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Cycle Based Network Centrality
Xiaoping Zhou1,2, Xun Liang1, Jichao Zhao3 & Shusen Zhang1

Paths and cycles are the two pivotal elements in a network. Here, we demonstrate that paths, 
particularly the shortest ones, are incomplete in information network. However, based on such paths, 
many network centrality measures are designed. While extensive explorations on paths have been 
made, modest studies focus on the cycles on measuring network centrality. We study the relationship 
between the shortest cycle and the shortest path from extensive real-world networks. The results 
illustrate the incompleteness of the shortest paths on measuring network centrality. Noticing that the 
shortest cycle is much more robust than the shortest path, we propose two novel cycle-based network 
centrality measures to address the incompleteness of paths: the shortest cycle closeness centrality 
(SCC) and the all cycle betweenness centrality (ACC). Notwithstanding we focus on the network 
centrality problem, our findings on cycles can be applied to explain the incompleteness of paths in 
applications and could improve the applicability into more scenarios where the paths are employed in 
network science.

Network science is the study of network representations of physical, biological, and social phenomena leading to 
predictive models of these phenomena1. Currently, network science has become a common paradigm in diverse 
disciplines as a means of analyzing complex relational data. In social, biological, communication, information, 
or transportation networks, among others, it is important to know the relative structural prominence of nodes 
to identify the key elements in the network2–4. Network centrality measure, which illustrates the importance of a 
node’s position in a network, is one of the fundamental problems in network science5.

In the past decades, many centrality measures were proposed for better understanding, analyzing, and con-
trolling the spreading dynamics, e.g., degree centrality (DC), closeness centrality (CC)6–11, betweenness centrality 
(BC)6, eigenvector centrality (EC)12, flow betweenness centrality (FBC)13 and so on14–18. Obviously, many close-
ness measures heavily rely on the shortest paths. Take CC as an example. CC somehow evaluates the efficiency of 
a node while diffusing information to all the other nodes. Undoubtedly, the shortest path is the most efficient way 
to deliver information between two nodes. However, the shortest path is not necessarily the quickest way when 
considering the presence of possible traffic congestion19. In this scenario, a portion of the “information” may flow 
through non-shortest paths. To this extent, the shortest path is incomplete.

To address the incompleteness of shortest paths, some betweenness centrality measures are proposed by intro-
ducing non-shortest paths. Freeman et al. suggested a more sophisticated network centrality measure, teamed as flow 
betweenness centrality (FBC)13. Although FBC utilizes contributions from both shortest paths and non-shortest paths, 
Newman illustrated that FBC can give counterintuitive results in some cases20. To attack the issues of shortest path and 
flow betweenness, Newman proposed and offered the random-walk betweenness centrality (RWBC)20. Information 
is implicitly assumed to spread through random paths in RWBC. However, it is expected that information can be 
delivered in more efficient paths. Estrada et al. defines the communicability21 between two nodes and proposes the 
communicability betweenness centrality (CBC)18 in complex networks. CBC incorporates all paths between two nodes 
but penalizing long walks. Since CBC utilizes the “backtracking walks” with loops, it cannot be applied to the scenarios 
where the loop is not allowed, e.g., the communication routing network. Positively, each of the above solutions has a 
valid role in accounting for processes that can take place in the network. However, these solutions produce superfluous 
paths between two nodes in many real-world applications such as communication routing network where informa-
tion is expected to be transmitted through the optimal paths. Additionally, the above three centrality measures are 
computationally expensive22, since many unnecessary paths are required to be computed. Another characteristic of 
the incompleteness of shortest paths in information dissemination is the lack of fault tolerance. In many real-world 
applications such as communication routing network, factors such as fault tolerance must be considered in case that 
one of the nodes or links are unavailable due to malfunctions or congestions. This study addresses the incompleteness 
of the shortest path in CC from a novel perspective by introducing shortest cycles.
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In contrast with path, a cycle consists two loop-free independent paths for any two nodes in the cycle. Thus, 
the shortest cycle mitigates the incompleteness of the shortest path in CC from two aspects: providing an alterna-
tive path and improving the fault tolerance. From this perspective, shortest cycles are more robust than shortest 
paths in measuring network centrality. Errors, failures and environmental changes may occur at any time in most 
real-world networks23, resulting in the dysfunction of shortest paths. It is anticipated that shortest cycles can 
improve the resilience of the node-ranking results and help identify nodes most central for robust information 
transmission.

This study employs the power of the shortest cycles and proposes the cycle-based network centrality measures. 
Firstly, we explore the network structure from the perspective of cycle. The experimental results show that net-
work consists of numerous cycles interweaving in the same network, enabling the possibility to employ the power 
of cycles in measuring robust network centrality. Secondly, we study the relationship between the shortest path 
and the shortest cycle. The empirical study results show that the size of shortest cycle is not linear with the length 
of the shortest path for many nodes. This finding shows that the paths between two nodes are often nonlinear, and 
that the length of the shortest path cannot characterize the information transmission distance when any node/
edge in the shortest path is unavailable. Since the shortest cycle considers the nonlinearity of the paths between 
two nodes and provides the fault tolerance in information diffusion, it can characterize a more robust informa-
tion transmission distance than the shortest path. Finally, we propose a novel centrality measure to address the 
incompleteness of the shortest paths, termed as shortest cycle closeness centrality (SCC). In addition, we also 
present the all cycle betweenness centrality (ACC) to illustrate that the cycles can also be applied to measure the 
betweenness centrality. Finally, we give examples that the cycle-based centrality measures can rank nodes more 
robust in transmitting information to all the other nodes than other path-based network centralities, e.g., CC.

This work discusses the incompleteness of the shortest paths in CC and presents the cycle based network 
centralities from a different perspectives. Although we focus on network centrality problem, it is anticipated that 
cycles can be applied to improve the applicability into more scenarios where paths are utilized.

Cycle and Shortest Cycle
Usually, a real-world network is modeled as graph G = (V, E) with n = |V| nodes and m = |E| edges, where V 
and E represent the sets of nodes and edges, respectively. In this study, we only focus on the simple undirected 
unweighted graph, i.e., (v, v) ∉ E for any v ∈ V, or there is no duplicate edge in E.

Cycle and its Computing Method.  Paths and cycles are two pivotal elements in a network. Cycles play a 
role in constructing network architecture something like the status of benzene ring in chemistry. A simple cycle is 
a sequence of unduplicated consecutive nodes beginning and ending at the same node, with each two consecutive 
nodes in a sequence adjacent to the next. The size of a simple cycle is the number of edges in the cycle. Without a 
specification, we only discuss simple cycles in this study.

The possible number of existing simple cycles in a given social network is a conundrum to researchers. This 
issue was studied extensively in 1960s24–27 and 1970s28–31. Due to its relevance in many scientific areas, compu-
tation of simple cycle has attracted both theoretical and practical interests. Recently, a large number of stud-
ies on this topic have been reported in many disciplines24–33. However, even the most efficient algorithm cost 
O(m + ∑o∈C(G) |o|), where C(G) is the set of all the cycles in G, and |•| is the size of cycle33. Due to the exponen-
tially large numbers of cycles in a given social network, cycle computation requires geometrically large quantities 
of time to enumerate the cycles. Thus, the computational difficulty is an inescapable obstruction in exploring the 
properties of cycles in social networks and the existing solutions can only be applied to determine the number 
of cycles in a network consisting of up to tens of nodes. The computation challenge in large network hinders the 
applications of cycles.

In this work, the massive data problem on social network was resolved by studying the estimated number of 
cycles in a social network. We denote the number of cycles with size l (2 < l < n) as sl. In complete graph where any 
two nodes exist an edge, =s lP /l l

n  where P is the permutation. Obviously, sl increases exponentially with size l in 
complete graph (see Supplementary Fig. 1) and cannot be processed by a regular computer. To investigate the 
characteristics of cycles with thousands of nodes in social networks, we present a workable method based on the 
model proposed by Marinari and his colleagues32, which can be resolved jointly by the Legendre transforma-
tions34, Bethe approximation35 and Belief Propagation36 (Method).

We study the distribution of cycles in social networks. Figure 2 presents the empirical results on three prestigious 
synthetic networks, Erdős–Rényi random (ER) networks37, Watts–Strogatz small world (SW) networks38 and 
Barabási–Albert preferential attachment model (BA) networks39. Each of the experimental networks contains 2000 
nodes. The results illustrate that sl exponentially increased with l when l was small. Additionally, in all these three 
types of networks, the denser network exhibits a more precipitous increase in sl in comparison to the other types of 
networks. Figure 3 demonstrates the cycle distribution in four real-world social networks (for the information of all 
the datasets see in Supplementary Note 1), and also confirms the exponential growth of sl along with l. Remarkably, 
all the experimental results with various datasets of social networks show a surprising consistency in their cycle 
distribution. The sl experiences an exponential growth with l when l is small. Moreover, the denser the network (or 
the more edges in the network), the faster the increase in sl is.

The results show that a network is consisting of many cycles interweaving in the same network. A network 
presents more robust in information spreading when an alternative path has been provided. Subsequently, a 
cycle is more robust than a path between two nodes, because two independent paths exist for any two nodes in a 
cycle. Numerous simple cycles enable the possibility to employ the power of cycles in measuring robust network 
centrality.
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The Shortest Cycle and the Nonlinearity of Network.  Although the shortest path has been widely 
used in network centrality metrics, it is incomplete for many applications due to its incompleteness in measuring 
distance or closeness. Take Fig. 1 as an illustration. Both nodes 0 and 3 are the neighbors of node 2. Traditionally, 
we hold that nodes 0 and 3 have the equal “distance” to node 2. However, what if the information flows in the 
network? It is anticipated that the information may flow more robust between nodes 0 and 2 than nodes 3 and 2, 
because the second shortest path between nodes 0 and 2 (0 → 1 → 2) is much shorter than that between nodes 3 
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Figure 2.  Simple cycle distribution in synthetic networks. The abscissa axes are the size l of simple cycles and 
the vertical axes are the number of simple cycles sl in the logarithmic scale. All the synthetic networks have 2000 
nodes. The results suggest that the maximum size of simple cycles is no more than 2000. (a) Simple cycle 
distribution in ER networks. p denotes the probability of an edge existed between two nodes. (b) Simple cycle 
distribution in SW networks. k represents the number of neighbors of a node, and the probability of rewiring 
each edge is 0.5. (c) Simple cycle distribution in BA networks. m stands for the number of edges to attach from a 
new node to existing nodes. For a given l, sl increases with p in ER networks, with k in SW networks, and with m 
in BA networks. The curves indicate that the denser the network, the larger sl has.
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Figure 3.  Simple cycle distribution in real-world networks. The abscissa axes are the size l of simple cycles and 
the vertical axes are the number of simple cycles sl in the logarithmic scale. (a) Simple cycle distribution in the 
Sina dataset, which has 5375 nodes and 40224 edges. (b) Simple cycle distribution in the RenRen dataset, which 
has 1505 nodes and 10019 edges. (c) Simple cycle distribution in the Facebook dataset, which has 3964 nodes 
and 88159 edges. (d) Simple cycle distribution in the Twitter dataset, which has 4543 nodes and 84212 edges. 
(Note: the leaf nodes are removed from the original networks).
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Figure 1.  Example of the shortest path and shortest cycle. This figure intuitively presents an example of the 
shortest path p (i, j), the second shortest path p2(i, j) and the shortest cycle c(i, j) in graph G = (V, E) for i, j ∈ V,  
i ≠ j, where V and E are the sets of all the nodes and edges in G, respectively. Obviously, p(0, 3) = 0 → 2 → 3. 
When the intermediary of p(0, 3), node 2, is absent from G, it is easy to find that p2(0, 3) = 0 → 6 → 5 → 3. 
Undoubtedly, p(0, 3) and p2(0, 3) form c(0, 3) = 0 → 2 → 3 → 5 → 6 → 0.



www.nature.com/scientificreports/

4ScIentIfIc REPOrtS |  (2018) 8:11749  | DOI:10.1038/s41598-018-30249-4

and 2 (3 → 5 → 6 → 0 → 2). The shortest path represents the characteristic path between two nodes, and the length 
of the shortest path describes the characteristic distance of two nodes. In the scenarios where the shortest path 
has the ability to predict the length of all the other paths (e.g., tree graph), the shortest path can exactly describe 
the closeness of two nodes. By demonstrating the relationship of the shortest path and the shortest cycle, we show 
that the network structure in real-world networks is often nonlinear. Thus, the shortest paths can only reveal the 
characteristic yet partial structure of the networks.

The shortest path between nodes i and j, denoted as p(i, j), is a node sequence with the least nodes or edges 
starting with i and ending with j without any node or edge reused. The shortest distance between nodes i and j, 
denoted as d(i, j), is the number of edges in p(i, j). The shortest cycle across nodes i and j, denoted as c(i, j), is the 
simple cycle across nodes i and j with the least nodes or edges. We denote l(i, j) as the shortest distance measured 
by the shortest cycle, or the size of c(i, j). Denoting IV(i, j) and IE(i, j) as the sets of intermediary nodes and edges 
in p(i, j), respectively. The second shortest path between nodes i and j, denoted as p2(i, j), is the shortest path 
between i and j with IV(i, j) and IE(i, j) absent. We represent d2(i, j) as the size of p2(i, j). Apparently, p(i, j) and p2
(i, j) form the shortest cycle across nodes i and j, c(i, j). Figure 1 exemplifies a relationship among p(i, j), p2(i, j) 
and c(i, j).

Unlike p(i, j), c(i, j) does not exist for some i, j ∈ V, i ≠ j in G. For an instance, node 8 cannot form simple cycle 
with any other nodes in Fig. 1.

If nodes i and j can form a simple cycle in network G, they are a cyclic node pair, denoted as (i, j) or (j, i). 
Reversely, if nodes i and j cannot form a simple cycle, they form an acyclic node pair. The set of all the cyclic and 
acyclic node pairs in G are written as H(G) and U(G), respectively.

Obviously, the connection relation in an acyclic node pair is unstable. Once some nodes or edges on the short-
est path are absent, the connection is broken at an acyclic node pair. Except the node pairs in U(G), we explore the 
relationship of d(i, j) and l(i, j), or d2(i, j) and l(i, j).

Due to the numerous number of node pairs in a real-world network, it is labourious to depict all the relation-
ship between d(i, j) and l(i, j). Here we use the characteristic path length and the characteristic cycle size to study 
the relationship between the shortest path and the shortest cycle.

The characteristic path length of G is defined as

=
× ∑
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where Hi(G) denotes the nodes set with (i, j) ∈ H(G) for j ∈ V.
To mitigate the influence of U(G) in comparing C(G) and D(G), we define the cyclic characteristic path length. 

Formally, the cyclic characteristic path length of G is defined as

′ =
× ∑
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Similarly, the characteristic path length of node i is defined as
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Obviously, d(i) and l(i) represent the average length of p(i, j) and average size of c(i, j) for j ∈ V, respectively.
We also define the path incremental coefficient as

η =
′

G C G
D G

( ) ( )
( )

,
(6)

and the path incremental coefficient for node i as

η = .i l i
d i

( ) ( )
( ) (7)

We conducted the experiments on six real-world social networks (for the information of all the datasets see in 
Supplementary Note 1). In the experiment settings, the acyclic node pairs U(G) were removed.

In our empirical studies, small-world phenomenon38 is observed in all the six networks. Table 1 demonstrates 
the values of D(G), ′D (G), C(G) and η(G). No matter what the values of ′D (G) or D(G) in the six networks are, 
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η(G) ∈ (2.1, 2.6). In particular, in the Twitter dataset, η(G) is 2.109, which is the smallest in the six networks. In the 
Facebook dataset, η(G) is 2.576, which is the largest. In all the other four networks, η(G) is between 2.2 and 2.3.

In detail, we also explored the relationship of d(i) and l(i) in the six real-world networks. Generally and sur-
prisingly, d(i) increases linearly with d(i) for a large portion of nodes. The slope coefficient of the fit curve of d(i) 
and d(i) is approximately equal to η(G) in all the six networks. However, d(i) is much larger than η(G) × d(i) for 
many nodes. Figure 4 illustrates an example of the Sina Weibo dataset. Although η(G) = 2.296, η(i) varies from 
2.05 to 3.41 in the Sina Weibo dataset. Figure 4a presents the network of the Sina Weibo network. As η(i) 
increases, the color of the node turns from green to red. Obviously, there are plenty of nodes with a pretty high 
η(i). Figure 4b gives the scatter graph of the relationships of d(•) and l(•). Intuitively, l(•) is linear with d(•), with 
a slope coefficient of 2.295. According to the locations in the scatter graph, the nodes can be directly divided into 
two categories: the nodes with d(i) < 2 and the rest. Obviously, only a few nodes with d(i) < 2. It is because that 
some nodes form a cluster with the nodes, which form cyclic node pairs among them. From most of the nodes, d
(i) > 2.5. Although we have already remove the acyclic node pairs, we also discovered that a large number of 
nodes has η(i) > η(G). In addition, we also observed the values of η(i, j) = l(i, j)/d(i, j) for all the node pairs. 
Figure 4c displays η(i, j) of any two nodes in the first 50 nodes. η(i, j) varies from 2.0 to 8.0. Obviously, η(i, j) is 
extremely large in a large portion of node pairs. In this study, the phenomenon that the size of the shortest cycle 
is not linear with the length of the shortest path is termed as nonlinearity. Thus, the length of the shortest path 
cannot depict the characteristic of the length of the second shortest path in a nonlinear network. Obviously, Sina 
Weibo network is nonlinear.

The nonlinearity phenomenon was also noticed in all the other five real-world networks (see Supplementary 
Figs 2 and 7). Although the size of the shortest cycle is linear with the length of the shortest path for a portion of 
cyclic node pairs, our empirical study results also illustrate that l(i, j) is not linear with d(i, j) for many nodes i and j. 
Subsequently, the shortest path cannot depict the length of the information flow when the information does not flow 
through the shortest path, even the second shortest path. From this viewpoint, the shortest path is incomplete to 
measure the distance of two nodes and illustrate the network centrality. Since the shortest cycle provides the second 
shortest path besides the shortest path, the shortest cycle is more reasonable than the shortest path to measure the 
distance of two nodes.

Moreover, the cycle-based closeness can also be applied to the scenarios where factors such as fault tolerance 
must also be considered in case that one of the nodes or links are unavailable due to malfunctions or congestions, 

Dataset # of Nodes # of Edges (G) ′ (G) (G) η(G)  (G) (%)

Dolphin Social Network 62 159 3.357 3.054 6.730 2.204 27.12%

Karate Club 34 78 2.408 2.148 4.924 2.292 29.95%

Twitter 5182 84851 3.026 2.832 5.974 2.109 23.03%

Facebook 4039 88234 3.693 3.340 8.605 2.576 15.95%

Sina Weibo 5375 40224 3.630 3.520 8.084 2.296 7.23%

RenRen 1975 10539 3.261 2.963 6.437 2.173 42.25%

Table 1.  Observation of the Real-world Social Networks.

Figure 4.  The nonlinearity of network structure from the perspective of the shortest path and shortest cycle in 
the Sina Weibo dataset. (a) The network topology of the Sina Weibo dataset. As the path incremental coefficient 
η(i) increases, the color of the node turns from green to red. Although the path incremental coefficient η(G) is 
around 2.296, η(i) varies from 2.048 to 3.403. Moreover, many nodes have an extremely large η(i). (b) The 
scatter grams of l(•) and d(•). Obviously, the network witnesses a linear growth of l(•) along with d(•). 
Strikingly, the slope coefficient values 2.295 and approximately equals to the path incremental coefficient η(G). 
Although l(•) is linear with d(•), a large number of nodes hold η(i) = l(i)/d(i) > η(G). This phenomenon 
indicates the shortest path is patchy to measure the distance of two nodes. (c) The ratio η(i, j) of the size of 
shortest cycle l(i, j) and length of shortest path d(i, j) in the first 50 nodes. The white color represents an acyclic 
node pair. The maximal value of η(i, j) is 8.0. Although a large portion of the cyclic node pairs hold η(i, j) < 3.0, 
η(i, j) > 4.0 in a large portion of cyclic node pairs.
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e.g., communication routing network. One example is the distances between node 0 and nodes 3/8. Although 
both nodes 3 and 8 can reach node 0 by one intermediary node, we probably think that node 3 plays a much more 
important role for node 0 than node 8. Because node 3 has another path to node 0, and also bridges node 0 with 
other nodes, e.g., node 4. Contrarily, the relationship between nodes 0 and 8 depends on node 7. Once node 7 is 
inactive or unavailable due to malfunctions or congestions, the relationship between 0 and 8 is broken.

Cycle-Based Network Centralities.  In this study, we employ the power of the cycles in the networks 
and propose two novel network centrality measures: the shortest cycle closeness centrality (SCC) and all cycle 
betweenness centrality (ACC).

Here we take CC as an instance to illustrate the incompleteness of the shortest paths in measuring network 
centrality. CC relies on the length of shortest paths from a node to all other nodes in the network and is defined 
as the inverse total length. The CC of node i, denoted as C2(i), is defined as

=
∑

.
∈

C i
d i j

( ) 1
( , ) (8)j V

2

Clearly, a trivial case is d(i, i) = 0 for i ∈ V.
We illustrate the insufficiency of the shortest paths in CC intuitively in a smaller network in Fig. 5.

Example 1 (Example of CC). When CC is utilized in the network in Fig. 5, we have

C2(0) = [d(0, 1) + d(0, 2) + d(0, 3) + d(0, 4)]−1 = 1/5,

C2(1) = [d(1, 0) + d(1, 2) + d(1, 3) + d(1, 4)]−1 = 1/6,

C2(2) = [d(2, 0) + d(2, 1) + d(2, 3) + d(2, 4)]−1 = 1/5,

C2(3) = [d(3, 0) + d(3, 1) + d(3, 2) + d(3, 4)]−1 = 1/6,

C2(4) = [d(4, 0) + d(4, 1) + d(4, 2) + d(4, 3)]−1 = 1/6.

As a result, nodes 0 and 2 have the same centrality, and nodes 1, 3 and 4 have a lower, but identical, centrality in 
the network. Intuitively, node 1 is more cohesive to the network than nodes 3 and 4, because nodes 0, 1 and 2 
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Figure 5.  Comparisons of the closeness centrality (CC), the shortest cycle closeness centrality (SCC) and the all 
cycle closeness centrality (ACC). (a) A network has five nodes and six edges, on which the comparisons of CC, 
SCC and ACC are made in the paper. (b) The centrality ranking by CC. Obviously, nodes 0 and 2 have the same 
and top centrality, while nodes 1, 3 and 4 score the next. Intuitively, node 1 should score higher than nodes 3 
and 4 in centrality since node 1 is closer to both nodes 0 and 2. (c) The centrality ranking by SCC. Nodes 0 and 2 
have the most centrality in the network, node 1 is the next, and nodes 3 and 4 hit the last. This is consistent with 
the expectation. (d) The centrality ranking by ACC. nodes 0 and 2 have the most centrality in the network, node 
1 is the next, and nodes 3 and 4 hit the last. The result is the same as SCC and consistent with the expectation.
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form a cluster. Moreover, more distances are required to transmit information by removing any edge of nodes 3 
or 4 than removing any edge of node 1. From this perspective, we hold that node 1 is more robust than nodes 3 
and 4 when diffusing information to all the other nodes, and that the shortest path is incomplete in measuring 
network centrality.

The SCC of node i, denoted as C3(i), is defined as

=
∑

.
∈

C i
l i j

( ) 1
( , ) (9)j V

3

Generally, l(i, j) = ∞ when (i, j) ∈ U(G). In this scenario, acyclic node pair (i, j) would C3(i) = C3(j) = 0. To 
mitigate this problem, we have l(i, j) = n + d(i, j), (i, j) ∈ U(G).

Before conducting SCC on real-world networks, we demonstrate the power of SCC on a 5-node network, as 
showed in Fig. 1.

Example 2 (Example of SCC). When SCC is employed in the network in Fig. 1, we have

C3(0) = [l(0, 1) + l(0, 2) + l(0, 3) + l(0, 4)]−1 = 1/14,

C3(1) = [l(1, 0) + l(1, 2) + l(1, 3) + l(1, 4)]−1 = 1/16,

C3(2) = [l(2, 0) + l(2, 1) + l(2, 3) + l(2, 4)]−1 = 1/14,

C3(3) = [l(3, 0) + l(3, 1) + l(3, 2) + l(3, 4)]−1 = 1/17,

C3(4) = [l(4, 0) + l(4, 1) + l(4, 2) + l(4, 3)]−1 = 1/17.

Consequently, we can hold that nodes 0 and 2 have the most centrality in the network, node 1 is the next, and 
nodes 3 and 4 hit the last. The result is consistent with our expectation. As a result, we distinguish the ranking 
of node 1 with nodes 3 and 4 in the network. Obviously, SCC is more suitable to measure the network centrality 
than, i.e. CC, in the example network.

Further, we extend the shortest cycle to all the simple cycles in the networks and show that the cycles can also 
be applicable in measuring betweenness centrality. We denote Sk as the set of simple cycles with size k and sk as the 
sizes of Sk. Also, Sk(i) represents the set of simple cycles going through node i and sk(i) is the size of Sk(i). In 
real-world networks, sk increases exponentially with k. Subsequently, the cycles with larger sk result in less conse-
quence to the nodes lying on the cycles.

The ACC of node i, denoted as CA(i), is defined as

∑α=
=

−C i s i( ) ( ),
(10)A

k

n
k

k
3

2

where α ∈ (0, 1) is an attenuation factor.

Example 3 (Example of ACC). In the network in Fig. 1, there are three simple cycles in the network: 
0 → 1 → 2 → 0, 0 → 2 → 3 → 4 → 0 and 0 → 1 → 2 → 3 → 4 → 0. Subsequently, s3 = s4 = s5 = 1. Without a general-
ity, α = 0.5. We have

CA(0) = 0.5 s3(0) + 0.25 s4(0) + 0.125 s5(0) = 0.875,

CA(1) = 0.5 s3(1) + 0.25 s4(1) + 0.125 s5(1) = 0.625,

CA(2) = 0.5 s3(2) + 0.25 s4(2) + 0.125 s5(2) = 0.875,

CA(3) = 0.5 s3(3) + 0.25 s4(3) + 0.125 s5(3) = 0.375,

CA(4) = 0.5 s3(4) + 0.25 s4(4) + 0.125 s5(4) = 0.375.

As a result, we argue that nodes 0 and 2 have the most centrality in the network, followed by node 1, and nodes 
3 and 4 locates the most marginal places in the network. Clearly, the ranking result is the same as that in SCC.

We also evaluated the scores of nodes in the example network by RWBC and CBC. As illustrated in Table 2, 
nodes 0 and 2 have the same score and rank the top 2 in both RWBC and CBC. However, both centrality measures 
fail to identify the importance of node 1.

The example network explicitly shows that both SCC and ACC are more suitable for ranking nodes than CC in 
information network. It is because that the shortest cycle provides an independent alternative path for the shortest 
path. Subsequently, SCC enhances the fault tolerance by employing the second shortest path when transmitting 
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information. Similarly, ACC also employs the power of cycles. By introducing cycles, both SCC and ACC are 
capable of identifying the nodes most central for robust information transmission in information network.

We also demonstrate the power of both SCC and ACC in real-world network. Figure 6 shows the network cen-
tralities in the Karate Club network by applying CC, SCC and ACC. The Karate Club network naturally contains 
two classes, the Office (node 33) and Mr. Hi (node 0). In Fig. 6, nodes on the right of nodes 2 and 8 (including 
nodes 2 and 8) belong to the Mr. Hi class, and the rest belong to the Office class. The top rank 5 nodes are listed 
on the right side of the figures. In the experiment of ACC, α = 0.1. Although the two leaders of the two classes 
are contained in the top 5 nodes, one of the two leaders, node 33, ranks the third in CC. Table 3 also presents the 
top rank 5 nodes evaluated by RWBC and CBC. Interestingly, nodes 0 and 33 rank the top two in both RWBC, 
CBC, SCC and ACC. That is, RWBC, CBC, SCC and ACC have the ability to identify the two leaders directly for 
the Karate Club. This is due to the fact that non-shortest paths are considered in RWBC, CBC, SCC and ACC. 
Moreover, all the five centrality measures accepted the importance of node 2, because node 2 has many links to the 
nodes in both classes and plays the role of delivering information across the two classes. It is noticeable that nodes 
8 and 31 are listed in the top rank 5 nodes in SCC while nodes 32 and 1 are listed in RWBC and CBC instead. 
Intuitively, nodes 32 and 1 are of paramount importance for the nodes inside their classes. Contrarily, nodes 8 and 
31 are valid backups of node 2. Once node 2 is unavailable due to information congestion or malfunctions, nodes 

Node

Network Centrality Measure

CC RWBC CBC SCC ACC

0 0.200 0.424 0.515 0.071 0.875

1 0.167 0.152 0.226 0.063 0.625

2 0.200 0.424 0.515 0.071 0.875

3 0.167 0.242 0.233 0.059 0.375

4 0.167 0.242 0.233 0.059 0.375

Table 2.  Scores Calculated using CC, RWBC, CBC, SCC and ACC for the Example Network.

Figure 6.  Network centralities of the Karate Club dataset by applying (a) CC, (b) SCC and (c) ACC. In the 
experiment of ACC, α = 0.1. The top five rank nodes are listed on the right of the figures. The Karate Club 
network naturally has two classes, and nodes 0 and 33 are two leaders of the two classes. Obviously, these two 
leaders rank the top two in both SCC and ACC, while nodes 33 ranks the third in CC.
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8 and 31 ensure the information transmission across the two classes and between node pairs. To this extent, we 
hold that SCC has the ability to rank the nodes most central for robust information transmission.

Acceptably, both SCC and ACC cannot compute the network centrality for the leaf nodes, which only have 
one neighbor. This limitation does not constrain the application of both SCC and ACC. Because the leaf nodes are 
not prominent nodes, and rank the last in all the network centrality metrics. In addition, ACC can be upgraded to 
be harmonic in a (not necessarily connected) graph by applying the idea of harmonic centrality40.

Conclusions
The shortest path is incomplete in measuring network centrality in information network, because edges and 
nodes may be unavailable due to malfunctions or congestions. Many solutions have introduced non-shortest 
paths to address the incompleteness of shortest paths, e.g., FBC, RWBC, CBC. These centrality measures pro-
duce many unnecessary paths, resulting in expensive computation time. Moreover, RWBC assumes to spread 
information in a random path, while CBC utilize the “backtracking walks” with loops. Both cannot be applied to 
scenarios where information is expected to transfer in optimal paths without loop, e.g., communication routing 
network. The shortest cycle consists of two independent yet most efficient paths to deliver information between 
two nodes. Thus, the shortest cycle has the ability to address the incompleteness of the shortest path, improve fault 
tolerance for information spreading and identify the nodes most central for robust information transmission.

This study addresses the incompleteness of shortest paths in measuring network centrality by introducing 
shortest cycles. We illustrated that numerous simple cycles exist in social networks, which enables the possibility 
to employ the cycles to measure the network centrality. Then, we presented the relationship between the shortest 
path and the shortest cycle in social networks. We found the nonlinearity of the real-world network, which shows 
that the sizes of the shortest cycles does not increase linearly with the lengths of the shortest path for many node 
pairs. We demonstrated that these node pairs impose the incompleteness of the shortest path when applying to 
applications. Noticing that the shortest cycle provides two independent paths, we proposed a novel network cen-
trality measure SCC based on shortest cycles. Apparently, SCC enhances the fault tolerance during information 
spread. By extending the shortest cycle to all the simple cycles, another novel network centrality ACC is further 
presented. Finally, empirical studies on example networks illustrate that both SCC and ACC are capable of rank-
ing nodes more robust in transmitting information to all the other nodes. SCC is a closeness centrality based on 
the shortest cycle, while ACC is a betweenness centrality based on all the cycles. Subsequently, the cycles can be 
applied to measure both the closeness centrality and the betweenness centrality.

Materials and Methods
Shortest Path and CC.  To compute CC, the algorithms for computing the shortest path in an undirected 
network G = (V, E) are the key issue. For i, j ∈ V, i ≠ j, either the Dijkstra algorithm41 or Depth-first search (DFS) 
algorithm42 can be employed to calculate p(i, j). In this study, we utilized the DFS algorithm.

Shortest Cycle and SCC.  The shortest cycles can be computed by one more Depth-first search algorithm 
after removing the internal nodes/edges from the original network, or solutions of K-set-cycle problem43, or 
schemes on minimum cost44. The SCC can be computed directly using shortest cycles. It is easy to deduce that 
the time complexity is O(mn) for SCC to evaluate all the scores of nodes in a network with n nodes and m edges.

All Cycles and ACC.  For a given l, we define σ(ε) = ln sl/n as the entropy of l, where ε = l/n ∈ [0, 1]. Thus, we 
have sl = enσ(ε) and then we convert the measure of sl into the estimate of σ(ε).

To estimate σ(ε), a probability law p(c, u) = u|c|/Ψ(u) is introduced, where c is a simple cycle and |c| is the size 
of c. Ψ(u) is the normalization factor, thus Ψ = ∑ = ∑ =u u s u( ) 3c

c
l
n

l
l

3  . Applying the saddle point method, so that 
we have

Ψ σ ε ε= × + .εu n uln ( ) max [ ( ) ln ] (11)

Then, σ(ε) can be expressed in terms of Ψ by inverting the standard Legendre transformations34. Finally, an 
estimate of Ψ can then be obtained by using the Bethe approximation of the corresponding statistical mechanics 
model35.

In computation, the well-known correspondence between minimization of the Bethe free energy and itera-
tions of the Belief Propagation equations36 were utilized. For any edge (i, j), in the (t + 1)th iteration, the value of 
(i, j) is computed as

Top 
Rank 5 
Nodes

Network Centrality Measure

CC RWBC CBC SCC ACC

1 0 0 0 0 0

2 2 33 33 33 33

3 33 2 2 8 32

4 31 32 32 2 2

5 8 1 1 31 1

Table 3.  Top Rank 5 Nodes Computed by CC, RWBC, CBC, SCC and ACC in the Karate Club Network.
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where Γ(i) is defined as the neighbors of node i, and Γ(i)\j is the set of the neighbors of node i except node j. 
When v converges, the value at each edge is an indication of the probability that the edge is present in cycle c. 
With v, we obtain:
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The marginal for node i can be computed by

=
∑ ∑

+ ∑ ∑
.∈Γ ∈Γ

∈Γ ∈Γ

g i
u v i j v j i

u v i j v j i
( )

( , ) ( , )

1 ( , ) ( , ) (16)
l

j i j i

j i j i

2
( ) ( )

2
( ) ( )

Finally, we have

=
∑

.
∈

s i
lg i s

g j
( )

( )
( ) (17)

l
l l

j V l

By applying the Belief Propagation method, we can estimate the number of cycles in O(nm2) time. The poly-
nomial time enables the possibility of measuring the properties of cycles in social networks. The effectiveness of 
the method has been proved32.

Data availability.  All relevant data are available at http://www.github.com/lukefchou/bp.
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