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Analysis of Antibodies to Newly Described Plasmodium falciparum
Merozoite Antigens Supports MSPDBL2 as a Predicted Target of
Naturally Acquired Immunity
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Prospective studies continue to identify malaria parasite genes with particular patterns of polymorphism which indicate they
may be under immune selection, and the encoded proteins require investigation. Sixteen new recombinant protein reagents were
designed to characterize three such polymorphic proteins expressed in Plasmodium falciparum schizonts and merozoites:
MSPDBLI (also termed MSP3.4) and MSPDBL2 (MSP3.8), which possess Duffy binding-like (DBL) domains, and SURFIN4.2,
encoded by a member of the surface-associated interspersed (surf) multigene family. After testing the antigenicities of these re-
agents by murine immunization and parasite immunofluorescence, we analyzed naturally acquired antibody responses to the
antigens in two cohorts in coastal Kenya in which the parasite was endemic (Chonyi [n = 497] and Ngerenya [n = 461]). As ex-
pected, the prevalence and levels of serum antibodies increased with age. We then investigated correlations with subsequent risk
of clinical malaria among children <11 years of age during 6 months follow-up surveillance. Antibodies to the polymorphic cen-
tral region of MSPDBL2 were associated with reduced risk of malaria in both cohorts, with statistical significance remaining for
the 3D7 allelic type after adjustment for individuals’ ages in years and antibody reactivity to whole-schizont extract (Chonyi, risk
ratio, 0.51, and 95% confidence interval [CI], 0.28 to 0.93; Ngerenya, risk ratio, 0.38, and 95% CI, 0.18 to 0.82). For the MSPDBL1
Palo Alto allelic-type antigen, there was a protective association in one cohort (Ngerenya, risk ratio, 0.53, and 95% CI, 0.32 to
0.89), whereas the other antigens showed no protective associations after adjustment. These findings support the prediction that

antibodies to the polymorphic region of MSPDBL2 contribute to protective immunity.

n effective malaria vaccine is needed, particularly against

Plasmodium falciparum, which causes most disease and mor-
tality. Trials of the lead preerythrocytic stage candidate vaccine—
RTS, S/ASO2—have shown partial protection of short duration,
suggesting that addition of antigens of the blood stage may be
needed to achieve higher levels of efficacy (1). Evidence suggests
that such a vaccine would need to incorporate important target
antigens on the surface of the invasive merozoite or the infected
erythrocyte (2). Characterization of naturally acquired human
antibody responses to specific antigens has been undertaken to
describe associations with protection from clinical malaria,
highlighting a need for simultaneous analysis of multiple anti-
gens (3-5). Analysis of transcripts and proteins (6-9) and
genomic (10, 11) and population genetic (12-16) studies of P.
falciparum have identified new genes that may encode promis-
ing candidates for a vaccine.

High-throughput short-read sequencing of P. falciparum-in-
fected blood samples in populations where they are endemic has
recently allowed population genetic studies to shift from studying
candidate molecules to screen most of the protein-coding genes in
the parasite genome (17-19). Here, we investigate immune re-
sponses to protein products of three genes expressed at the mero-
zoite stage that showed evidence of balancing selection in a ge-
nome-wide scan of a Gambian population (18), with similar
results when tested separately in a Kenyan population (16). They
are MSPDBL1 (also referred to as MSP3.4 [20]; gene locus
PF3D7_1035700, previously PF10_0348) and MSPDBL2 (also re-
ferred to as MSP3.8 [20]; gene locus PF3D7_1036300, previously
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PF10_0355), which are members of the MSP3 family possessing a
central Duffy-binding-like (DBL) region, and SURFIN4.2 (a
member of the surf gene family; locus PF3D7_0424400, previously
PFD1160w) (16, 21, 22). Recent studies have indicated a role for
both MSPDBLI and MSPDBL2 in binding to the erythrocyte sur-
face (23, 24), with the interaction mediated by the DBL region
(24). The gene encoding MSPDBL2 showed the strongest evi-
dence of balancing selection in each of the previous studies (16,
18), and gene knockout or episomal overexpression affects para-
site growth in the presence of some drugs in vitro (25, 26).

In this study, 16 new recombinant proteins based on polymor-
phic and conserved parts of these antigens were designed and ex-
pressed. Each of the antigens elicited murine antibodies reactive
with P. falciparum schizonts and was then assayed for reactivity
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FIG 1 Sixteen new recombinant proteins representing different sequences within the P. falciparum merozoite antigens MSPDBL1, MSPDBL2, and SURFIN4.2.
(A) Scheme of the antigens showing, by horizontal bars below each antigen, the positions (amino acid numbering according to the 3D7 reference sequence) and
different allelic types of the sequences expressed. Black shading indicates DBL domains. Gray shading represents Surface Protein Associated with Merozoites
(SPAM) domains common to the MSP3-like antigen family (hatching represents repeat sequences within the SPAM domain). The SURFIN4.2 sequences, along
with N- and C-terminal regions of other antigens, were expressed in E. coli as GST fusion proteins. The central polymorphic regions of both MSPDBL1 and
MSPDBL2 were expressed in baculovirus as 6 X His-tagged proteins. (B) Coomassie-stained 4 to 20% gradient SDS-PAGE showing E. coli-expressed GST-tagged
proteins and baculovirus-expressed His-tagged proteins. Including fusion tags, the expected product sizes of the recombinant antigens listed from left to right are
as follows: MSPDBLI products, 38, 41, 41, 41, 41, 41, and 32 kDa; MSPDBL2 products, 34, 41, 41, and 31 kDa; SURFIN4.2 products, 37, 38, 38, 39, and 32 kDa.
For products with additional bands, presumably caused by proteolysis during production, the band closest to the size of the expected complete product is

indicated with an asterisk.

with naturally acquired antibodies in cohorts of individuals living
in two villages in coastal Kenya where the parasite is endemic.
Antibodies against one allelic form of MSPDBL2 were signifi-
cantly associated with protection from malaria in both cohorts,
even after adjusting for potential confounding variables, such as
age and exposure, while only one other recombinant antigen
showed a protective association in one cohort and the remaining
14 in neither cohort.

MATERIALS AND METHODS

Ethics statement. Ethical approval for the study on samples from human
subjects was obtained from the Kenya National Research Ethics Commit-
tee, the University of Oxford, and the London School of Hygiene and
Tropical Medicine. Written informed consent was obtained from a parent
or guardian of each child contributing a blood sample and also from
participating adults. Murine antibodies were obtained commercially by
immunization of mice under commercial subcontract, and all animal
work protocols were approved and licensed by the United Kingdom
Home Office as governed by law under the Animals (Scientific Proce-
dures) Act of 1986, in strict accordance with the Code of Practice Part 1 for
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the housing and care of animals (21 March 2005), available at http://www
.homeoffice.gov.uk/science-research/animal-research/.

Cloning and expression of recombinant antigens in E. coli and bac-
ulovirus systems. Sixteen new constructs were designed (Fig. 1A); 9
smaller fragments without predicted disulfide bonds were expressed in
Escherichia coli, and 7 larger fragments with predicted intramolecular di-
sulfide bonds were expressed in baculovirus.

E. coli-expressed GST-tagged fusion proteins. Sequences in the N-
and C-terminal regions encoded by the P. falciparum genes mspdbll
(PF3D7_1035700, previously PF10_0348; nucleotide positions 97 to 414
and 1441 to 1590 based on the 3D7 reference sequence) and mspdbl2
(PF3D7_1036300, previously PF10_0355; nucleotides [nt] 70 to 273 and
1615 to 1770) and a C-terminal intracellular sequence encoded by exon 2
of surf, , (PF3D7_0424400, previously PFD1160w; nucleotides 2593 to
2739) were PCR amplified from regions of each gene showing minimal
polymorphism (see Figure S1 in the supplemental material). Four allelic
constructs (representing the divergent 3D7 and K1 alleles) were PCR am-
plified from a polymorphic extracellular sequence encoded within exon 1
of surf, , (PF3D7_0424400; nt 994 to 1296 and 1501 to 1824) (see Figure
S1 in the supplemental material). DNA for each construct was PCR am-
plified from 3D7 genomic DNA (and K1 for surf,,), cloned into the
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pGEM-T Easy TA vector (Promega), and sequence verified. Correct se-
quence inserts were subcloned into the pGEX-2T expression vector (GE
Healthcare), sequenced again to ensure fidelity, and transformed into E.
coli BL21(DE3) cells for expression. Expression and affinity purification
were performed as described previously for other glutathione S-trans-
ferase (GST) fusion proteins (27).

Baculovirus-expressed His-tagged fusion proteins. Five polymor-
phic antigens based on the mspdbll gene (PF3D7_1035700, previously
PF10_0348) and two polymorphic antigens based on the mspdbl2 gene
(PF3D7_1036300, previously PF10_0355), covering the central DBL re-
gion, were expressed using a baculovirus expression system (28). PCR
primers amplified a region within mspdbll and mspdbl2 (nt 418 to 1323
and 475 to 1350, respectively, based on the 3D7 genome sequence; acces-
sion number AAN35552) (Fig. 1A; see Figure S1 in the supplemental
material). The amplified products were cloned into a pGEM-T Easy TA
vector and sequence verified for generation of baculovirus constructs fol-
lowing procedures described for other DBL-containing antigens (28).
Briefly, correct sequences were subcloned into the pAcGP67-A (BD Bio-
sciences) baculovirus vector modified to contain a V5 epitope upstream of
a C-terminal His tag. Recombinant virus was generated by cotransfecting
the modified pAcGP67-A vector into Sf9 insect cells with linearized
Bakpaké Baculovirus DNA (BD Biosciences). The transfected Sf9 cells
were then used to infect a High-Five cell suspension grown in a serum-free
medium (Gibco). Recombinant protein was harvested from culture su-
pernatant 26 h after viral infection, 0.2-pum filtered, and dialyzed into
buffer (500 mM NaCl, 10 mM NaH,PO,, pH 7.4) using an Akta cross-
flow (GE Healthcare).

Generation of polyclonal sera in mice and immunofluorescence as-
says (IFA). Groups of 5 CD1 outbred mice were immunized with 25 g of
each of the 16 recombinant antigens emulsified in Freund’s complete
adjuvant following a 60-day protocol (Pharmidex, United Kingdom), and
boosting immunizations were performed twice more at 28-day intervals
in Freund’s incomplete adjuvant. Sera were collected before immuniza-
tion and on days 14 and 42, and final serum collection was 7 days after the
last immunization.

Antibody reactivities of murine antisera were tested against cultured P.
falciparum 3D7 parasites using IFA. Parasite cultures with a large propor-
tion of schizonts were washed in phosphate-buffered saline (PBS)-1%
bovine serum albumin (BSA) and resuspended to 2.5% hematocrit, and
15-pl aliquots were spotted onto multiwell slides (Hendley, Essex, United
Kingdom), which were then air dried and stored at —40°C with desiccant
until required. Following a recommended fixation protocol (29), the
slides were bathed in 4% paraformaldehyde in PBS for 30 min, followed
by 10 min in 0.1% Triton X-100 in PBS, and then overnight at 4°C in
PBS-3% BSA. After air drying, the wells were incubated with defined
dilutions of each test serum (including initial serial doubling dilutions
from 1/200 to 1/409,600) in PBS-3% BSA and incubated for 30 min at
room temperature. The slides were rinsed 3 times in PBS, excess wash
buffer was removed, and the wells were incubated for 30 min with a 1/500
dilution of biotinylated anti-mouse IgG (Vector Laboratories, USA) in
PBS-3% BSA, washed 3 times in PBS, and incubated for 30 min with a
1/500 dilution of fluorescein-streptavidin (Vector Laboratories). Mount-
ing medium with DAPI (4’,6-diamidino-2-phenylindole) (Vectashield;
Vector Laboratories) was added to each slide and sealed with a coverslip
for microscopy.

Community surveys and human serum antibody analysis. A com-
munity cohort study was undertaken in Chonyi and Ngerenya, two vil-
lages approximately 40 km apart in Kilifi district near the coast in eastern
Kenya, samples from which have been previously analyzed for antibody
responses to other malaria antigens (4, 30). At the time of sampling, Cho-
nyi village had a higher endemicity rate than Ngerenya village (31). Inhab-
itants of these villages (predominantly of the Mijikenda ethnic group)
were naturally exposed to biannual peaks of malaria transmission in No-
vember to December and May to July (with the latter generally being the
most intense period of transmission). Blood samples were collected from
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individuals living in each location in October 2000, with the ages of sam-
pled individuals ranging from 7 weeks to 85 years in Chonyi and from 3
weeks to 85 years in Ngerenya. The two cohorts were monitored by field
workers weekly, with active and passive case detection conducted over 28
weeks, which included the lower of the two annual peaks of malaria trans-
mission (November to January). A malaria episode was defined as a febrile
episode (axillary temperature, >37.5°C), together with P. falciparum par-
asitemia of greater than 2,500 parasites pl blood™ ! as determined by
microscopic examination of thick blood smears, except for infants under
1 year of age, for whom any P. falciparum parasitemia plus fever was
counted as malaria. This has been shown to comprise an accurate measure
for malaria case detection in these populations (31).

Indirect enzyme-linked immunosorbent assays (ELISAs) were per-
formed with each of the 16 antigens using protocols similar to those pre-
viously described for other merozoite antigens (4), with each serum sam-
ple tested in duplicate at 1/500 dilution. Sera were scored as positive for a
particular antibody specificity if ELISA optical density (OD) values were
higher than the mean plus 3 standard deviations of the values from 20
malaria-naive control sera tested in parallel (the same panel of negative-
control sera was used in all assays). To test for cross-reactive epitopes on
different antigens, and for the presence of heat-stable and heat-labile
epitopes, competition ELISAs were performed using adult sera for which
sufficient volumes were available, as was previously done for reactivity to
other antigens (12). Tests for associations between antibody reactivities
and occurrence of clinical malaria focused on individuals who were <11
years old and asymptomatically positive for P. falciparum by slide exami-
nation in October 2000, as this age group produced most of the subse-
quent clinical episodes and parasite-negative individuals include many
with very low exposure to malaria (4, 32). Antibody reactivity to cultured
parasite schizont extract was previously assayed in each of the sera, along-
side analysis of other antigens (4, 30).

Statistical analyses. All analysis was performed with Stata/IC 11.2
(StataCorp LP, USA). Generalized linear models were used to determine
the associated risk ratio (RR) between the presence or absence of detect-
able serum antibodies (IgG above the cutoff OD value) and occurrence of
subsequent clinical malaria episodes. Individuals” ages in years and anti-
body reactivity to cultured parasite schizont extract were used in multi-
variate analyses to adjust for the confounding effects of variation among
individuals in previous exposure to malaria.

RESULTS

Expression of new recombinant antigens. To investigate natu-
rally acquired immune responses to newly described P. falciparum
antigens, 16 recombinant proteins based on polymorphic and
conserved sequences were designed (Fig. 1). The amino acid po-
sitions of each of the recombinant proteins in relation to the 3D7
reference sequence are shown in Fig. 1A. From previous sequence
analysis of diverse laboratory isolates and isolates from Kenya
(16), allelic sequences of mspdbl2 and surf, , had both been shown
to cluster into dimorphic allelic groups, so two divergent alleles for
each of these genes were selected for expression. Two different
regions that showed high levels of polymorphism were expressed
from surf, , (Fig. 1A). Allelic sequences of the mspdbll gene also
clustered into dimorphic types, but there was considerable sub-
type variation within the DBL region (15, 16), so five divergent
allelic sequences were expressed to provide broader coverage of
the diversity (see Figure S1 in the supplemental material). The
central DBL domain region of the 5 chosen allelic sequences of
mspdbll (3D7, 7G8, Fcc2, Palo Alto, and D6) and two of mspdbl2
(3D7 and T9/96) were baculovirus expressed, whereas all other
antigens were expressed as GST-tagged fusion proteins in E. coli.
All 16 recombinant antigens were assessed for size and purity by
SDS-PAGE (Fig. 1B).
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Expressed recombinant antigens contain native epitopes.
Polyclonal sera to each antigen were raised by immunization of
mice and tested for reactivity to native parasite schizonts by IFA.
Parasite-specific antibodies elicited to each of the E. coli-expressed
and baculovirus-expressed antigens were detected (see Figure S2
in the supplemental material). We previously noted that only a
small proportion of mature schizont stage parasites were positive
by IFA for the MSPDBL2 antigen (immature stage parasites were
negative), using sera raised to the conserved N- and C-terminal
antigens (18), and here, we also saw a minority reacting with an-
tibodies to the antigen, whereas the antibodies raised to each of the
other antigens generally reacted with all schizonts. No parasite-
specific staining was observed with sera from nonimmunized
mice.

High prevalence of human antibodies to polymorphic and
conserved antigens. Serum IgG antibody reactivity to all antigens
was studied in all age groups in two coastal Kenyan rural popula-
tions, Chonyi (n = 497) and Ngerenya (n = 461). Antibody prev-
alence and OD levels were higher in Chonyi (high transmission)
than in Ngerenya (low transmission) for most antigens tested.
There was high antibody prevalence against polymorphic parts of
MSPDBL1 and MSPDBL2, increasing in young children and rap-
idly approaching 100% in young adults (Fig. 2), while ELISA OD
values also showed a steady increase with age into adulthood (Fig.
3). Antibody reactivity to the reagents representing conserved
parts of these antigens was lower, as might be expected from rel-
atively short recombinant antigen sequences (Fig. 2 and 3). Anti-
body prevalence and ELISA OD values against the expressed se-
quences of SURFIN4.2 were relatively low, with an increase with
age against most of them apparent in Chonyi, but not in Ngerenya
(Fig. 2 and 3).

Pearson’s correlation analysis of ELISA OD values for reactiv-
ity to each of the recombinant antigens indicates the presence of
both allele-specific and cross-reactive epitopes (see Table S1 in the
supplemental material). In addition, high correlation coefficients
were observed in comparison of reactivity profiles between
MSPDBLI and MSPDBL2, whereas cross correlations between
either of them and the SURFIN4.2 antigens were much lower (see
Table S1 in the supplemental material). Competition ELISAs us-
ing sera from two adult donors with high levels of antibodies were
performed to test for cross-reactivity between antigens. Although
most antibodies in these sera were specific for each separate anti-
gen, with reactivity against allele-specific as well as conserved
epitopes, some antibodies were cross-reactive between MSPDBL1
and MSPDBL2, and heat denaturation of competing antigens
confirmed that some reactivity was against conformational
epitopes (see Fig. S3 in the supplemental material).

Antibodies associated with a reduced risk of malaria. Tests
for associations between serum IgG antibody reactivities and oc-
currence of clinical malaria during follow-up over the following
28 weeks focused on individuals who were <11 years old and
asymptomatically positive for P. falciparum by slide examination
at the time of serum collection in October 2000 (Chonyi, n = 119;
Ngerenya, n = 61), following an approach taken in a previous
study (4). This group was analyzed because >80% of all clinical
episodes in these cohorts occurred in children <11 years old, and
slide-positive children are likely to have recent or current expo-
sure to malaria parasites, whereas among the parasite-negative
individuals, it is not possible to differentiate those who are simply
less exposed to malaria (4, 30, 33). Likely confounding effects of
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general differences in exposure were taken into account by multi-
ple logistic regression analysis, adjusting for age and serum IgG
reactivity to whole P. falciparum schizont extract. Analyses were
tabulated separately for the Chonyi cohort (see Table S2 in the
supplemental material) and the Ngerenya cohort (see Table S3 in
the supplemental material), and the adjusted relative risk esti-
mates are summarized in Fig. 4. In Ngerenya, individuals positive
for antibodies to the Palo Alto allelic type of MSPDBL1 were less
likely to develop malaria within the following 6 months (RR, 0.53;
95% confidence interval [CI], 0.32 to 0.89; P < 0.05), but this
association was not significant in Chonyi. More significantly, an-
tibodies to the 3D7 allelic type of DBLMSP2 were associated with
areduced subsequent risk of malaria in each cohort (Chonyi, RR,
0.51,95% CI, 0.28 to 0.93, and P < 0.05; Ngerenya, RR, 0.38, 95%
CI, 0.18 t0 0.82, and P < 0.05) (Fig. 4; see Tables S2 and S3 in the
supplemental material). For the remaining 14 antigens, antibodies
were not associated with protection.

DISCUSSION

This study involved the design of antigenic reagents based on re-
cently described proteins encoded by three P. falciparum genes
expressed at the schizont and merozoite stages that show evidence
of being under balancing selection in populations where the par-
asite is endemic. A similar approach has been used to identify
regions of more intensively studied candidate antigens (12, 27, 33)
to guide vaccine design that may be based on either multiallelic
formulation (34-39) or selective elicitation of responses to con-
served epitopes (38, 40).

Here, human serum IgG prevalence was highest to the poly-
morphic regions of MSPDBLI and MSPDBL2 in both of the Ken-
yan cohorts studied. Consistent with the fact that MSPDBL2
showed the strongest indication of balancing selection in a ge-
nome-wide analysis of P. falciparum (18), we observed that those
with antibodies against one of the forms of this antigen had a
lower risk of contracting malaria during the subsequent follow-up
over 6 months. This result was independently significant in each of
the cohorts, even after adjustment for individuals’ ages in years
and antibody reactivity to whole parasite schizont extract. It is
unclear why the protective association was seen with only one of
the major allelic forms, as both major forms of MSPDBL2 were
common in Ngerenya when sampled shortly before the cohort
study was conducted (16). These results indicate that the
MSPDBL2 antigen is likely to be an important target of immu-
nity, although the highly divergent sequences of the two major
allelic types (16) suggest a multiallelic formulation would be
needed if the antigen were to be incorporated into a vaccine. Evi-
dence that expression of MSPDBL2 varies among parasites (18,
25) also indicates that a vaccine could not be based on this antigen
alone.

Comparisons of serological reactivity profiles demonstrated
high correlations between the DBL regions of the MSPDBL1 and
MSPDBL2 antigens, reported to be important for erythrocyte
binding (23, 24), and the existence of cross-reactive epitopes on
these proteins was confirmed by competition ELISAs with selected
sera. Amino acid sequence alignment analysis of the DBL regions
from both antigens revealed short sequences conserved between
them (see Fig. S1C in the supplemental material). It is notable that
the gene encoding MSPDBLI has a second copy in a minority of P.
falciparum lines (15), showing regions of identity with MSPDBL2,
with a sequence of 10 amino acids (aa) identical at MSPDBLI aa
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FIG 2 Age prevalences of naturally acquired serum IgG antibodies to the MSPDBL1, MSPDBL2, and SURFIN4.2 antigens in two Kenyan populations, Chonyi
(high transmission; n = 497) (A) and Ngerenya (low transmission; n = 461) (B). Antibody positivity to each antigen was defined as ELISA reactivity above the
mean plus 3 standard deviations of a panel of European negative-control sera as defined in Materials and Methods.

183 to 192 and MSPDBL2 aa 199 to 208 and a sequence of 16
amino acids identical for 15 residues at MSPDBLI aa 325 to 340
and MSPDBL2 aa 343 to 358, as identified by amino acid sequence
alignment (41, 42), although we have not tested if these are
epitope sequences. Although the overall predicted amino acid se-
quence identity among members of the MSP3 family is low, short
stretches of sequence identity exist near the C terminus, and cross-
reactive antibodies have been described (20) and investigated as
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Age (years)

potential vaccine targets (43). However, these previously de-
scribed cross-reactive sequences were downstream of the DBL
region and were not included in the antigenic constructs of
MSPDBL1 and MSPDBL2 designed and analyzed here.

Studies such as these of antibody reactivity to recombinant
proteins, even when associated with epidemiological outcomes,
do not directly demonstrate a mechanism of immunity. It was
previously shown (43) that each member of the MSP3 family (in-
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FIG 4 Two cohort studies yielded relative risk estimates (with 95% confidence
intervals) of associations between antibody reactivity against each of a panel of
16 recombinant antigens at one time point and experience of clinical malaria
during 6 months of follow-up. Analyses were conducted on data from children
<11 years of age at the time of sampling for sera (October 2000) and adjusted
for individuals’ ages in years and reactivity to whole parasite schizont extract
by logistic regression. The results are plotted separately for each cohort, Cho-
nyi (A) and Ngerenya (B). Exact numbers from the analyses are given in Tables
S2 and S3 in the supplemental material.

cluding MSPDBL1 and MSPDBL2) had a distinct IgG isotype pro-
file, although the cytophilic subclasses IgG1 and IgG3 were dom-
inant against each (40). Antibody-dependent cellular inhibition
(ADCI) by monocytes against parasites in culture utilizes these
subclasses and has been shown to involve antibodies against
MSP3. Such a mechanism might be similarly effective against both
MSPDBL1 and MSPDBL2, although this has not yet been tested.
Clearly, the appropriate selection of antigens is an essential step
in the design and development of vaccines. Here, we have de-
scribed the generation of a new panel of antigen reagents as part of
a process to identify potential candidates that are targets of natu-
rally acquired immunity. For one of these antigens, based on the
3D7 allelic type of the DBL region of MSPDBL2, antibodies were
associated with reduced prospective risk of malaria in two differ-
ent populations where the parasite is endemic. This is already a
higher level of reproducibility than normally shown in studies of
other candidate antigens (3), although studies on immune re-
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sponses to the antigen in other populations are recommended to
further evaluate its importance as a target of immunity.
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