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Background: The development of high-throughput techniques has enabled profiling
a large number of biomolecules across a number of molecular compartments. The
challenge then becomes to integrate such multimodal Omics data to gain insights
into biological processes and disease onset and progression mechanisms. Further,
given the high dimensionality of such data, incorporating prior biological information on
interactions between molecular compartments when developing statistical models for
data integration is beneficial, especially in settings involving a small number of samples.

Results: We develop a supervised model for time to event data (e.g., death,
biochemical recurrence) that simultaneously accounts for redundant information within
Omics profiles and leverages prior biological associations between them through a
multi-block PLS framework. The interactions between data from different molecular
compartments (e.g., epigenome, transcriptome, methylome, etc.) were captured by
using cis-regulatory quantitative effects in the proposed model. The model, coined
Cox-sMBPLS, exhibits superior prediction performance and improved feature selection
based on both simulation studies and analysis of data from heart failure patients.

Conclusion: The proposed supervised Cox-sMBPLS model can effectively incorporate
prior biological information in the survival prediction system, leading to improved
prediction performance and feature selection. It also enables the identification of multi-
Omics modules of biomolecules that impact the patients’ survival probability and also
provides insights into potential relevant risk factors that merit further investigation.

Keywords: multi-omics, supervised Integration, cis-regulatory quantitative, multi-block PLS, survival analysis

INTRODUCTION

A key aim in integrating multi-Omics data is to identify combinations of molecular biomarkers
that are either predictive of disease onset and outcomes or lead to insights into biological processes
and disease mechanisms. To achieve this data integration, it is important to leverage information
on interactions/mediations of the different molecular compartments profiled and measured by the
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various Omics technologies. For example, DNA methylation
is known to influence the phenotypic outcome of genetic
variation and offers highly complementary information on
transcriptional silencing and gene imprinting (Kass et al., 1997).
To characterize associations between epigenomics, genomics,
and transcriptomics, identification of cis-regulatory quantitative
effects of SNPs on DNA methylation (meQTL) and mRNA
expression (eQTL), and the effect of DNA methylation on
mRNA expression (eQTM) has proved particularly informative
(Jones, 1999).

In the past decade, a large body of literature was developed to
introduce methods relating Omics profiles and disease outcomes,
such as recurrence in cancer patients, death, etc. (Park et al.,
2002; Tan et al., 2006; Zhang and Zhang, 2020). The most
widely used method to model the time to such events is
the Cox proportional hazard (Cox-PH) model (Cox, 1972),
for which a number of adaptations have been proposed in
the literature to make it suitable for use in high-dimensional
settings induced by Omics data. Some adaptations leverage
various variable selection methods –stepwise approaches, or
regularization methods (see Bühlmann et al., 2013 and references
therein)-, while others focus on reducing the dimensionality of
the predictors by using principal components analysis (PCA)
or partial least squares (PLS) (Wold et al., 1983). Partial least
squares regression for non-numerical outcome variables was
introduced in Garthwaite (1994) and Bastien and Tenenhaus
(2001) (PLS-Generalized Linear Regression), and for survival
data in (Bastien et al., 2015).

Ridge regression (Hoerl et al., 1975), as the first generation
of LP-regularization methods, utilizes the L2 − norm of the
regression coefficients to improve prediction performance.
However, ridge regression only shrinks the coefficients toward
zero. Instead the Lasso method (Tibshirani, 1996) aims to
simultaneously shrink and select a subset of variables through
an L1 − norm constraint on the regression coefficients. An
important limitation of the lasso method, especially in the case
of Omics data, is that lasso tends to select only one variable
among a group of correlated variables. For instance, in the multi-
Omics framework, there are many features which are interacting
as a network (or module) and sharing the same biological
pathway. Therefore, the lasso method can poorly indicate this
grouping information in the multi-Omics setting. Theoretical
and practical explanations of this limitation are given in Efron
et al. (2004), and Zou and Hastie (2005). To address these
limitations, the elastic-net (Zou and Hastie, 2005) was introduced
by imposing a convex combination of the lasso and ridge (L1, L2)
penalties on the regression coefficients including Cox model.
A recent benchmark analysis (Jardillier et al., 2020) of lasso-
like penalties (including ridge, lasso, adaptive lasso, and elastic-
net) of the Cox model showed a better prediction performance
of elastic-net Cox compare to lasso-Cox and adaptive lasso-
Cox models.

PLS regression (Wold et al., 1983) has also been used as
a dimension reduction method in high-dimensional settings.
This method is extended by Garthwaite (1994), and Bastien and
Tenenhaus (2001), for generalized regression models (PLS-GLR)
and the Cox-PH model as a special case (without considering

censoring information). Further developments of PLS-GLR are
introduced by Bastien et al. (2005). Chun and Keles̨ (2010),
showed that a large number of features in the high-dimensional
framework could greatly affect the prediction performance in
PLS regressions. They proposed the sparse PLS (sPLS) by
incorporating a variable selection constraint directly on the
PLS direction vectors (weights). Lee et al. (2013), proposed
a new formulation of the sPLS algorithm for survival data.
Thereafter, Bastien et al. (2015), proposed a new algorithm
called sparse PLS deviance residual (sPLSDR) by use of the
normalized martingale residuals as the response variable in
the sPLS algorithm.

Random forest, RF (Breiman, 2001), is another powerful
prediction system that can consider more complex dependencies
between the features. Random survival forest, RSF (Ishwaran
et al., 2008), is an extension of random forest RF to analyze
survival data (in the presence of right censoring) by introducing
a new splitting rule and missing data imputation algorithm.
RSF has shown reliable predictions in single-Omics settings
(refer to Yosefian et al., 2015 and the references therein).
Block Forest (Hornung and Wright, 2019) is another recent
extension of RF which considers multiple tuning parameters,
where each tuning parameter is associated with one of the data
blocks. However, these approaches do not distinguish between
variables obtained from different molecular compartments and
also ignore any biological constraints –e.g., many variables
belong to the same functional pathway, or act as regulators of
other variables.

A similar issue arises in complex chemical systems, where
variables can be naturally grouped into blocks. Multi-Block
PLS, MBPLS (Wangen and Kowalski, 1989) was developed to
study association between a numerical outcome variable and
blocks of a priori defined predictors. The algorithm estimates
the model parameters for each block and combines them using
the relative importance of each block in predicting the outcome
variable. MBPLS has been mostly employed in chemistry,
however, multi-Omics data provide a novel opportunity to
further extend and apply this algorithm in bioinformatics and
genomics (Li et al., 2012).

In this paper, we propose a new integrative survival
prediction model named supervised Cox sparse Multi-Block
Partial Least Squares (Cox-sMBPLS) by simultaneously
controlling the redundancy between Omics profiles from
different molecular compartments, focusing on epigenomics,
genomics and transcriptomics and incorporating cis-regulatory
quantitative effects (eQTL, eQTM, meQTL) to integrate
additional biological information to the training of the model.
Note that the model and integrative strategy are general and
can be easily adapted to other molecular compartments with
appropriate modifications.

To handle censoring in the survival outcome data, we
employ a reweighting technique described in the section
“Materials and Methods.” The high dimensionality of
the Omics data under consideration is dealt with the use
of regularization. The key objective of Cox-sMBPLS is to
determine multi-Omics modules [i.e., genes, single-nucleotide
polymorphisms (SNPs), and cytosine-phosphate-guanine (CpGs)
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FIGURE 1 | Illustration of the multi-blocks data structure and the supervised Cox-sMBPLS algorithm. (A) three blocks of multi-Omics profiles: mRNA expression,
genotypes, and DNA methylation. The response variable (y) is a vector of survival times of size n = 1. (B) splitting the Omics blocks based on the cis-regulatory
quantitative effects (eQTL, eQTM, meQTL). (C) updating Omics blocks with QT-residuals, and y with reweighted times. (D) Multi-Omics modules which are
combinations of all three Omics profiles.

sites], that are most associated with disease progression and
patient’s survival.

MATERIALS AND METHODS

An overview of the multi-block data structure used as input,
together with how associations between molecular compartments
are captured through cis-regulatory quantitative effects (eQTL,
eQTM, meQTL) to extract low dimensional Omics modules
that are predictive of survival times is depicted in Figure 1.
As previously mentioned, to handle censoring information on
the survival times, we employ an inverse censoring probability
weighting scheme to adjust the response variable (observed
survival time). The prediction and feature-selection performance
of the model is evaluated using various metrics (see parameter
tuning and model performance evaluation sub-section).

The rest of the “Materials and Methods” section is as
follows: in section “Reweighted Survival Time” we introduce

the reweighting of survival time (response variable) using an
inverse censoring probability weighting scheme. Doing so we are
considering the censoring information in the response variable
as well. The reweighted survival time will be used as the
response variable in the proposed Cox-sMBPLS algorithm. In
section “Partial Least Squares Regression” we briefly introduce
the partial least squares regression. In section “Integrating Cis-
regulatory Quantitative Effects” we introduce the full process
of integrating cis-regulatory quantitative effects (eQTL, eQTM,
meQTL) and updating Omics-blocks [X(b), b = 1, 2, 3] by
regressing out the shared information between QT-pairs (such
as, gene-SNP in eQTL) and replacing that with the QT-
residuals. In section “Supervised Cox-sMBPLS Algorithm” we
provide our proposed supervised Cox-sMBPLS (supervised
Cox sparse Multi-Block Partial Least Squares) which uses the
reweighted survival time (section “Reweighted Survival Time”)
and updated Omics-blocks (section “Integrating Cis-regulatory
Quantitative Effects”) as outcome and covariates, respectively.
In this section, we first introduce the objective function of
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supervised Cox-sMBPLS and its solution in the case of univariate
response (such as survival time) followed by the detailed
algorithm implementation (Algorithm 1). In section “Parameter
Tuning and Model Performance Evaluation” we explain the
parameter tuning procedure and performance measures which
are used to evaluate the feature-selection performance and
probability of selecting the correct (important) features for the
proposed model. Data sources are fully described in section
“Data Source.”

Reweighted Survival Time
Let ỹi and Ci indicate the independent true survival time and
censoring time for the ith subject (i = 1, . . . , n), respectively. The
observed data consist of pairs

{(
yi, δi

)
|i = 1, . . . , n

}
where yi =

min
(
ỹi, Ci

)
is the observed survival time and δi = I

(
ỹi ≤ Ci

)
with I(.) denoting the indicator function. Note that ỹi = yi if and
only if δi = 1 (i.e., the subject is uncensored). To deal with the
right censoring in the MBPLS algorithm, we use the reweighting
method (Datta, 2005) to construct the so-called adjusted observed
survival time using inverse censoring probability weighting. To
briefly summarize the reweighting procedure, let SC be the
survival function of the censoring variable C, i.e., SC (t) =
P (C > t) , t ≥ 0. Then,

E

(
δiyi

SC
(
yi−

)) = E

(
E

(
δiỹi

SC
(
ỹi−

) |ỹi

))

= E

(
ỹi

SC
(
ỹi−

)E(I(Ci ≥ ỹi)|ỹi)

)
= E(ỹi)

This identity can be taken as the theoretical basis for
estimating the mean observed survival time by the (weighted)
sample average µ =

(∑n
i=1 w̃iyi

)
/n, where the weights are w̃i =

0 for a censored survival time and w̃i =
(

ŜC
(
yi−

))−1
for an

observed survival time. Here, SC will be calculated using the
intercept-only Cox-PH model (Kaplan-Meier) with the status
indicator 1− δi (using survfit R function)1.

Partial Least Squares Regression
Partial least squares (PLS) regression, originally introduced by
Wold et al. (1983), has been applied in various ill-conditioned
linear regression models as both dimension reduction and
inference tool. PLS regression works under the assumption
of basic latent-decomposition of both X (a n× p matrix of
covariates) and y (a n× 1 matrix of response variable in a
univariate case). In contrast to PCA, PLS uses both X and y
to construct the latent components (T = XW) by maximizing a
successive maximization problem. The objective function to find
the weight vectors (W = (w1, . . . , wk) is as follows:

argmaxwẃX́yýXw, for k = 1, . . . , K

s.t.||w||2 = 1,

1https://www.rdocumentation.org/packages/survival/versions/2.11-4/topics/
survfit

where k is the number of the latent components (tuning
parameter or fixed by user), and W is a p × k matrix of weights
(also called direction vector). The latent component T (a n × k
matrix) is then calculated as T = XW.

Integrating Cis-Regulatory Quantitative
Effects
Genome-wide quantitative trait loci (QTL) mapping enables
the determination of genetic loci affecting other Omics, i.e.,
transcriptome, proteome, and metabolome. Some Omics markers
do not directly contribute to the phenotype and affect the disease
through other intermediates-Omics. Therefore, considering these
QTL associations in each Omics layer can provide more
functional information about disease-associated markers. In fact,
a QTL-pair is a pair of different Omics (for instance, SNP-
CpG in eQTL) that are (highly) associated regarding their effects
on the underlying disease (outcome). Hence involving both
elements of a QTL-pair (i.e., SNP and gene in an eQTL-pair) in
a regression model will not add much more information than
involving only one of these elements (at the cost of degrees
of freedom and multi-collinearity). One way around this is to
consider one element of a QTL-pair in the regression model
(such as SNP in an eQTL-pair), then regress out the effect of this
element and replace the second element with the residuals. This
way, we are considering unwanted/uncorrelated information
besides the QTL information in the regression model, avoiding
multicollinearity.

As shown in Figure 3, for the eQTL-pairs (SNP-gene pairs),
we keep the SNPs and replace the genes with residuals by
regression out the effect of the SNPs. For the meQTL-pairs (SNP-
CpG pairs), we keep the actual DNA methylations (CpGs) and
update the genotypes (SNPs) with residuals by regression out
the effect of the CpGs. For the eQTM-pairs (gene-CpG pairs)
we keep the actual gene expression and update the methylations
(CpGs) with residuals by regression out the effect of the genes.
The residuals are obtained using the univariate linear regression
models. The details of updating each Omics block using QTL-
residual are as follows.

Let X(b)
= X(b)

n×pb
denotes the observed data in block b

(b = 1, . . . , B), a matrix of pb features/covariates measured
for n samples. For ease of presentation, we consider the
following B = 3 blocks (mRNA expression, genotypes, DNA
methylation). However, the proposed modeling framework can
accommodate a larger number of blocks and thus other Omics
types (such as proteomics and metabolomics) with minor
modifications. Thus, let X(1)

n×p1 , X(2)
n×p2 , X(3)

n×p3 denote blocks of
mRNA expression of p1 genes, genotypes of p2 SNPs, and
DNA methylation of p3 CpGs for n samples, respectively.
Next, we split each X(b) based on prior biological knowledge
gleaned from eQTL, meQTL, eQTM information. The first block
(mRNA expression) is split by utilizing the eQTL information
as follows:

X(1)
n×p1 =

[
X(1)

n×q1 X(1)

n×(p1−q1)

]
=

[
X(1)

eQTLX(1)
Non−eQTL

]
,

where q1 is the number of the eQTL-genes (e.g., with adjusted
P-value < 0.05). Whole blood eQTL data are extracted from
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FIGURE 2 | Simulations results for scenarios with a low level of dimensionality. Boxplots for (A) Harrell’s C-index, (B) I/D AUC, (C) C/D AUC, and (D) Uno’s AUC
values. Results are shown for different censoring rates (δ = 10, 40, 60%) and number of components (k = 2, 5, 10).

the Genotype-Tissue Expression Project (GTEx) (Lonsdale et al.,
2013) that are used to extract eQTL-genes and their eQTL-
SNP pairs. Specifically, suppose that SNPeQTL

j is a vector of
SNPs which are in eQTL with (single) genej (j = 1, . . . , q1) and
SNPeQTL

j ∈ X(2). By regressing out the effect of these SNPs, the so-

called eQTL residuals (ueQTL
j ) are defined as the residuals of the

regression of the jth eQTL-gene (∈ X(1)
eQTL) on SNPeQTL

j , as follows:

genej ∝

q1∑
j=1

αSNPeQTL
j + ueQTL

j , where genej ∈ X(1)
eQTL

We then update X(1)
n×p1 by replacing X(1)

eQTL with ueQTL
j .

Therefore, the updated X(1)
n×p1 becomes:

X(1)∗
n×p1 =

[
ueQTL

j X(1)
Non−eQTL

]
.

The second block (genotypes) is split by utilizing the meQTL
information as follows:

X(2)
n×p2 =

[
X(2)

n×q2 X(2)
n×(p2−q2)

]
=

[
X(2)

meQTL X(2)
Non−meQTL

]
,

where q2 is the number of the meQTL-SNPs (with adjusted
P-value < 0.05). Whole blood cis-meQTL data were extracted
from BIOS QTL (Zhernakova et al., 2017) that are used to extract
the meQTL-SNPs and their meQTL-CpG pairs. Specifically,
suppose that CpGmeQTL

j́ is a vector of CpGs which are in meQTL

with (single) SNPj́ (j́ = 1, . . . , q2) and CpGmeQTL
j́ ∈ X(3). By

regressing out the effect of these CpGs, the so-called “meQTL
residuals” (umeQTL

j́ ) are defined as the residuals of the regression

of j́th meQTL-SNP (∈ X(2)
meQTL) on CpGmeQTL

j́ , as follows:

snpj́ ∝

q2∑
j́=1

άcpgmeQTL
j́ + umeQTL

j́ , where snpj́ ∈ X(2)
meQTL.
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We then update X(2)
n×p2 by replacing X(2)

meQTLwith umeQTL
j́ .

Therefore, updated X(2)
n×p2 becomes:

X(2)∗
n×p2 =

[
umeQTL

j́ X(2)
Non−meQTL

]
.

The third block (DNA methylations) is split by utilizing the
eQTM information as follows:

X(3)
n×p3 =

[
X(3)

n×q3 X(3)
n×(p3−q3)

]
=

[
X(3)

eQTM X(3)
Non−eQTM

]
,

where q3 is the number of the eQTM-CpGs (with adjusted
P-value < 0.05). Whole blood cis-eQTM data were extracted from
BIOS QTL (Zhernakova et al., 2017) that are used to extract the
eQTM-CpGs and their eQTm-gene pairs. Specifically, suppose
that geneeQTM

j" is a vector of genes which are in eQTM with

(single) CpG j" (j" = 1, . . . , q3). By regressing out the effect of
these genes, the so-called “eQTM residuals” (ueQTM

j" ) are defined

as the residuals of the regression of the j"th eQTM-CpG (∈
X(3)

eQTM) on geneeQTM
j" , as follows:

cpgj" ∝

q3∑
j"=1

α"geneeQTM
j" ueQTM

j" , where cpgj" ∈ X(3)
eQTM.

We then update X(3)
n×p3 by replacing X(3)

eQTM with ueQTM
j" .

Therefore, updated X(3)
n×p3 becomes:

X(3)∗
n×p3 =

[
ueQTM

j" X(3)
Non−eQTM

]
.

The illustration of the multi-Omics data structure and Omics-
block updating procedure is presented in Figure 1.

Supervised Cox-sMBPLS Algorithm
Let X(b), b = 1, 2, 3 (X(b)

= X(b)∗ as explained in section
“Integrating Cis-regulatory Quantitative Effects”) and y (y =
y∗ as explained in section “Reweighted Survival Time”) be the
covariate matrices (blocks) and response vector on the same
n samples, respectively. In each block, the dimensionality of
the block can be reduced by taking a linear combination of
the covariates τ(b)

= X(b)w(b), where w(b) is direction vector
(also called weight vector) that express the importance of each
covariate on the latent component τ(b) (a n× 1 matrix). Li et al.
(2012), suggested using a weighted sum of the latent components
over the blocks as the combined latent component. Therefore,
we define τ =

∑3
b=1 τ(b)ω(b) as the combined latent component,

where ω(b) (ω(b) > 0) is the weight for block b, which indicates
the contribution of this block to the covariance structure of the
input and response (y) data. We can then posit the following
optimization problem for calculating the latent components
across all blocks:

max
w(b)

cov(τ, y), with τ =

3∑
b=1

τ(b)ω(b), andτ(b)
= X(b)w(b),

ω(b)
∈ R+, X(b)

∈ Rn×pb , w(b)
∈ Rpb , y ∈ Rn,

subject to ||w(b)
||2 = ||ω||2 = 1. (1)

A straightforward extension of problem (1) to the sparse
version could be obtained by adding an L1 penalty on direction
vector w(b); i.e., ||w(b)

||1 ≥ λ, for some positive tuning parameter
λ. However, Jolliffe et al. (2003), showed, via an example, that this
formulation may not lead to a sufficiently sparse solution. The
sparsity issue for PCA was first considered by Zou et al. (2006) by
imposing both L1&L2 constraints on the weight coefficients.

In the case of PLS, Chun and Keles̨ (2010) used the same
approach by imposing an L1 constraint onto a surrogate of
the direction vector. Therefore, a generalized version of the
optimization problem using a combined L1&L2 regularization
component becomes:

min
w(b),c(b)

{
−κω(b)2

ẃ(b)Z(b)w(b)
+ ω(b)2

(1− κ)
(

c(b)
− w(b)

)′
Z(b)

(
c(b)
− w(b)

)
+ λ1||c(b)

||1 + λ2||c(b)
||2

}
,

subject to ||w(b)
||2 = ||ω||2 = 1. (2)

For any non-negative λ1and λ2. Z(b)
= X́(b)yýX(b), c(b) is the

surrogate of the direction vector in block b, which is kept close
to the original direction vector w; and κ is a tuning parameter.
κ is the concave-penalty parameter to control the amount of
the weight is given to the concave part of the objective function
[ẃ(b)Z(b)w(b)], and therefore, to control the local-solution issue.
For more details and history of recasting from equation (1) to
equation (2), see Supplementary Section 1.1.

Bastien et al. (2015) also employed this method to propose
a sparse PLS for censored data. Chun and Keles̨ (2010) solved
problem (2) by alternatively iterating between solving for w after
fixing c and solving for c for fixed w. However, they showed
that in the case of a univariate response, problem (2) does
not depend on and often needs a large λ2 value to be solved.
Therefore, we use λ2 →∞ which yields the special case of
the elastic-net regularization, called univariate soft-thresholding
(Zou and Hastie, 2005). Hence, the solution to problem (2) has
the following closed form:

ĉ(b)
=

(
´X(b)y

||
´X(b)y||

−
λ

2

)
+

sign

(
´X(b)y

||
´X(b)y||

)
, λ ≥ 0 (3)

where
´X(b)y

||
´X(b)y||

is the first direction vector, and soft −

threshold(8, λ) =
(
8− λ

2
)

sign (8) is the soft-thresholding
operator with a fixed non-negative parameter λ (λ = λ1).
The algorithm is then followed by a PLS regression on the
selected variables, and iterated with updating the response
variable, y. The proof for the solution in equation (3) is
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Algorithm 1 | Supervised Cox-sMBPLS algorithm.
1. Calculating reweighted survival time (y∗): Calculate the reweighted survival time as y∗i =

yi .δi

ŜC
, where ŜC is the estimated survival function for censoring

variable (C) and yi is time to a specific event for the ith sample, as explained in section “Reweighted Survival Time”.
2. Incorporating the cis-regulatory quantitative effects (eQTL, eQTM, meQTL) information: Split and update each block employing the corresponding
cis-regulatory quantitative effects. This process is fully explained in section “Integrating Cis-regulatory Quantitative Effects.”
3. Computing the latent components and block-weights: by applying the sMBPLS algorithm on X(b) (as independent variables) and y∗ (as dependent variable)
as follows:
do for k = 1, . . . , K where k (a tuning parameter) is the number of the latent components,

3.1 Set β̂
(b)
PLS = 0, �(b)

= { }, y = y∗ and k = 1, where b = 1, 2, 3.

3.2 w(b)
= soft− threshold

(
X́(b)∗y∗

||X́(b)∗y∗ ||2
, λ
)

, where λ is a non-negative sparsity

parameter.
3.3 τ(b)

= X(b)w(b), b = 1, 2, 3
3.4 τ = [τ(1), τ(2), τ(3)

]

3.5 ω = ý∗τ
3.6 T = τώ

3.7 Update �(b) as
{
j(b)
: ŵ(b)

j(b) 6= 0
}
∪

{
j(b)
: β̂

(b)
PLSj(b)

6= 0
}

, where

j(b)
∈ {1, . . . , pb}

3.8 Fit PLS regression to X(b)∗ (updated based on �(b)) and y∗ in each block
(b = 1, 2, 3) using k number of latent components.

3.9 Update β̂
(b)
PLS with new estimated coefficients resulted from the PLS

regression in step 3.8. Update y∗ as y∗ → y∗ − X(b)∗β̂
(b)
PLS

4. Final Cox-sMBPLS model: Fit a Cox-PH model with (yi, δi) and remaining latent components from the sMBPLS algorithm.

provided in Supplementary Section 1.1. The full algorithm is
described below.

The conjugacy of direction vectors (similar to orthogonality
issue in PCA-kind problems) is addressed by keeping the
Krylov subsequence structure of the direction vectors in a
restricted X-space of selected variables (X(b)

∈ �(b)) (Chun and
Keles̨, 2010). Specifically, at each step of the Algorithm 1, it
searches for relevant variables, the so-called active variables
(updated in step 3.7), by optimizing equation (2) and updates
all direction vectors to form a Krylov subsequence on the
subspace of the active variables. This is simply achieved by
conducting PLS regression by using the selected variables (see
step 3.8, Algorithm 1).

Initial values are set in step 3.1 and sparse weight (direction)
vectors are calculated in step 3.2 where λ is a non-negative
(sparsity) tuning parameter which is tuned using a k-fold
cross-validation (see section “Parameter Tuning and Model
Performance Evaluation” for details). In step 3.3 the latent
components for each block are calculated (τ(1)

n×1, τ
(2)
n×1, τ

(3)
n×1)

which are then combined using a weighted sum over the
blocks to calculate the combined latent component (Tn×1)
in step 3.6. Blocks’ weight (ω) are calculated in Step 3.5.
The so-called active variables set (�(b)) is then updated in
step 3.7 followed by a PLS regression using active variables
X∗(b)

∈ �(b) as covariates and y∗ as response variable. The
PLS regression is fit using wpls R function, adapted from
spls R package2. Response variable (y∗) is then updated in
step 3.9. Note that ´X(b)∗ is scaled, including genotype data
(categorical variable), as suggested by Tibshirani (1997). To
scale the categorical genotypes [ ´X(2)∗], we considered the fact
that encoded genotypes (0, 1, 2) are quantitative measures

2https://cran.r-project.org/web/packages/spls/index.html

correspond to the number of minor alleles in the genotype.
Latent components are computed using the updated data, X(b)∗

and y∗ (step 3.9). The solution to the optimization function
(2) also enables us to identify multi-Omics modules. These
modules are linear combinations of multiple Omics profiles with
large absolute values of w(b) if happen together. It is possible
to apply different sparsity parameters for each block and or
direction vector, which is avoided here due to the computational
burden of tuning multiple parameters. The illustration of the data
structure and the supervised Cox-sMBPLS algorithm is provided
in Figure 1.

Parameter Tuning and Model
Performance Evaluation
Cross-validation (CV) is used to tune the number of components
(k) and the sparsity (λ) hyper-parameters that lead to the
best prediction performance. In principle, we can try different
combinations of k (number of the latent components) and
λ (sparsity). The chosen k and λ are the ones giving the
highest model performance measures. For the real data
analysis, we considered 1 = k = min

{
p, ν−1

ν
n
}

where p is
the total number of the covariates, ν is the fold number
in the (k-fold) CV, and n is the sample size. This upper
bound for the number of the latent components is suggested
by Chung et al. (2012). In each iteration, the supervised
Cox-sMBPLS model is trained using a training-set (in the
numerical work, we set it to 80% of data). The test data-set
(remaining 20% of data) is then used to evaluate the predictive
performance using Harrell’s C-index (Harrell et al., 1982)

(
∑

ij i I(ŷi=ŷj)I(yi=yj)∑
ij iI(yi=yj)

) and time-specific area under the ROC-

curve, AUC. We used the incident/dynamic (I/D) ROC-curves
(Heagerty and Zheng, 2005) and Uno (Uno et al., 2007)
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TABLE 1 | Simulation settings based on the different number of latent components (k), censoring rate (δ) and pb number of features in block b.

Scenario # Censoring Dimensionality Number of Components

1** δ = 10% (Low) pb = 100 = υ(b)* (Low) k = 2, 5, 10

2 pb = 1000 = υ(b) (Moderate) k = 2, 5, 10

3 pb = 10 000 = υ(b) (High) k = 2, 5, 10

4 δ = 40% (Moderate) pb = 100 = υ(b)* (Low) k = 2, 5, 10

5 pb = 1000 = υ(b) (Moderate) k = 2, 5, 10

6 pb = 10 000 = υ(b) (High) k = 2, 5, 10

7 δ = 60% (High) pb = 100 = υ(b)* (Low) k = 2, 5, 10

8 pb = 1000 = υ(b) (Moderate) k = 2, 5, 10

9 pb = 10 000 = υ(b) (High) k = 2, 5, 10

Three -Omics blocks, b = 3, (mRNA expression, genotypes and DNA methylation) sampled from the same n = 91 samples are considered.
* We defineυ(b), as the weight of each block, relative to the total number of genes:υ(1) =

27 645
27 645 = 1, υ(2) =

578 846
27 645 = 20.9, υ(3) =

12 283
27 645 = 0.4.

** 1350 independent replicates for each scenario, with 450 replicates for each k (k = 2,5,10) in scenarios with low and moderate levels of dimensionality, and 300 replicates
for each k in the scenario with a high level of dimensionality.

and Chambless (Chambless and Diao, 2006) estimators of
cumulative/dynamic (C/D) AUC (more information is provided
in Supplementary Section 1.2).

Data Source
The analyzed data set contains information on 91 subjects with
heart failure (HF); namely, with preserved ejection fraction
(HFpEF) and reduced ejection fraction (HFrEF). Further, 47% of
them experienced death or a hospitalization event. The original
discovery cohort included 103 HF (HFpEF and HFrEF) patients
with complete data of all Omics types (mRNA expression,
genotypes, and DNA methylation), 12 of which were removed
due to sex mismatch and n = 91 patients remained in the
analysis. The subjects were recruited from cardiology clinics
during a four-year period (2011–2015) at the University of
Illinois at Chicago (UIC). All patients provided written, informed
consent (Mansour et al., 2016; Duarte et al., 2018).

RNA profiles were obtained by using the Affymetrix Human
Gene 2.0 ST array. After quality control procedures, 27 645 genes
were kept for subsequent analysis. Genotypes were measured by
high-density genome-wide bead array genotyping (Affymetrix
Axiom PanAfrican Array). We excluded SNPs with a missing
rate ≥10%, monomorphic SNPs with MAF < 0.01% and SNPs
on the negative strands. Additional genotypes were imputed
based on a two-step approach. First, the samples were phased
into a series of estimated haplotypes, and then, imputation was
performed on them. After imputation, genotypes with R2

=

80% were excluded to keep only high-quality imputed profiles.
We then performed linkage disequilibrium pruning (LDP).
Thereafter, whole blood cis-eQTL data from the Genotype-
Tissue Expression Project (GTEx) (Lonsdale et al., 2013)
were used to remove non-eQTL-SNPs with adjusted eQTL-
pvalue > 0.1. We applied this filter as part of the pre-
analysis feature selection procedure since it is shown that
GWAS eQTL-SNPs tended to be more significant compared to
non-eQTL-SNPs (Gorlov et al., 2019). In total, 578 846 SNPs
remained in the study. DNA methylation profiles were measured
using the Illumina Infinium Human Methylation 450 (450K)
BeadChip array. Whole blood cis-eQTM data from BIOS QTL
(Zhernakova et al., 2017) were then utilized to remove the

non-eQTM-CpGs with eQTM-pvalue > 0.1. In total, 12 283
CpGs remained in the study.

RESULTS

Results on Simulated Data
We performed a set of simulation studies in order to evaluate
the prediction accuracy of the proposed supervised Cox-sMBPLS
model. The settings under consideration aim to control the
redundancy within the Omics profiles (via a soft-threshold),
the association between the Omics profiles (via cis-regulatory
quantitative effects), and the relevance of each Omics profile
or a combination of them to explain the survival probabilities.
We compared the proposed model to elastic-net Cox-PH (El-
net Cox) (Simon et al., 2011), random survival forest (RSF)
(Ishwaran et al., 2008), Block Forest (Hornung and Wright,
2019), and multiple co-inertia analysis (MCIA) (Min and Long,
2020). All models are trained on 80% of the samples and tested
on the left-out 20% portion. Further, cross-validation (CV) is
used to tune the hyperparameters for all methods considered.
To generate more realistic samples of the Omics profiles, we
randomly sampled from a real-world multi-Omics data set, which
is described in the next section. We simulated 10 800 replicates
based on combinations of the following factors for a total of 9
scenarios: the number of the latent components k, the censoring
rate δ the number of blocks b, and the number of features pb in
block b. Details on the simulation settings are provided in Table 1.

We sample true predictor matrices Xb
T (b = 1, 2, 3) of

dimension n = pb, with fixed sample size n = 91. Matrices Xb
T

(b = 1, 2, 3) are random samples (without replacement) from
the real Omics data presented in the next section. For the
construction of true latent components (τT), we assume that
some of the features in each block have small or no effect on
the response variable by specifying sparse (true) direction vector
(wT). These weights are sampled from the distribution of the
weights collected from a standard sparse PLS on a random
sample of the Omics data. Therefore, true latent components
are sparse across all simulations. The response variable (yi, δi)
for sample i (i = 1,, 91) is simulated using a flexible-hazard
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model (Harden and Kropko, 2019). We simulate the replicates
using twenty different seed numbers and the results assess
the stability of the models against the seed numbers. More
details, including the simulation algorithm are provided in
Supplementary Section 2. The results of the simulation studies
for the low level of dimensionality are shown in Table 2 and
Figure 2 (for k = 2, 5). See Supplementary Table 1 for the full
results of the low level of dimensionality (including k = 10). The
results of the moderate and high levels of dimensionality are
presented in Supplementary Tables 2, 3) and are very similar to
the results of the low level of dimensionality.

The proposed supervised Cox-sMBPLS model exhibited
better performance than El-net Cox, RSF, Block forest and
MCIA models in both scenarios with low and moderate level
of dimensionality. The prediction performance (C-index) and
feature-selection performance (AUCs) of the proposed Cox-
sMBPLS model remained higher than other models regardless
of the different changing parameters. When increasing the
censoring rate from 10 to 60%, the feature-selection performance
(C/D AUC) of all models decreased (except for MCIA) (Table 2):
in Cox-sMBPLS decreased by 2% for k = 2, 4% for k = 5 and
k = 10; in El-net Cox decreased by 8%, 7%, and 11% for k =
2, 5, 10, respectively; in RSF decreased by 11%, 3%, and 10%
for k = 2, 5, 10, respectively; in Block Forest decreased by 6%,
5%, and 5% for k = 2, 5, 10, respectively; in MCIA decreased by
3% and 0% for k = 2, 5, respectively, and increased by 2% for
k = 10. Amongst these models, the proposed Cox-sMBPLS (2–
4% decrease) and Block Forest (5–6% decrease) are more stable
than El-net Cox (7-11% decrease), RSF (3–11% decrease), and
MCIA (0–3% decrease and/or 2% increase) against the censoring
rate. The feature selection results showed less stability against
censoring rate using other performance measures (I/D AUC,
and Uno’s AUC). I/D AUC, and Uno’s AUC tended to increase
while increasing the censoring rate. This may be due to the
relatively low number of events and the following low number
of patient-pairs used to estimate the measures. Rahman et al.
(2017) experienced the same results in an extensive simulation
study comparing the different performance measures for survival
models. In general, the results were more stable against censoring
rate by increasing the number of the latent components, k
(see Supplementary Tables 1–3). In most of the settings, the
variability (SDs) of all measures increased by increasing the
censoring rate, as expected. Similar results for other settings are
presented in Supplementary Tables 2, 3 and Supplementary
Figures 1, 2. When increasing the dimensionality of the
predictors, the performance of all models decreased, even though
the Cox-sMBPLS model continued to outperform the other ones.
Based on the AUC values, Cox-sMBPLS exhibited a superior
performance to El-net Cox, RSF, Block Forest, and MCIA, having
higher probability of selecting the correct (important) features
(Figure 2). In Table 2, the range of the prediction performance
(C-index) of the proposed Cox-sMBPLS model was 0.60–0.64, for
El-net Cox was 0.49–0.51, for RSF was 0.50–0.53, for Block Forest
was 0.49–0.51, and for MCIA was 0.48-0.51 for different changing
parameters. There is a recent benchmark analysis (Jardillier et al.,
2020) of lasso-like penalties (including ridge, lasso, adaptive lasso,
and elastic-net) of the Cox model where the authors showed TA

B
LE

2
|S

im
ul

at
io

n
re

su
lts

fo
r

th
e

sc
en

ar
io

s
w

ith
a

lo
w

le
ve

lo
fd

im
en

si
on

al
ity

(to
ta

lo
f2

23
0

fe
at

ur
es

,a
nd

n
=

91
).

C
en

so
ri

ng
%

M
ea

su
re

N
um

b
er

o
f

co
m

p
o

ne
nt

s

k
=

2
k
=

5

C
o

x-
sM

B
P

LS
E

l-
ne

t
C

o
x

R
S

F
B

lo
ck

fo
re

st
M

C
IA

C
o

x-
sM

B
P

LS
E

l-
ne

t
C

o
x

R
S

F
B

lo
ck

fo
re

st
M

C
IA

10
%

(L
ow

)
C

-in
de

x
0.

60
(0

.1
0)

0.
49

(0
.0

8)
0.

50
(0

.1
0)

0.
49

(0
.0

9)
0.

51
(0

.0
9)

0.
60

(0
.0

9)
0.

51
(0

.0
7)

0.
53

(0
.1

0)
0.

51
(0

.1
0)

0.
51

(0
.0

9)

C
/D

A
U

C
*

0.
95

(0
.1

3)
0.

38
(0

.3
0)

0.
46

(0
.0

6)
0.

87
(0

.1
3)

0.
91

(0
.1

2)
0.

97
(0

.0
9)

0.
36

(0
.2

9)
0.

46
(0

.0
9)

0.
87

(0
.1

2)
0.

91
(0

.1
2)

I/D
A

U
C

**
0.

58
(0

.0
7)

0.
57

(0
.0

6)
0.

58
(0

.0
7)

0.
57

(0
.0

7)
0.

57
(0

.0
7)

0.
58

(0
.0

8)
0.

57
(0

.0
7)

0.
57

(0
.0

8)
0.

57
(0

.0
7)

0.
57

(0
.0

7)

U
no

’s
A

U
C

**
*

0.
52

(0
.2

2)
0.

46
(0

.1
8)

0.
48

(0
.2

2)
0.

46
(0

.2
3)

0.
49

(0
.2

3)
0.

53
(0

.2
3)

0.
44

(0
.1

8)
0.

46
(0

.2
3)

0.
46

(0
.2

3)
0.

45
(0

.2
3)

40
%

(M
od

er
at

e)
C

-in
de

x
0.

62
(0

.1
1)

0.
49

(0
.0

9)
0.

51
(0

.1
0)

0.
49

(0
.1

0)
0.

51
(0

.1
1)

0.
63

(0
.1

1)
0.

49
(0

.0
9)

0.
51

(0
.1

0)
0.

49
(0

.1
1)

0.
51

(0
.1

1)

C
/D

A
U

C
0.

94
(0

.1
8)

0.
35

(0
.2

7)
0.

39
(0

.1
9)

0.
84

(0
.1

9)
0.

90
(0

.2
0)

0.
94

(0
.1

7)
0.

36
(0

.2
7)

0.
37

(0
.1

9)
0.

84
(0

.1
9)

0.
90

(0
.2

0)

I/D
A

U
C

0.
60

(0
.0

8)
0.

57
(0

.0
7)

0.
57

(0
.0

8)
0.

56
(0

.0
7)

0.
57

(0
.0

7)
0.

60
(0

.0
7)

0.
58

(0
.0

7)
0.

58
(0

.0
8)

0.
57

(0
.0

7)
0.

57
(0

.0
7)

U
no

’s
A

U
C

0.
54

(0
.2

9)
0.

44
(0

.2
2)

0.
45

(0
.2

3)
0.

44
(0

.2
5)

0.
42

(0
.2

4)
0.

56
(0

.2
8)

0.
45

(0
.2

2)
04

6
(0

.2
3)

0.
45

(0
.2

5)
0.

42
(0

.2
4)

60
%

(H
ig

h)
C

-in
de

x
0.

63
(0

.1
3)

0.
50

(0
.1

0)
0.

51
(0

.1
3)

0.
49

(0
.1

4)
0.

48
(0

.1
3)

0.
64

(0
.1

2)
0.

50
(0

.1
0)

0.
50

(0
.1

2)
0.

50
(0

.1
6)

0.
48

(0
.1

2)

C
/D

A
U

C
0.

93
(0

.2
3)

0.
30

(0
.2

7)
0.

35
(0

.2
1)

0.
81

(0
.2

0)
0.

93
(0

.2
4)

0.
93

(0
.2

3)
0.

29
(0

.2
6)

0.
34

(0
.2

1)
0.

82
(0

.2
0)

0.
93

(0
.2

4)

I/D
A

U
C

0.
61

(0
.0

9)
0.

58
(0

.0
7)

0.
59

(0
.0

6)
0.

57
(0

.0
9)

0.
58

(0
.0

7)
0.

60
(0

.0
8)

0.
59

(0
.0

7)
0.

59
(0

.0
6)

0.
61

(0
.0

9)
0.

58
(0

.0
7)

U
no

’s
A

U
C

0.
50

(0
.3

1)
0.

45
(0

.2
4)

0.
47

(0
.2

7)
0.

40
(0

.2
8)

0.
41

(0
.2

9)
0.

51
(0

.3
2)

0.
45

(0
.2

4)
0.

46
(0

.2
7)

0.
40

(0
.3

0)
0.

41
(0

.2
9)

P
er

fo
rm

an
ce

m
ea

su
re

s
ar

e
av

er
ag

ed
ov

er
S
=

45
0

si
m

ul
at

io
ns

.S
D

s
ar

e
sh

ow
n

in
th

e
pa

re
nt

he
se

s.
*

C
ha

m
bl

es
s

es
tim

at
or

of
cu

m
ul

at
iv

e/
dy

na
m

ic
(C

/D
)A

U
C

.
**

In
ci

de
nt

/d
yn

am
ic

(I/
D

)A
U

C
.

**
*

U
no

es
tim

at
or

of
cu

m
ul

at
iv

e/
dy

na
m

ic
(C

/D
)A

U
C

.
B

ol
d

va
lu

es
sh

ow
th

e
hi

gh
es

tp
er

fo
rm

an
ce

fo
r

ea
ch

m
ea

su
re

m
en

ta
nd

k.

Frontiers in Genetics | www.frontiersin.org 9 August 2021 | Volume 12 | Article 701405

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-701405 July 30, 2021 Time: 17:11 # 10

Vahabi et al. Multi-Omics Modules

FIGURE 3 | Post-hoc analyzes for multi-mics modules 10 and 13 resulted from the Cox-sMBPLS model. (A) gene-set network analysis. (B) disease ontology for
PDPK1, TAB2, PRICKLE3, and HRC genes which are presented in both modules. (C) disease enrichment analysis. (D) chromosomal map. Dashed boxes show the
Omics profiles, which are located in a small window on the same chromosome.

that the lasso-like penalized Cox model (including El-net Cox)
have the potential of having ≥50% of false discovery proportion.
This is consistent with our simulation results where El-net Cox
performs poorly in most of the scenarios.

Overall, the proposed supervised Cox-sMBPLS method
outperformed all competing methods (El-net Cox, RSF, Block
Forest, and MCIA) regarding the exact survival prediction and
feature-selection power. Moreover, this method showed less
sensitivity to the selection of the tuning parameters and censoring
rate compared to competing methods.

Results on a Heart-Failure Discovery
Cohort
The supervised Cox-sMBPLS model (on HF cohort) retained
k = 15 multi-Omics modules (i.e., a combination of genes, SNPs,
and CpGs affecting the survival probability when occurring
together). k is tuned using a 5-fold CV within the range of
1 = k = 73. The upper boundary (k = 73) is calculated based
on Chung et al. (2012) suggestion as min

{
p, ν−1

ν
n
}

, where p is
the total number of the covariates, ν is the fold number in the
(k-fold) CV, and n is the sample size. Results are provided in

Supplementary Section 2.3. Figure 3 presents two significant
multi-Omics modules (10, 13) in the final Cox model (p-
value < 0.1) in detail. Module 10 contains 375 features (33 genes,
308 SNPs, 34 CpGs) and module 13 contains 497 features (49
genes, 399 SNPs, 49 CpGs). There are 122 Omics profiles (16
genes, 91 SNPs, and 15 CpGs), included in module 13 but not
module 10. Details for these 122 features are also included in
Figure 3 (see also Supplementary Tables 4–6).

We also compared the prediction performance of the Cox-
sMBPLS model to El-net Cox (Simon et al., 2011), RSF (Ishwaran
et al., 2008), Block Forest (Hornung and Wright, 2019) and
MCIA (Min and Long, 2020) (see Supplementary Table 7 for
prediction performance measures). All models are trained on
80% of the samples and tested on the left-out 20% portion. The
proposed supervised Cox-sMBPLS showed better performance
regarding both C-index and AUC measures.

To interpret the biological relevance of the significant
multi-Omics modules enrichment analysis of their Omics
profiles using network-based resources and disease ontology
is undertaken. Specifically, we performed a gene-set network
analysis (Figure 3A) using GeneMANIA (Warde-Farley et al.,
2010), gene-disease network (Figure 3B), and disease enrichment
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analysis (Figures 2D, 3C), both using DisGeNET knowledge
platform (Piñero et al., 2020). Gene-set network analysis shows
82% and 100% co-expression between the genes in multi-Omics
module 13 and the difference between modules 10 and 13,
respectively. Modules 10 (p = 0.097) and 13 (p = 0.059) are
the two significant modules (see Supplementary Table 4). There
is a 61% decrease in P-value from module 10 to module 13
(from 0.097 to 0.059). To figure out the legitimacy of this
strengthening in the resulted association (from module 10
to module 13), we removed the overlaps between these two
modules and ran a gene-set network analysis for the remaining
genes (which are causing this 61% decrease in P-value). The
result showed 100% co-expression between them, which proves
that this boost from module 10 to module 13 is biologically
genuine and worthy to run further functional validations to
study them for finding novel biomarkers. Moreover, gene-disease
network analysis of the selected genes common in both modules
(PDPK1, TAB2, PRICKLE3, and HRC) also confirms the role of
these genes in heart complications. Disease enrichment results
similarly show that the genes in the multi-Omics modules are
mainly enriched for heart disease, such as heart failure, cardiac
hypertrophy, and myocardial failure. A brief discussion of the
common genes follows.

PDPK1 (Phosphoinositide-dependent protein kinase-1) is the
PDK1 protein coding gene and also a part of the AGC super
family of protein kinases which have been well documented
for playing a crucial role in heart complications (Marrocco
et al., 2019). It has also been reported as a component of the
TGF-β/smad signaling pathway which leads to decompensation
and heart failure (Kuzmanov et al., 2016). Histidine-rich
calcium binding protein (HRC) can affect Ca2+ cycling in the
sarcoplasmic reticulum (SR) that could cause the mitochondrial
death pathway and enhance cardiac function in failure heart
(Park et al., 2012). TAB2 (TAK1 binding protein-2) is known to
play an important role in cardiac development and has recently
received more attention in heart diseases. There has been recent
research suggesting TAB2 and its signaling network (TAB2-
TAK1) as novel therapeutic targets in heart complications (Yin
et al., 2017; Cheng et al., 2020). Moreover, a first report of a
Chinese family with Congenital heart defects (CHD) caused by a
novel TAB2 nonsense mutation has been published in 2020 (Chen
et al., 2020). We additionally tracked the multi-Omics profiles
on a chromosomal map. Figure 3D shows the chromosomal
map for module 13, indicating the combination of two or more
different Omics profiles located within a small window on the
same chromosome.

These follow-up analyses suggest the biological relevance
of the multi-Omics modules resulted from the proposed Cox-
sMBPLS algorithm. However, further functional and validation
studies (such as in vivo validation using animal models) are
required to identify novel biomarkers.

DISCUSSION

A survival prediction model (Cox-sMBPLS) based on leveraging
and integrating information across multi-Omics compartments
via the cis-regulatory quantitative effects (eQTL, eQTM, meQTL)

was developed. It also enables identification of multi-Omics
modules -combinations of different Omics features- exhibiting
a large effect on survival probabilities. The proposed modeling
framework can easily accommodate a large number of blocks and
thus other Omics types with minor modifications.

In the past decade, a large body of literature was developed
to introduce methods relating Omics profiles and time to an
event such as recurrence in cancer patients, death, etc. Cox-
PH (Cox, 1972) is the most widely used method to model
the time to such events, for which several high-dimensional
adaptations have been proposed in the literature (Park et al.,
2002; Tan et al., 2006; Zhang and Zhang, 2020). To also
leverage the biological information besides the censoring, we
employed the cis-regulatory information and a censoring-
reweighting technique in our proposed algorithm. The key
output of the Cox-sMBPLS is to determine multi-Omics
modules that are most associated with disease progression and
patient survival.

Simulation studies showed that both the prediction and
feature-selection performance of Cox-sMBPLS is significantly
better than competing procedures (El-net Cox and RSF) across
multiple settings (Tables 1, 2) and in a heart failure study
(Figure 3). The gene-set enrichment and disease ontology results
confirmed biological relevance of the identified multi-Omics
modules. Particularly, we found PDPK1 and TAB2 associated
with HF which have been well documented for playing a
crucial role in heart complications (Kuzmanov et al., 2016;
Yin et al., 2017; Marrocco et al., 2019; Chen et al., 2020;
Cheng et al., 2020).

A direction of future research is to enhance the incorporation
of additional prior biological knowledge; e.g., include functional
pathway information. On the validation front, analysis of data
from animal studies can assist in identifying novel non-coding
features prioritized by significant multi-Omics modules.
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