions and HHC aspects,
a comparison of these results with previous results is not possible.

In this study, the reduction of the total traveling time of the nurses is considered as the
main objective function of the problem, and the second objective function that reduces the
downgrading costs is contained in the constraints by considering an upper limit specified
by the Epsilon parameter. In fact, the second objective function of the model is added to
the constraints with an upper bound on Epsilon and is stated as Equation (13):

∑
k∈V

(∑
s∈S

wsaks −∑
s∈S

wsbks) ≤ ε. (13)

The smallest amount of the Epsilon parameter can be obtained when all the skills of
the nurses are used in the planning, and in this case, it is zero. On the other hand, if none
of the skills of the nurses are used, this value is equal to the sum of the weighted value of
the available skills, but this situation is impossible. In fact, the upper and lower limits of
Epsilon would be the following values that are stated in Equation (14):

ε lower = 0, εupper = ∑
s∈S

wsaks. (14)

To analyze the effect of changes in the Epsilon parameter on the main objective
function of the problem, a heuristic approach is proposed in Figure 2 to determine the
logical values of Epsilon. In this pseudo-code, the δ parameter is the reduction step of the
Epsilon parameter, which is determined by the decision-maker.
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4. Computational Experiments

In this study, in order to illustrate the effectiveness of the proposed model in the
real world, the model is first tested on a small example, and the results are described,
accompanied by a discussion regarding the correctness of the suggested model. Next, the
model is applied to some benchmark instances in the literature taken from Mankowska
et al. (2014) [9], and it is solved by IBM ILOG CPLEX Optimization Studio Version 12.6.0.0
(IBM, Armank, NY, USA). All experiments in this study are run on a computer with an
Intel i7-4710HQ processor, 2.5 GHz core speed, and 8 GB of RAM.

4.1. Planning Process

In this subsection, a small instance is first solved to show the process of the proposed
model. By doing so, the benefits of this model in contrast to traditional home health care
routing and scheduling models are clarified. Table 1 shows the properties of the solved
small example.

Table 1. Properties of the considered small example.

Number of Patients Number of Nurses Number of Services

10 3 6

In this small example, 10 patients and 3 nurses are considered. The patients have
different service needs, and the nurses have various qualifications. Each patient’s service
needs and acceptable time windows are stated in Table 2.

Table 2. Patients’ properties in the small example.

Patient Number Service Needs Acceptable Time Windows

1 S4 (345,465)
2 S5 (268,388)
3 S2 (247,367)
4 S4 (393,513)
5 S3 (254,374)
6 S5 (184,304)
7 S3 (434,554)
8 S5, S6 (46,166)
9 S1, S4 (298,418)
10 S3, S6 (148,268)

The traveling times between the places of the patients are given in Table 3.
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Table 3. Traveling times between the places of the patients in the small example.

Depot 1 2 3 4 5 6 7 8 9 10

Depot 0 38.471 34.886 55.946 7.28 23.345 71.47 32.527 13.038 26.401 88.888
1 38.471 0 23.087 21.401 32.016 31.828 34 32.65 45.277 57.454 56.859
2 34.886 23.087 0 43.829 27.785 15.033 53.038 10.63 46.615 42.755 54.918
3 55.946 21.401 43.829 0 50.606 53.151 17.029 53.852 59.228 77.801 59.641
4 7.28 32.016 27.785 50.606 0 17.493 65.552 26.401 19.105 28.425 81.609
5 23.345 31.828 15.033 53.151 17.493 0 65 9.22 36.235 27.893 69.584
6 71.47 34 53.038 17.029 65.552 65 0 63.64 75.802 91.417 50.922
7 32.527 32.65 10.63 53.852 26.401 9.22 63.64 0 45.343 34.015 62.073
8 13.038 45.277 46.615 59.228 19.105 36.235 75.802 45.343 0 35.228 99.161
9 26.401 57.454 42.755 77.801 28.425 27.893 91.417 34.015 35.228 0 96.021

10 88.888 56.859 54.918 59.641 81.609 69.584 50.922 62.073 99.161 96.021 0

There are six different services and qualifications in this problem, which are presented
in Table 4. Each service has a weighted value for the decision-maker. In this study, the
approximate cost of each service type was first confirmed by a nursing expert after an
inquiry, and then these values are scaled between 1 and 6 by the min-max scaling method
to show the comparative priorities of service types. These values are rounded to discrete
values for being easier to use with other problem parameters such as the Epsilon parameter.

Table 4. Different service types in the small example.

Service ID Service Type Supposed Weighted Value

S1 Speech therapy 1
S2 Wound dressing 2
S3 Insulin injection 3
S4 Blood sampling 4
S5 Physiotherapy 5
S6 X-ray imaging 6

On the other hand, each nurse has special service qualifications. The service qualifica-
tions of each nurse are explained in Table 5.

Table 5. Properties of the nurses in the small example.

Nurse Number Service Qualifications

1 S1, S2, S3, S5
2 S1, S3, S5, S6
3 S2, S4, S5, S6

In Section 4.3, a comprehensive sensitivity analysis will be conducted on the Epsilon
parameter to show the effect of the Epsilon parameter on the considered problem from
different perspectives. In this section, the Epsilon value is only supposed to be equal to
10 or 7 to describe the process of planning. After solving this small example by using the
proposed model, the results are shown in Table 6. In this table, the routes are illustrated
by arrows and each service that is given to each patient, which is shown at the top of the
patient number. In this example, the parameter Epsilon is supposed to be 10.
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Table 6. Optimal route for the small example (Epsilon = 10).

S5 S1 S3
Nurse1Depot → 8 → 9 → 5 → Depot

S6 S5 S3 S5 S3
Nurse2Depot → 8 → 6 → 10 → 2 → 7 → Depot

S6 S2 S4 S4 S4
Nurse3Depot → 10 → 3 → 1 → 9 → 4 → Depot

Next, a comparison between the results for two different Epsilon values is made. The
results are illustrated in Figures 3 and 4 for a better understanding. In Figure 3, the Epsilon
value is equal to 10 and in Figure 4, the Epsilon value is supposed to be equal to 7.

As one can see from Figure 3, each patient’s service requirement is ensured, and each
nurse only gives services for which he/she has the qualification. In this optimal plan,
some skills of the nurses can be ignored up to the downgrading level. The ignored service
qualifications are presented in Table 7, where the total weighted value of them is less than
the considered Epsilon value.
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Table 7. Ignored service qualifications of nurses in the small example (Epsilon = 10).

Nurse Number Service Type Number Supposed Weighted Value

#1 #2 2
#2 #1 1
#3 #5 5

Total weighted value 8 ≤ 10
Total traveling time 600.43

In Figure 4, with decreasing the Epsilon parameter, the whole optimal routing and
scheduling are affected. However, as for the previous plan, all patients’ service needs are
satisfied. The ignored service qualifications of this plan are shown in Table 8, where the
total weighted value of them is less than the considered Epsilon value.
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Table 8. Ignored service qualifications of the nurses in the small example (Epsilon = 7).

Nurse Number Service Type Number Supposed Weighted Value

#1 #1 1
#2 #3 3
#3 #2 2

Total weighted value 6 ≤ 7
Total traveling time 639.761

By comparing the planning for the two different Epsilon values, it can be con-
cluded that the optimal routing and scheduling can be affected severely by changing the
Epsilon value.

Nurse #1 visits patients 10, 6, 3, 5, and 7 in the second planning instead of patients 8, 9,
and 5 in the first one. The optimal planning for nurse #2 in the second planning proposes
to serve patient 9 instead of patients 6, 2, and 7. Nurse #3 visited patients 8 and 2 in the
second planning instead of patients 10 and 3 in the first one.

As it can be understood from the results (Figures 3 and 4), although decreasing the
Epsilon parameter can reduce the downgrading costs of the company, the summation of
traveling times of the nurses will be increased from 600.43 to 639.761, and the company
will have higher operational costs. So, in this context, the decision-maker should make a
trade-off between reducing the downgrading costs and increasing the total traveling times
of the nurses.

4.2. Results

In this subsection, two different categories of instances are tested to show the effec-
tiveness of the proposed model. The first category considers 10 patients who have different
service needs and acceptable time windows, 3 nurses with different qualifications, and
6 various service types. Likewise, the second category considers 25 patients who have
different service needs and acceptable time windows, 5 nurses with different qualifications,
and 6 various service types. The sample input parameters for each category are given in
Appendix A (Tables A1–A4) and Appendix B (Tables A5–A8). The summarized properties
of the benchmark instances are described in Table 9.

Table 9. Summarized properties of the benchmark instances.

Category Instance
Number

Number of
Patients

Number of
Nurses

Number of
Services

1 #1–#10 10 3 6
2 #11–#20 25 5 6

To the best of the authors’ knowledge, this study is the first one that considers down-
grading costs in the routing and scheduling of the home health care problem. Accordingly,
the value of the parameter ws is settled by an inquiry from a nursing expert and applying
the min-max scaling method. The weighted values of different service types are presented
in Table 4.

The obtained solutions for different categories of problem instances are given in
Tables 10 and 11, respectively. Further output details for the first and second instance cate-
gories are organized in Appendix C (Tables A9–A11) and Appendix D (Tables A12–A14).
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Table 10. Solutions for the instances of the first category.

Instance Number Epsilon Parameter Optimal Solution Value

#1 10 600.43
#2 10 426.722
#3 10 602.677
#4 10 519.302
#5 10 681.19
#6 10 475.042
#7 10 357.028
#8 10 387.626
#9 10 583.52

#10 10 677.085

Table 11. Solutions for the instances of the second category.

Instance Number Epsilon Parameter Optimal Solution Value

#11 20 904.743
#12 20 823.3
#13 20 765.121
#14 20 904.989
#15 20 1833.752
#16 20 825.067
#17 20 626.793
#18 20 705.303
#19 20 1115.815
#20 20 432.561

According to the obtained results, one can conclude that the proposed bi-objective
model in this paper can be well used in daily planning of home health care organizations
in different sizes and can help them in their routing and scheduling decisions as well.

4.3. Sensitivity Analysis
4.3.1. Effect of the Epsilon Parameter on the Optimal Solution Value

In this section, a sensitivity analysis of the Epsilon parameter of the model is performed
to get a better insight into the effects of changing downgrading decisions on the whole
model results. The chosen parameter for the sensitivity analysis is ε which determines to
which amount the decision-maker is ready not to use his/her precious human resources
capabilities. In fact, Epsilon is the difference between the potential skills of the nurses of
the company and the actually used skills in the routing and scheduling process. The results
of the sensitivity analysis of the Epsilon parameter, for instance, with 25 patients, 5 nurses,
and 6 service types, are presented in Table 12.

Table 12. A sensitivity analysis of the results with respect to the parameter Epsilon.

Row Number Epsilon Parameter Optimal Solution Value

#1 9 1114.781
#2 10 1007.037
#3 12 924.855
#4 13 924.855
#5 15 917.103
#6 18 904.743
#7 20 904.743

The effect of changing the Epsilon parameter on the final result is illustrated in Figure 5.
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From Figure 5, it can be seen that the smallest Epsilon value could be 9, and the model
is infeasible for lower values. In addition, by making the Epsilon value larger than 18, the
final optimal solution does not change, and 18 is an upper bound for this problem.

As it is obvious from Figure 5, the optimal solution is affected when changing the
Epsilon parameter of the bi-objective model. When the downgrading costs are more
important for the decision-maker, she/he reduces the Epsilon parameter to lessen the
dissatisfaction of high-qualified nurses and hidden costs of the company. On the other
hand, more nurse traveling time costs will be incurred to the company which is a very
important aspect of home health care operational costs. In fact, the decision-maker should
make a careful trade-off between reducing downgrading costs and increasing total traveling
time costs.

4.3.2. Upper Limit for the Meaningful Epsilon Parameter

According to the results of Section 4.3.1, it can be inferred that, if the decision-maker
is willing to incur more downgrading cost, the optimal solution of the main objective
function will be reduced. This section addresses the question of how much increase in
the downgrading cost will continue to improve the optimal solution. An instance with
25 patients, 5 nurses, and 6 service types is used to investigate this issue. The effect of an
increase of the downgrading cost on the objective function of the problem is demonstrated
Table 13.

Table 13. Actual used downgrading cost.

Row Number Epsilon Parameter Actual Used Downgrading Cost

#1 10 10
#2 12 12
#3 13 13
#4 15 15
#5 18 18
#6 20 18
#7 25 18
#8 30 18
#9 40 18

#10 50 18
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As one can see from Table 13, it can be concluded that, if the Epsilon parameter
is increased to values greater than 18, there will be no effect on the total points of the
difference between the potential and used qualifications of the nurses, and this violation
will always remain equal to 18. This indicates that the optimal solution will not always
improve as the downgrading cost increases, and there is an upper limit for the maximum
amount of Epsilon, which can be considered. Therefore, if the decision-maker increases
the Epsilon parameter to upper values, she/he will no longer see a change in the optimal
solution because the model does not require a greater amount of mismatch between the
potential and used qualifications of the nurses and has reached an optimal solution.

5. Managerial Insights

Some important managerial insights can be extracted from this study as follows:

1. This novel mathematical model could be used by managers for better planning of the
company’s nurses considering downgrading aspects. The managers could make an
appropriate trade-off between downgrading and total traveling times of the nurses.
The downgrading level could be adjusted by changing the Epsilon parameter of
the model.

2. In most traditional home health care routing and scheduling models, the home health
care decision-maker assumes that each patient requires only one type of service. In
fact, if a patient needs three services simultaneously, the plan considers it as three
different patients who have the same place and health profile. The managers of the
health care industry can decrease the volume of data in their companies by using this
new method as well. Actually, in this plan, each patient has a unique physical and
health profile, where besides removing multiple same profiles for each patient, the
home health care company can have a clean and rich database from their customers.
In addition, top-level managers can use this valuable resource to establish marketing
strategies or manage their employees and service capacities.

3. Downgrading concepts could help the managers for making better nurse capability
decisions. The managers could understand that there are some unrequired nurse
qualifications in their company or there are extra needs for new skills, and he/she
should hire additional skillful nurses for getting a better service level to the patients.

6. Conclusions and Future Studies

Health care has always been a vital concern of humans throughout history. Therefore,
human societies have always tried to improve their health. Governments nowadays spend
a significant portion of their budget on health. Therefore, optimization in this field has been
of great interest to researchers in recent years. In general, researchers have conflicting goals
in this optimization. In addition to reducing the costs, they should increase the quality of
the provided services to ensure the maximum stakeholders’ satisfaction.

Due to the limited resources available in health systems nowadays, there are many con-
cerns about providing appropriate services to patients. The capacity of hospital beds does
not meet the needs of patients, and hospital admission departments are always crowded.
One of the most recent ways of providing services to patients is the provision of appropriate
services to the patients at their homes. Home health care can reduce unnecessary hospital
admissions and make patients more comfortable. Moreover, nosocomial infections are
one of the most important issues with the hospitalization of patients, which always cause
many problems for the patients. These infections will be reduced by providing services to
patients at home. Therefore, applying home health care in addition to reducing costs will
also improve the process of providing services to patients.

One of the most important goals that have always been considered in the field of home
health care is to increase the level of stakeholders’ satisfaction. Nurses are one of the most
important stakeholders in this problem. Not using some of the nurses’ skills may lead to
dissatisfaction of the nurses. Despite the nurses’ dissatisfaction, it would incur a hidden



Int. J. Environ. Res. Public Health 2021, 18, 900 16 of 24

cost to the service provider because the plan did not use all of the potentially available
resources that are very valuable to the home health care company.

In this study, a bi-objective model was proposed to minimize the downgrading costs,
which characterize the difference between the potential and actual skills of the nurses, as
well as to minimize the total traveling time of the nurses. In order to solve the proposed
bi-objective model, an Epsilon-constraint-based solution approach was developed. In the
first section of the computational experiments, the importance of the model was discussed
through interpreting the obtained results obtained by solving a small example, and the
applicability of the proposed model was shown. Then, the model was applied to several
sets of problems, including different sizes, to confirm the efficiency of the new model for
various home health care problems. Moreover, to analyze the effect of the parameter of
the solution method on the problem, a sensitivity analysis was conducted on the Epsilon
parameter. Finally, some managerial insights for health care managers were presented to
help them to well handle their available resources.

As a direction for future research, the application of heuristic and meta-heuristic
algorithms to solve larger-sized instances could be useful [30,31], specifically when exact
approaches cannot be developed or are inefficient. It would be interesting to apply the
proposed model to uncertain situations. Another direction could be the use of exact
techniques like the branch and cut (B&C) method to solve the proposed model. Since
this type of problem could be evaluated from different perspectives, owing to existing
different stakeholders’ goals and proposals, adding various goals to the model could be
useful. Different novel and powerful multi-objective meta-heuristic algorithms such as
the multi-objective intelligent water drops (IWD) algorithm, which were proposed first
by Kayvanfar et al. (2017) [32], could be applied to the model to compare the solutions
obtained. Finally, developing the model using time-dependent travel times in urban regions
could be another stream.
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Appendix A

The properties of the sample patients for the first category instances are presented in
Table A1.

The sample traveling times between the places of the patients for the first category
instances are given in Table A2.

Sample service types for the first category instances are given in Table A3.
The properties of the sample nurses for the first category instances are shown in Table A4.
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Table A1. Sample patients’ properties for the first category instances.

Patient Number Service Needs Acceptable Time Windows

1 S4 (345,465)
2 S5 (268,388)
3 S2 (247,367)
4 S4 (393,513)
5 S3 (254,374)
6 S5 (184,304)
7 S3 (434,554)
8 S5, S6 (46,166)
9 S1, S4 (298,418)
10 S3, S6 (148,268)

Table A2. Sample traveling times between the places of the patients for the first category instances.

Depot 1 2 3 4 5 6 7 8 9 10

Depot 0 38.471 34.886 55.946 7.28 23.345 71.47 32.527 13.038 26.401 88.888
1 38.471 0 23.087 21.401 32.016 31.828 34 32.65 45.277 57.454 56.859
2 34.886 23.087 0 43.829 27.785 15.033 53.038 10.63 46.615 42.755 54.918
3 55.946 21.401 43.829 0 50.606 53.151 17.029 53.852 59.228 77.801 59.641
4 7.28 32.016 27.785 50.606 0 17.493 65.552 26.401 19.105 28.425 81.609
5 23.345 31.828 15.033 53.151 17.493 0 65 9.22 36.235 27.893 69.584
6 71.47 34 53.038 17.029 65.552 65 0 63.64 75.802 91.417 50.922
7 32.527 32.65 10.63 53.852 26.401 9.22 63.64 0 45.343 34.015 62.073
8 13.038 45.277 46.615 59.228 19.105 36.235 75.802 45.343 0 35.228 99.161
9 26.401 57.454 42.755 77.801 28.425 27.893 91.417 34.015 35.228 0 96.021

10 88.888 56.859 54.918 59.641 81.609 69.584 50.922 62.073 99.161 96.021 0

Table A3. Sample service types for the first category instances.

Service ID Service Type Supposed Weighted Value

S1 Speech therapy 1
S2 Wound dressing 2
S3 Insulin injection 3
S4 Blood sampling 4
S5 Physiotherapy 5
S6 X-ray imaging 6

Table A4. Nurses’ properties for the first category instances.

Nurse Number Service Qualifications

1 S1, S2, S3, S5
2 S1, S3, S5, S6
3 S2, S4, S5, S6

Appendix B

The properties of the sample patients for the second category instances are presented
in Table A5.

The sample traveling times between the places of the patients for the second category
instances are given in Table A6.
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Table A5. Sample patients’ properties for the first category instances.

Patient Number Service Needs Acceptable Time Windows

1 S4 (345,465)
2 S5 (268,388)
3 S2 (247,367)
4 S4 (393,513)
5 S3 (254,374)
6 S5 (184,304)
7 S3 (434,554)
8 S5 (46,166)
9 S5 (298,418)
10 S5 (148,268)
11 S2 (409,529)
12 S2 (73,193)
13 S2 (157,277)
14 S4 (63,183)
15 S1 (282,403)
16 S5 (274,394)
17 S3 (152,272)
18 S5, S6 (222,342)
19 S5, S6 (276,396)
20 S4, S6 (29,149)
21 S5, S6 (416,536)
22 S2, S4 (332,452)
23 S2, S6 (190,310)
24 S1, S4 (59,179)
25 S1, S4 (434,554)
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Table A6. Sample traveling times between the places of the patients for the second category instances.

Depot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Depot 0 49.041 39.205 51.088 34.713 45.88 68.264 35.468 7.28 33.838 9.22 75.007 35.735 33.615 66.483 91.302 85.212 25.06 13.601 27.857 70.349 16.125 15.264 65.276 87.321 85.024
1 49.041 0 9.899 30.871 31.145 25.06 39.051 15.524 53.535 49.01 43.932 48.918 27.166 51 18.028 43.966 53.235 24.839 45.695 28.443 40 34.482 34.986 36.797 48.27 57.428
2 39.205 9.899 0 29 26 24.207 41.146 8.544 43.909 42.755 34.059 50.606 22.361 44.553 27.803 52.924 56.921 15 36.688 21.095 42.544 25.08 25.495 38.471 54.148 59.933
3 51.088 30.871 29 0 53.824 53.151 17.263 36.878 58.009 68.447 42.297 24.331 50.606 69.857 43.105 50.22 34.132 30.364 55.902 47.011 19.416 44.385 44.147 14.318 38.013 34.366
4 34.713 31.145 26 53.824 0 12.728 67.119 17.464 34.928 18.111 36.056 76.479 4 20.224 42.72 73.682 82.873 26.627 23.707 8.544 68.542 20.025 21.024 64.405 79.246 85.907
5 45.88 25.06 24.207 53.151 12.728 0 63.82 17.464 47.011 29.155 45.541 73.6 10.296 31.385 32.14 64.008 78.294 31.575 36.056 18.028 64.9 30.083 31.048 61.4 72.732 82.377
6 68.264 39.051 41.146 17.263 67.119 63.82 0 49.659 75.107 83.169 59.54 9.899 63.506 84.77 44.721 39.85 17 46.39 72.339 61.351 2.236 60.531 60.407 3 22.023 18.788
7 35.468 15.524 8.544 36.878 17.464 17.464 49.659 0 39.051 34.366 32.202 59.059 13.892 36.222 31.401 59.481 65.46 15.033 30.414 13.038 51.078 19.849 20.518 46.957 62.394 68.447
8 7.28 53.535 43.909 58.009 34.928 47.011 75.107 39.051 0 30.265 16.492 82.055 36.715 29.614 70.434 96.607 92.087 30.676 11.402 29.411 77.162 19.209 18.601 72.111 93.744 92.087
9 33.838 49.01 42.755 68.447 18.111 29.155 83.169 34.366 30.265 0 39.446 92.114 22.091 2.236 60.638 91.788 99.459 38.588 20.248 21.84 84.77 26.173 26.87 80.324 96.747 101.843

10 9.22 43.932 34.059 42.297 36.056 45.541 59.54 32.202 16.492 39.446 0 66.008 36.056 39.661 61.847 84.599 76.42 19.105 19.849 28.018 61.66 16.031 15.033 56.569 79.12 76
11 75.007 48.918 50.606 24.331 76.479 73.6 9.899 59.059 82.055 92.114 66.008 0 72.945 93.638 54.203 45.277 12.207 54.571 80.231 70.385 9.434 68.659 68.447 12.207 23.259 10.05
12 35.735 27.166 22.361 50.606 4 10.296 63.506 13.892 36.715 22.091 36.056 72.945 0 24.187 38.897 69.721 79.12 24.597 25.807 8.062 64.885 20.224 21.213 60.828 75.313 82.292
13 33.615 51 44.553 69.857 20.224 31.385 84.77 36.222 29.614 2.236 39.661 93.638 24.187 0 62.817 93.904 101.139 39.825 20.125 23.537 86.4 27.019 27.659 81.908 98.615 103.407
14 66.483 18.028 27.803 43.105 42.72 32.14 44.721 31.401 70.434 60.638 61.847 54.203 38.897 62.817 0 32.062 54.489 42.802 61.587 42.942 44.777 51.225 51.856 43.463 45.222 60.605
15 91.302 43.966 52.924 50.22 73.682 64.008 39.85 59.481 96.607 91.788 84.599 45.277 69.721 93.904 32.062 0 38.328 66.242 89.538 72.277 38.328 78 78.39 40.853 24.515 46.271
16 85.212 53.235 56.921 34.132 82.873 78.294 17 65.46 92.087 99.459 76.42 12.207 79.12 101.139 54.489 38.328 0 63.285 89.275 77.621 15.033 77.414 77.318 20 14 8
17 25.06 24.839 15 30.364 26.627 31.575 46.39 15.033 30.676 38.588 19.105 54.571 24.597 39.825 42.802 66.242 63.285 0 26.019 18.439 48.26 14.142 14.036 43.417 63.506 64.537
18 13.601 45.695 36.688 55.902 23.707 36.056 72.339 30.414 11.402 20.248 19.849 80.231 25.807 20.125 61.587 89.538 89.275 26.019 0 19.105 74.243 12.042 12 69.354 89.275 90.255
19 27.857 28.443 21.095 47.011 8.544 18.028 61.351 13.038 29.411 21.84 28.018 70.385 8.062 23.537 42.942 72.277 77.621 18.439 19.105 0 62.936 12.166 13.153 58.524 75.24 80.056
20 70.349 40 42.544 19.416 68.542 64.9 2.236 51.078 77.162 84.77 61.66 9.434 64.885 86.4 44.777 38.328 15.033 48.26 74.243 62.936 0 62.394 62.29 5.099 19.849 17.493
21 16.125 34.482 25.08 44.385 20.025 30.083 60.531 19.849 19.209 26.173 16.031 68.659 20.224 27.019 51.225 78 77.414 14.142 12.042 12.166 62.394 0 1 57.559 77.233 78.645
22 15.264 34.986 25.495 44.147 21.024 31.048 60.407 20.518 18.601 26.87 15.033 68.447 21.213 27.659 51.856 78.39 77.318 14.036 12 13.153 62.29 1 0 57.428 77.318 78.447
23 65.276 36.797 38.471 14.318 64.405 61.4 3 46.957 72.111 80.324 56.569 12.207 60.828 81.908 43.463 40.853 20 43.417 69.354 58.524 5.099 57.559 57.428 0 24.413 21.541
24 87.321 48.27 54.148 38.013 79.246 72.732 22.023 62.394 93.744 96.747 79.12 23.259 75.313 98.615 45.222 24.515 14 63.506 89.275 75.24 19.849 77.233 77.318 24.413 0 22
25 85.024 57.428 59.933 34.366 85.907 82.377 18.788 68.447 92.087 101.843 76 10.05 82.292 103.407 60.605 46.271 8 64.537 90.255 80.056 17.493 78.645 78.447 21.541 22 0
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The sample service types for the second category instances are given in Table A7.

Table A7. Sample service types for the second category instances.

Service ID Service Type Supposed Weighted Value

S1 Speech therapy 1
S2 Wound dressing 2
S3 Insulin injection 3
S4 Blood sampling 4
S5 Physiotherapy 5
S6 X-ray imaging 6

The properties of the sample nurses for the second category instances are shown in
Table A8.

Table A8. Nurses’ properties for the second category instances.

Nurse Number Service Qualifications

1 S1, S3, S4, S5
2 S2, S3, S6
3 S1, S2, S5, S6
4 S2, S4, S5, S6
5 S1, S3, S4, S5, S6

Appendix C

The sample results of the decision variables xijks for the first category instances are
shown in Table A9.

Table A9. Sample results of the decision variable xijks for the first category instances.

i j k s xijks

11 4 3 2 1
11 3 2 5 1
10 6 1 3 1
10 5 3 4 1
9 10 1 1 1
9 7 2 5 1
8 1 2 1 1
7 11 2 3 1
6 1 1 2 1
5 1 3 5 1
4 2 3 4 1
3 8 2 3 1
2 10 3 4 1
1 11 3 6 1
1 9 2 6 1
1 9 1 5 1

The sample results of the decision variables Siks for the first category instances are
presented Table A10.
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Table A10. Sample results of the decision variable Siks for the first category instances.

i k s Siks

9 1 5 46
10 1 1 298
6 1 3 340
9 2 6 46
7 2 5 184
11 2 3 268
3 2 5 337
8 2 3 434
11 3 6 235
4 3 2 309
2 3 4 345
10 3 4 417
5 3 4 460

The sample results of the decision variables bks for the first category instances are
presented in Table A11.

Table A11. Sample results of the decision variables bks for the first category instances.

k s bks

1 1 1
1 3 1
1 5 1
2 3 1
2 5 1
2 6 1
3 2 1
3 4 1
3 6 1

Appendix D

The sample results of the decision variables xijks for the second category instances are
shown Table A12.

Table A12. Sample results of the decision variables xijks for the second category instances.

i j k s xijks

26 1 5 3 1
26 1 3 5 1
25 21 3 6 1
25 7 5 5 1
24 16 5 1 1
24 4 3 2 1
23 1 4 6 1
23 1 2 3 1
22 23 4 4 1
22 23 2 2 1
21 25 5 4 1
21 24 3 2 1
20 19 2 6 1
20 6 1 3 1
19 22 2 6 1
19 14 4 2 1
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Table A12. Cont.

i j k s xijks

18 20 1 5 1
17 26 5 4 1
16 17 5 5 1
15 21 5 4 1
14 10 4 5 1
13 20 2 6 1
12 26 3 1 1
11 18 1 3 1
10 5 4 4 1
9 19 4 5 1
8 1 1 1 1
7 24 5 6 1
6 2 1 4 1
5 22 4 5 1
4 12 3 2 1
3 8 1 3 1
2 3 1 5 1
1 25 3 1 1
1 15 5 4 1
1 13 2 2 1
1 11 1 5 1
1 9 4 5 1

The sample results of the decision variables Siks for the second category instances are
given in Table A13.

Table A13. Sample results of the decision variables Siks for the second category instances.

i k s Siks

11 1 5 148
18 1 3 182
20 1 5 276
6 1 3 309
2 1 4 349
3 1 5 373
8 1 3 554
13 2 2 73
20 2 6 276
19 2 6 310
22 2 6 416
23 2 2 431
25 3 1 88
21 3 6 122
24 3 2 190
4 3 2 247
12 3 2 409
26 3 1 434
9 4 5 46
19 4 5 222
14 4 2 277
10 4 5 298
5 4 4 393
22 4 5 428
23 4 4 443
15 5 4 67
21 5 4 126
25 5 4 160
7 5 5 197
24 5 6 214
16 5 1 341
17 5 5 394
26 5 4 434
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The sample results of the decision variables bks for the second category instances are
presented in Table A14.

Table A14. Sample results of the decision variables bks for the second category instances.

k s bks

5 6 1
5 5 1
5 4 1
5 1 1
4 5 1
4 4 1
4 2 1
3 6 1
3 2 1
3 1 1
2 6 1
2 2 1
1 5 1
1 4 1
1 3 1
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