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Abstract: The nasal priming with nonviable Lactobacillus rhamnosus CRL1505 (NV1505) or its
purified peptidoglycan (PG1505) differentially modulates the respiratory innate immune response in
infant mice, improving their resistance to primary respiratory syncytial virus (RSV) infection and
secondary pneumococcal pneumonia. In association with the protection against RSV-pneumococcal
superinfection, it was found that NV1505 or PG1505 significantly enhance the numbers of
CD11c+SiglecF+ alveolar macrophages (AMs) producing interferon (IFN)-β. In this work, we aimed
to further advance in the characterization of the beneficial effects of NV1505 and PG1505 in the
context of a respiratory superinfection by evaluating whether their immunomodulatory properties
are dependent on AM functions. Macrophage depletion experiments and a detailed study of their
production of cytokines and antiviral factors clearly demonstrated the key role of this immune cell
population in the improvement of both the reduction of pathogens loads and the protection against
lung tissue damage induced by the immunobiotic CRL1505 strain. Studies at basal conditions during
primary RSV or S. pneumoniae infections, as well as during secondary pneumococcal pneumonia,
brought the following five notable findings regarding the immunomodulatory effects of NV1505
and PG1505: (a) AMs play a key role in the beneficial modulation of the respiratory innate immune
response and protection against RSV infection, (b) AMs are necessary for improved protection against
primary and secondary pneumococcal pneumonia, (c) the generation of activated/trained AMs
would be essential for the enhanced protection against respiratory pathogens, (d) other immune
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and nonimmune cell populations in the respiratory tract may contribute to the protection against
bacterial and viral infections, and (e) the immunomodulatory properties of NV1505 and PG1505
are strain-specific. These findings significantly improve our knowledge about the immunological
mechanisms involved in the modulation of respiratory immunity induced by beneficial microbes.

Keywords: immunobiotics; peptidoglycan; TLR3; viral immunity; Streptococcus pneumoniae;
respiratory syncytial virus; alveolar macrophages; Lactobacillus rhamnosus CRL1505

1. Introduction

Respiratory infections are of major importance because of their capacity to cause of a high degree of
morbidity and mortality in high-risk populations and to rapidly spread between countries. More than
four million people die yearly as a consequence of acute respiratory infections worldwide. Globally,
human respiratory syncytial virus (RSV) and Streptococcus pneumoniae are the most important cause of
fatal respiratory infections in children [1–5]. Generally, RSV infections are self-limiting and restricted
to the upper airways. However, in susceptible individuals such as infants or the elderly, the virus
may spread to the lower tract, causing more severe symptoms. Then, a viral respiratory attack may
turn an immune response into pathological, resulting in tissue injury, loss of function, and even death.
In addition, clinical and epidemiologic data suggest that RSV is linked to increases in the frequency [1]
and severity [2] of pneumococcal diseases. In fact, it was reported that the mortality associated to
respiratory viral infections is not due to the viral infection alone, but instead, secondary bacterial
pneumonia complicates many severe cases in infected hosts [3–5].

Several mechanisms were proposed to explain the enhanced susceptibility to secondary
pneumococcal pneumonia in individuals suffering primary infections with RSV. The virus-mediated
impairment of the mucociliary barrier defenses and the destruction of the respiratory
epithelium significantly reduce the clearance of pneumococci [6]. In addition, the upregulation
of the platelet-activating factor receptor (PAF), intercellular adhesion molecule-1 (ICAM-1),
and carcinoembryonic adhesion molecule 1 (CEACAM1) in respiratory epithelial cells induced by RSV
increases the adherence of S. pneumoniae to the respiratory tract [7]. The pneumococcal adherence
and colonization are also favored by the expression of the RSV G protein in respiratory epithelial
surfaces that serve as an adhesion molecule for S. pneumoniae [6,8,9]. Moreover, it was reported that
the molecular interaction of the RSV G protein with the pneumococcal penicillin-binding protein 1a
induces modifications in the transcriptome of S. pneumoniae, increasing the expression of the virulence
factors pneumolysin and neuraminidase A/B [6]. RSV has been also shown to impair respiratory
immunity, adding one more mechanism by which this pathogen can increase the susceptibility to
secondary infections. It was reported that RSV is capable of infecting both human and murine alveolar
macrophages (AMs), although the infection is abortive, since there is no increment of viral particle
production [10,11]. However, RSV induce a significant impairment in the production of interferon
(IFN)-γ and interleukin (IL)-12 by AMs [12] that was associated with an enhanced severe illness in
infants [13]. The reduced production of IFN-γ diminishes AM activations, impairing their phagocytic
function and their ability to induce the recruitment of T and natural killer (NK) cells to the lungs,
contributing to higher viral replication [14,15]. This alteration of AM functions has been associated to
an exacerbated RSV-mediated bronchiolitis [15], as well as to an increased susceptibility to secondary
bacterial infections [16]. Therefore, complex interactions are established between RSV, S. pneumoniae,
and the host that need to be fully understood in order to develop strategies to diminish the severity
and mortality of respiratory superinfections caused by these pathogens.

Our previous study was the first in demonstrating the ability of an immunobiotic treatment to
protect against a respiratory superinfection. The nasal priming with nonviable Lactobacillus rhamnosus
CRL1505 (NV1505) or its purified peptidoglycan (PG1505) were capable of improving the resistance of
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infant mice to the RSV-pneumococcal superinfection [17]. NV1505 or PG1505 differentially regulated
the respiratory innate antiviral immune response triggered by the activation of Toll-like receptor 3
(TLR3), improving the resistance to a primary RSV infection and secondary pneumococcal pneumonia.
The study of the immunological mechanisms involved in the protective effects induced by NV1505 and
PG1505 revealed a key role for respiratory IFN-β, IFN-γ, and IL-10. Our results showed that the increase
of the three cytokines in the respiratory tract induced by NV1505 or PG1505 treatments was involved in
the reduction of lung RSV titers, pneumococcal colonization, bacteremia, and inflammatory-mediated
lung tissue injury. Moreover, our studies provided us with preliminary information that indicated
that CD11c+SiglecF+ AMs would actively participate in the beneficial effects induced by NV1505 and
PG1505 by producing improved levels of IFN-β in response to pathogens [17]. However, the exact role
of AMs in the immunomodulatory effects of NV1505 or PG1505, or how these respiratory immune
cells are modified by the treatments to produce improved responses against RSV or pneumococcal
challenges, have not been investigated in detail.

Considering this background, in this work, we aimed to further advance in the characterizations of
the beneficial effects of NV1505 and PG1505 in the context of a respiratory superinfection by evaluating
whether their immunomodulatory properties are dependent on AM functions. The role of AMs in the
differential cytokine profiles induced in the respiratory tract by NV1505 and PG1505, as well as in their
ability to increase the resistance to a primary RSV infection and secondary pneumococcal pneumonia,
were explored.

2. Materials and Methods

2.1. Microorganisms and Peptidoglycans

L. rhamnosus CRL1505 and L. rhamnosus CRL498 were obtained from the CERELA culture collection
(Chacabuco 145, San Miguel de Tucumán, Argentina). Both lactobacilli cultures were kept freeze-dried.
Lactobacilli were cultured for 12 h at 37 ◦C (final log phase) in Man-Rogosa-Sharpe broth (MRS, Oxoid,
Hampshire, UK). The bacteria were harvested by centrifugation at 3000× g for 10 min, washed three
times with sterile 0.01-mol/L phosphate-buffered saline (PBS, pH 7.2), and resuspended in sterile PBS.

Nonviable L. rhamnosus CRL1505 (NV1505) and CRL498 (NV498) were obtained by tyndallization
in a water bath at 80 ◦C for 30 min, and the lack of bacterial growth was confirmed using MRS agar
plates. Peptidoglycan from L. rhamnosus CRL1505 (PG1505) and CRL498 (PG498) were obtained as
described previously [17,18]. Briefly, bacteria were grown in MRS broth for 18 h at 37 ◦C, washed
3 times with sterile PBS, and lyophilized. Lactobacilli were resuspended in sterile water (0.1 g/mL)
and lysed by sonication in an Ultrasonic Homogenizer (Cole Parmer) with cycles of 2.5 min and an
amplitude of 70%. The cell wall obtained was delipidated by successive refluxing with methanol,
methanol–chloroform (1:1), and chloroform. The delipidated preparation was resuspended in Tris–HCl
buffer 50 µM (pH 7.5) and treated with bovine pancreatic DNAse I (Sigma Aldrich, St. Louis, MO, USA)
(50 µg/mL) and ribonuclease A (Sigma Aldrich) (100 µg/mL) at 37 ◦C, 4 h. Finally, the cell wall was
treated with 50% hydrogen chloride at 4 ◦C for 20 h. The peptidoglycan obtained for each individual
strain was washed with sterile water, adjusted to pH 7.2, and lyophilized until use.

2.2. Animals and Treatments

Infant (3-week-old) BALB/c mice were obtained from the closed colony kept at CERELA (San Miguel
de Tucumán, Argentina). Animals were housed in plastic cages at room temperature, and the assays
for each parameter studied were performed in 5–6 mice per group for each time point. Nonviable
L. rhamnosus strains were nasally administered to infant mice for two consecutive days at a dose of
108 cells/mouse/day in 50 µL of PBS [17,19]. Peptidoglycans obtained from the different lactobacilli
strains were administered individually for the nasal route to infant mice for two consecutive days
at a dose of 8 µg/mL in 50 µL of PBS, as described previously [17,18]. The treated groups and the
PBS-treated control group were fed a conventional balanced diet ad libitum.
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This study was carried out in strict accordance with the recommendations in the Guide for the
Care and Use of Laboratory Animals of the Guidelines for Animal Experimentation of CERELA.
The CERELA Institutional Animal Care and Use Committee prospectively approved this research
under the protocol BIOT-CRL-18. All efforts were made to minimize the number of animals and their
suffering. No signs of discomfort or pain were observed before mice reached the endpoints. No deaths
were observed before mice reached the endpoints.

2.3. Poly(I:C) Administration and Respiratory Infections

Administration of the TLR3 agonist poly(I:C) was performed two days after the last day of
treatments with nonviable lactobacilli or their peptidoglycans. Mice received 100 µL of PBS containing
250-µg poly(I:C) (equivalent to 10 mg/kg body weight), which was administered dropwise via the
nares [17,19,20]. Control animals received 100 µL of PBS. Mice received three doses of poly(I:C) or PBS
with a 24-h rest period between each administration.

Human RSV strain A2 was grown in Vero cells, as described previously [17,19,20]. Briefly, Vero
cells were grown in Dulbecco’s modified Eagle’s medium (DMEM) and infected with RSV for 3 h at
37 ◦C, 5% CO2. After infection, 7 mL of DMEM with 10% fetal bovine serum (Sigma, Tokyo, Japan), 0.1%
penicillin-streptomycin (Pen/Strep) (Sigma, Tokyo, Japan), and 0.001% ciprofloxacin (Bayer, Leverkusen,
Germany) was added to the flask, and cells were incubated until extensive syncytium formation was
detected. Then, Vero cells were scraped, sonicated, and cell debris was removed by centrifugation at
700× g for 10 min at 4 ◦C. Virus supernatant was sucrose density gradient purified and stored in 30%
sucrose at −80 ◦C. For in vivo infection, mice were challenged with 106 plaque-forming unit (PFU)
of RSV by the nasal route [17,19,20]. Viral challenge was performed two days after the last day of
treatments with nonviable lactobacilli or their peptidoglycans. Lung RSV titers and tissue damage
were evaluated 2 days after viral infection. The RSV immunoplaque assay was performed as described
previously [17,19,21]. Primary RSV anti-F (clones 131-2A; Chemicon), anti-G (Mouse monoclonal
(8C5 (9B6)) to RSV glycoprotein, Abcam, Cambridge, UK) and secondary horseradish peroxidase
anti-mouse immunoglobulin (Anti-mouse IgG, HRP-linked Antibody #7076, Cell Signaling Technology,
Danvers, Massachusetts, USA) antibodies were used. Individual plaques were developed using a DAB
Substrate Kit (ab64238, Abcam, Cambridge, UK) following the manufacturer’s specifications. Results
were expressed as log10 PFU/g of a lung.

S. pneumoniae serotype 6B was grown on blood agar for 18 h. Colonies were suspended in Todd
Hewitt broth (Oxoid, Hampshire, UK), incubated overnight at 37 ◦C, harvested, and washed with
sterile PBS. Cell density was adjusted to 4 × 107 CFU/mL [17,22]. Challenge with pneumococci was
performed five days after the last administration of poly(I:C) or RSV infection. Mice were sacrificed two
days after S. pneumoniae infection. Lungs were excised, weighed, and homogenized in sterile peptone
water. Homogenates were diluted appropriately, plated in duplicate on blood agar, and incubated for
18 h at 37 ◦C. S. pneumoniae was identified by standard techniques, and the results were expressed as
log of CFU/g of a lung or CFU/mL of blood.

2.4. Lung Injury Parameters

Broncho-alveolar lavages (BAL) samples were obtained as described previously [17,22]. Briefly,
the trachea was exposed and intubated with a catheter, and 2 sequential lavages were performed in
each mouse by injecting sterile PBS. The recovered fluid was centrifuged for 10 min at 900× g and
frozen at −70 ◦C for subsequent analyses.

Albumin content, a measure to quantitate the increased permeability of the bronchoalveolar–
capillarity barrier, and lactate dehydrogenase (LDH) activity, an indicator of general cytotoxicity,
were determined in the acellular BAL fluid. Albumin content was determined colorimetrically based
on albumin binding to bromcresol green using an Albumin Diagnostic Kit (Wiener Lab, Buenos Aires,
Argentina). LDH activity, expressed as units per liter of BAL fluid, was determined by measuring the
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formation of the reduced form of nicotinamide adenine dinucleotide (NAD) using the Wiener reagents
and procedures (Wiener Lab).

2.5. In Vivo Depletion of Alveolar Macrophages

For depletion of the AMs, mice were inoculated intranasally with 50 µL of clodronate
(dichloromethylene-bisphosphonate)-containing liposomes (CLP; Clophosome, Stratech, UK),
as described elsewhere [11]. Mice were treated with CLP for two consecutive days. Optimal
conditions of AM depletions were determined by the differential counting of BAL cells (Supplementary
Figure S1). An equal treatment with empty liposomes (ELP) served as the control. BAL leukocyte
counts were performed as described previously [17,19].

2.6. Alveolar Macrophages Primary Cultures

Primary cultures of murine AMs were performed as described elsewhere [11,23]. Macrophages
were obtained from infant mice via BAL samples by using 1 mL of warm, sterile PBS containing 5-mM
EDTA. AMs were transferred to new sterile tubes, washed twice in sterile PBS, and resuspended in
RPMI 1640 medium with 10% FBS, 1-mM L-glutamine, and 100-U/mL penicillin-streptomycin. BAL
cells were seeded in 24-well plates at a density of 105 cells/well and incubated for 2 h at 37 ◦C in 5%
CO2 to promote adherence. Non-adherent cells were washed, and AMs were maintained in a culture in
RPMI 1640 medium with 10% FBS, 1-mM L-glutamine, and 100-U/mL penicillin-streptomycin at 37 ◦C
in 5% CO2 for 24 h before stimulation. AMs were stimulated with poly(I:C) (50 ug/mL), S. pneumoniae
(MOI of 3) or RSV (MOI of 5). Supernatants were collected before (basal conditions) and twenty-four
hours after stimulations for cytokines analysis. In addition, the mRNA was extracted from AMs twelve
hours after the RSV challenge for the evaluation of cytokines and antiviral factor gene expressions.

2.7. Cytokine Concentrations in BAL and Culture Supernatants

IFN-β (Mouse IFN-beta enzyme-linked immunosorbent assay (ELISA) Kit, sensitivity: 15.5 pg/mL),
IFN-γ (Mouse IFN-gamma Quantikine ELISA Kit, sensitivity: 2 pg/mL), IL-6 (Mouse IL-6 Quantikine
ELISA Kit, sensitivity: 1.8 pg/mL), IL-10 (Mouse IL-10 Quantikine ELISA Kit, sensitivity: 5.2 pg/mL),
IL-12 (Mouse IL-12 p70 DuoSet ELISA, sensitivity: 1.5 pg/mL), and IL-27 (Mouse IL-27 p28/IL-30
Quantikine ELISA Kit, sensitivity: 4.7 pg/mL) concentrations in BAL and culture supernatants samples
were measured with commercially available enzyme-linked immunosorbent assay (ELISA) technique
kits following the manufacturer’s recommendations (R&D Systems, MN, USA). CCL2 (Mouse MCP1
ELISA Kit (ab208979), sensitivity: 0.487 pg/mL), CCL3 (Mouse MIP1a ELISA Kit (ab200017), sensitivity:
1.95 pg/mL), CXCL2 (Mouse MIP2 ELISA Kit (ab204517), sensitivity: 0.87 pg/mL), and CXCL10
(Mouse IP-10 ELISA Kit (ab214563), sensitivity: 3.4 pg/mL) were measured with commercially available
ELISA technique kits following the manufacturer’s recommendations (Abcam, Cambridge, UK).

2.8. PCR Quantitative Expression Analysis by Real-Time PCR

Two-step real-time quantitative PCR was performed to characterize the expression of IFN-α,
IFN-β, IFN-γ, Mx1, RNAseL, OAS1, IL-1α, IL-1β, TNF-α, IL-6, IL-10, and IL-27 genes in cultured
AMs. Total RNA was isolated from each sample using TRIzol reagent (Invitrogen). All cDNAs were
synthesized using a Quantitect Reverse-Transcription (RT) Kit (Qiagen, Tokyo, Japan) according to the
manufacturer’s recommendations. Real-time quantitative PCR was carried out using a 7300 Real-Time
PCR System (Applied Biosystems, Warrington, UK) and the Platinum SYBR Green qPCR SuperMix
uracil-DNA glycosylase (UDG) with 6-carboxyl-X-rhodamine (ROX) (Invitrogen, Carlsbad, California,
USA). The primers used in this work are given in Supplementary Table S1. The PCR cycling conditions
were 2 min at 50 ◦C, followed by 2 min at 95 ◦C, and then 40 cycles of 15 s at 95 ◦C, 30 s at 60 ◦C,
and 30 s at 72 ◦C. The reaction mixtures contained 5 µL of sample cDNA and 15 µL of the master mix,
which included the sense and antisense primers. The expression of β-actin was used to normalize the
cDNA levels for the differences in the total cDNA levels in the samples.
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2.9. Flow Cytometry Analysis

Single cells from lung samples were prepared as previously described [17,22]. Briefly, lungs were
removed, finely minced, and incubated for 90 min with 300 U of collagenase (Yakult Honsha Co., Tokyo,
Japan) in 15 mL of RPMI 1640 medium (Sigma, Tokyo, Japan). Collagenase-treated minced lungs
were gently tapped into a plastic dish in order to dissociate the tissue into single cells. Erythrocytes
were depleted by hypotonic lysis, and the cells were washed with RPMI medium supplemented with
10% heat-inactivated fetal calf serum. Cells were counted using Trypan Blue exclusion and then
resuspended at an appropriate concentration of 5 × 106 cells/mL.

Lung cell suspensions were preincubated with anti-mouse CD32/CD16 monoclonal antibody
(Fc block) for 15 min at 4 ◦C. Cells were incubated in the antibody mixes for 30 min at 4 ◦C and washed
with FACS buffer. Then, cells were stained with fluorochrome-conjugated antibodies against CD11c
(APC), SiglecF (PE) (BD Bioscience, San Jose, CA, USA), CD45 (FITC) (eBioscience), and MHC-II
(PerCP) (Thermo Fisher Scientific, Waltham, Massachusetts, USA). Cells were then acquired on a
BD FACSCaliburTM flow cytometer (BD Biosciences), and data were analyzed with FlowJo software
(TreeStar). The total number of cells in each population was determined by multiplying the percentages
of subsets within a series of marker negative or positive gates by the total cell number determined for
each tissue sample [17,22].

2.10. Statistical Analysis

Experiments were performed in triplicate, and results were expressed as mean ± standard
deviation (SD). After verification of the normal distribution of data, 2-way ANOVA was used. Tukey’s
test (for pairwise comparisons of the means) was used to test for differences between the groups.
Differences were considered significant at p < 0.05.

3. Results

3.1. Effect of AM Depletions on the Ability of Nonviable L. rhamnosus CRL1505 and Its Peptidoglycan to
Modulate the Respiratory Immune Response Triggered by Poly(I:C)

One of the most used methodologies to evaluate the role of AMs in immune responses is
their depletion by administering liposomes containing toxic substances such as clodronate [11,24].
Then, we used this experimental tool to evaluate the role of AMs in the immunomodulatory effects of
NV1505 and PG1505. In our hands, the nasal administration of clodronate-containing liposomes (CLP)
significantly reduced the number of macrophages in BAL samples for a period of six days. The number
of BAL macrophages started to recover from day seven (Supplementary Figure S1). This effect was
not observed in infant mice nasally treated with empty liposomes (ELP) in which BAL macrophages
numbers were normal during all the assessed periods (Supplementary Figure S1). These results
indicated that CLP treatment is useful for evaluating the role of AMs in the immunomodulatory effects
of NV1505 and PG1505 in our experimental models, since these immune cells are decreased at the time
of NV1505 or PG1505 administration, while their number return to normality when the poly(I:C), RSV,
or pneumococcal challenges occur.

In accordance with the results reported previously [17], it was observed that, in infant mice treated
with ELP and challenged with poly(I:C), the levels of BAL LDH and albumin increased significantly
after TLR3 activation (Figure 1). It was also observed that, in animals treated with ELP and NV1505
or PG1505 and subsequently challenged with poly(I:C), the levels of BAL LDH and albumin were
significantly lower than those found in their respective control group (ELP control mice) (Figure 1).
The administration of CLP to control poly(I:C)-challenged mice did not induce modifications in the
values of lung damage markers with respect to ELP control animals. It was also observed that, in infant
mice treated with CLP and NV1505 or PG1505, the levels of BAL LDH and albumin after the challenge
with poly(I:C) were significantly higher than those observed ELP+NV1505 and ELP+PG1505 mice
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(Figure 1). Moreover, the levels of injury markers in CLP+NV1505 and CLP+PG1505 mice were not
different from the CLP control group.

Figure 1. Effects of alveolar macrophage depletions on the ability of nonviable Lactobacillus rhamnosus
CRL1505 and its peptidoglycan to modulate the respiratory immune response triggered by the poly(I:C)
treatment. Infant mice were nasally treated with clodronate-containing liposomes (CLP), and four days
after the last CPL administration, mice were nasally primed with nonviable L. rhamnosus CRL1505
(NV1505) or its peptidoglycan (PG1505) during two consecutive days and challenged with three
once-daily doses of poly(I:C). Mice treated with empty liposomes (ELP) were used as controls. Two days
after the last poly(I:C) administration, lactate dehydrogenase (LDH) activity, albumin concentrations,
and the levels of interferon (IFN)-β, IFN-γ, and interleukin (IL)-10 in bronchoalveolar lavages (BAL)
were evaluated. The results represent data from three independent experiments. Asterisks indicate
significant differences between the respective ELP and CLP groups. Asterisks in black lines indicate
significant differences between the indicated groups. * (p < 0.05) and ** (p < 0.01).

The levels of IFN-β, IFN-γ, and IL-10 in BAL were also determined after the administration of
poly(I:C) in infant mice treated with CLP or ELP (Figure 1). The administration of the TLR3 agonist
induced significant increases in the levels of BAL IFN-β, IFN-γ, and IL-10 in the ELP control mice,
which were similar to those previously reported [17]. In infant mice treated with CLP, the values
of the three cytokines were not different from the ELP control group. It was also found that both
NV1505 and PG1505 induced significant increases in the levels of BAL IFN-β and IFN-γ, as well as
in IL-10, after the administration of poly(I:C) in ELP-treated mice that were significantly higher than
that observed in ELP controls (Figure 1). Both NV1505 and PG1505 treatments significantly increased
BAL IFN-β and IFN-γ levels after the administration of poly(I:C) in infant mice treated with CLP with
respect to the CLP control group. However, the values of both antiviral factors in mice treated with
CLP+NV1505 and CLP+PG1505 were significantly lower than those found in their respective control
groups: ELP+NV1505 and ELP+PG1505 (Figure 1). In addition, it was observed that, in infant mice
that received CLP, the treatments NV1505 or PG1505 were unable to modify BAL IL-10 values after the
challenge with poly(I:C) when compared to the CLP control group (Figure 1).

3.2. Effects of AM Depletions on the Ability of Nonviable L. rhamnosus CRL1505 and Its Peptidoglycan to
Modulate the Resistance to Secondary Pneumococcal Pneumonia after Poly(I:C) Treatment

We next evaluated whether the in vivo depletion of AMs affected the capacity of NV1505 or
PG1505 to improve the resistance against secondary pneumococcal pneumonia. For this purpose,
infant mice were treated with CLP or ELP, stimulated with NV1505 or PG1505, and then challenged
with poly(I:C) and S. pneumoniae. The challenge of ELP-treated mice with S. pneumoniae induced
a pulmonary colonization of the respiratory pathogen and its dissemination to blood, as well as



Cells 2020, 9, 1653 8 of 27

increases in the biochemical markers of lung damage (Figure 2). The values of those parameters
were not different to those described previously in control infant mice [17]. It was also observed that
both NV1505 and PG1505 were able to significantly reduce S. pneumoniae counts in the lung, prevent
its dissemination into blood, and reduce BAL albumin and LDH values in ELP-treated infant mice
compared to ELP controls (Figure 2). On the other hand, the treatment of animals with CLP did not
modify the levels of S. pneumoniae counts in the lungs and blood or the levels of BAL albumin and
LDH when compared to infant mice in the ELP control group (Figure 2). Mice in the CLP+NV1505
and CLP+PG1505 groups had significantly higher lung and blood bacterial cell counts, as well as
levels of injury markers, when compared to the ELP+NV1505 and ELP+PG1505 groups, respectively.
The values of BAL albumin and LDH in CLP+NV1505 and CLP+PG1505 mice were not different from
the CLP control group. However, S. pneumoniae counts in the lungs and blood of CLP+NV1505 and
CLP+PG1505 mice were significantly lower than that found in the CLP control group (Figure 2).

Figure 2. Effects of alveolar macrophage depletions on the ability of nonviable L. rhamnosus CRL1505
and its peptidoglycan to improve the resistance to secondary pneumococcal pneumonia after poly(I:C)
treatment. Infant mice were nasally treated with clodronate-containing liposomes (CLP) during two
days, and four days after the last CPL administration, mice were nasally primed with nonviable
L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505) during two consecutive days, challenged
with three once-daily doses of poly(I:C), and infected with Streptococcus pneumoniae five days after the
last poly(I:C) administration. Mice treated with empty liposomes (ELP) were used as controls. Lung
bacterial cells counts, hemocultures, lactate dehydrogenase (LDH) activity, and albumin concentrations
in bronchoalveolar lavages (BAL) were determined on day 2 post-pneumococcal challenge. The results
represent data from three independent experiments. Asterisks indicate significant differences between
the respective ELP and CLP groups. Asterisks in black lines indicate significant differences between
the indicated groups. * (p < 0.05) and ** (p < 0.01).

The levels of BAL IFN-β, IFN-γ, and IL-10 were also determined after the pneumococcal infection
in infant mice treated with liposomes (Figure 3). The challenge with S. pneumoniae induced significant
increases in the levels of BAL IFN-β, IFN-γ, and IL-10 in all the experimental groups, and no differences
were detected when the ELP and CLP control groups were compared (Figure 3). It was also observed that
both NV1505 and PG1505 induced significant increases in the levels of BAL IFN-β, IFN-γ, and IL-10 after
the pneumococcal challenge of infant mice treated with ELP. In addition, NV1505 and PG1505 significantly
augmented BAL IFN-β and IFN-γ levels in infant mice treated with CLP when compared to the CLP
control group. However, the values of both antiviral factors in CLP+NV1505 and CLP+PG1505 mice were
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significantly lower than those found in the ELP+NV1505 and ELP+PG1505 groups (Figure 3). In infant
mice that received CLP, the treatments with NV1505 or PG1505 were unable to modify BAL IL-10 values
after the pneumococcal challenge when compared to the CLP control group.

Figure 3. Effects of alveolar macrophage depletions on the ability of nonviable L. rhamnosus CRL1505
and its peptidoglycan to improve the resistance to secondary pneumococcal pneumonia after poly(I:C)
treatment. Infant mice were nasally treated with clodronate-containing liposomes (CLP) during two
days, and four days after the last CPL administration, mice were nasally primed with nonviable
L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505) during two consecutive days, challenged
with three once-daily doses of poly(I:C), and infected with S. pneumoniae five days after the last
poly(I:C) administration. Mice treated with empty liposomes (ELP) were used as controls. The levels of
interferon (IFN)-β, IFN-γ, and interleukin (IL)-10 in bronchoalveolar lavages (BAL) were evaluated on
day 2 post-pneumococcal challenge. The results represent data from three independent experiments.
Asterisks indicate significant differences between the respective ELP and CLP groups. Asterisks in
black lines indicate significant differences between the indicated groups. * (p < 0.05) and ** (p < 0.01).

The effects of AM depletions in the immunomodulatory activities of NV1505 and PG1505 in the
context of primary pneumococcal infections were also assessed (Supplementary Figure S2). It was
observed that both NV1505 and PG1505 treatments were capable of significantly reducing S. pneumoniae
counts in the lungs and blood, as well as BAL albumin and LDH values, in ELP-treated infant
mice. Both treatments also improved the levels of BAL IFN-β, IFN-γ, and IL-10 in ELP-treated mice
(Supplementary Figure S2). However, in CLP-treated mice, the beneficial effects of NV1505 and PG1505
were abolished, since most of the parameters evaluated after primary pneumococcal infections were
not different from CLP-control mice. The only exception was the production of BAL IFN-γ, which was
increased in NV1505- and PG1505-treated CLP mice when compared to the CLP controls but still
significantly lower than their respective ELP groups (Supplementary Figure S2).

3.3. Effects of AM Depletions on the Ability of Nonviable L. rhamnosus CRL1505 and Its Peptidoglycan to
Improve the Resistance to Secondary Pneumococcal Pneumonia after RSV Infection

We further evaluated the impact of AM depletions in the ability of NV1505 and PG1505 to improve
the resistance against primary infections with RSV and secondary pneumococcal pneumonia. As shown
in Figure 4, infant mice treated with CLP had similar lung RSV titers than that observed in ELP-treated
mice. The NV1505 and PG1505 treatments were able to reduce RSV titers in both ELP- and CLP-treated
infant mice. However, the lung viral titers in CLP+NV1505 and CLP+PG1505 mice were significantly
higher than those found in the ELP+NV1505 and ELP+PG1505 groups (Figure 4). It was also observed
that both NV1505 and PG1505 were able to significantly reduce S. pneumoniae counts in the lungs,
prevent its dissemination into the blood and reducing BAL albumin and LDH values in ELP-treated
infant mice after the primary infection with RSV (Figure 4). In CLP-treated mice, S. pneumoniae counts
in the lungs and blood or the levels of BAL albumin and LDH were not different from the infant mice in
the ELP control group (Figure 4). Both NV1505 and PG1505 significantly reduced S. pneumoniae counts
in the lungs and blood in CLP-treated infant mice when compared to the CLP control group. However,
the values of these three parameters in CLP+NV1505 and CLP+PG1505 mice were significantly higher
than that found in ELP+NV1505 and ELP+PG1505, respectively (Figure 4). The BAL LDH and albumin
values had no differences when all the groups treated with CLP were compared.
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Figure 4. Effects of alveolar macrophage depletions on the ability of nonviable L. rhamnosus CRL1505
and its peptidoglycan to improve the resistance to secondary pneumococcal pneumonia after the
primary infection with the respiratory syncytial virus (RSV). Infant mice were nasally treated with
clodronate-containing liposomes (CLP) during two days, and four days after the last CPL administration,
mice were nasally primed with nonviable L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505)
during two consecutive days, challenged with RSV, and infected with S. pneumoniae five days after
the viral infection. Mice treated with empty liposomes (ELP) were used as controls. RSV lung
titers, lung bacterial cell counts, hemocultures, lactate dehydrogenase (LDH) activity, and albumin
concentrations in bronchoalveolar lavages (BAL) were determined on day 2 post-pneumococcal
challenge. The results represent data from three independent experiments. Asterisks indicate
significant differences between the respective ELP and CLP groups. Asterisks in black lines indicate
significant differences between the indicated groups. * (p < 0.05) and ** (p < 0.01).

The levels of BAL IFN-β, IFN-γ, and IL-10 were also determined after the secondary pneumococcal
infection in infant mice treated with liposomes (Figure 5). Similar to our previous results [17], it was
observed that both NV1505 and PG1505 significantly augmented the levels of BAL IFN-β, IFN-γ,
and IL-10 after the pneumococcal challenge of infant mice treated with ELP. In addition, NV1505 and
PG1505 significantly increased BAL IFN-β and IFN-γ levels in infant mice treated with CLP when
compared to the CLP control group. However, the values of both antiviral factors in CLP+NV1505 and
CLP+PG1505 mice were significantly lower than those found in the ELP+NV1505 and ELP+PG1505
groups, respectively (Figure 5). In infant mice that received CLP, the treatments with NV1505 or
PG1505 were unable to modify BAL IL-10 values after the pneumococcal challenge when compared to
the CLP control group.

3.4. Effects of Nonviable L. rhamnosus CRL1505 and Its Peptidoglycan on AMs Cytokine Profiles in Response
to Different Challenges

Taking into consideration that the previous results suggested that the AMs would have a relevant
role in the immunomodulatory effects of NV1505 and PG1505, the changes induced by both treatments
in the AM cytokine profiles in response to different stimuli were studied. For this purpose, primary
cultures of AMs from the control or NV1505- or PG1505-treated infant mice were prepared, and cells
were challenged in vitro with poly(I:C) (Figure 6), S. pneumoniae (Figure 7), or RSV (Figure 8). The basal
production of IFN-β, IFN-γ, IL-6, and IL-12, as well as the immunoregulatory cytokines IL-10 and IL-27,
was detected in AM cultures. Moreover, the basal levels of all the cytokines evaluated were significantly
higher in AM cultures obtained from NV1505- or PG1505-treated infant mice when compared to the
controls (Figure 6).
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Figure 5. Effects of alveolar macrophage depletions on the ability of nonviable L. rhamnosus CRL1505
and its peptidoglycan to improve the resistance to secondary pneumococcal pneumonia after the
primary infection with the respiratory syncytial virus (RSV). Infant mice were nasally treated with
clodronate-containing liposomes (CLP) during two days, and four days after the last CPL administration,
mice were nasally primed with nonviable L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505)
during two consecutive days, challenged with RSV, and infected with S. pneumoniae five days after
the viral infection. Mice treated with empty liposomes (ELP) were used as controls. The levels of
interferon (IFN)-β, IFN-γ, and interleukin (IL)-10 in bronchoalveolar lavages (BAL) were evaluated on
day 2 post-pneumococcal challenge. The results represent data from three independent experiments.
Asterisks indicate significant differences between the respective ELP and CLP groups. Asterisks in
black lines indicate significant differences between the indicated groups. * (p < 0.05) and ** (p < 0.01).

Figure 6. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on alveolar macrophage
cytokine profiles in response to the poly(I:C) challenge. Infant mice were nasally primed with nonviable
L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505) during two consecutive days. Alveolar
macrophages isolated from infant mice were challenged in vitro with poly(I:C). The levels of interferon
(IFN)-β, IFN-γ, interleukin (IL)-6, IL-10, IL-12, and IL-27 were evaluated on alveolar macrophage
supernatants after 24 h. The results represent data from three independent experiments. Asterisks
indicate significant differences between the basal and post-poly(I:C) challenge timepoints within each
group. Asterisks in black lines indicate significant differences between the indicated groups. * (p < 0.05)
and ** (p < 0.01).
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Figure 7. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on alveolar macrophage
cytokine profiles in response to the S. pneumoniae challenge. Infant mice were nasally primed with
nonviable L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505) during two consecutive
days. Alveolar macrophages isolated from infant mice were challenged in vitro with S. pneumoniae.
The levels of interferon (IFN)-β, IFN-γ, interleukin (IL)-6, IL-10, IL-12, and IL-27 were evaluated on
alveolar macrophage supernatants after 24 h. The results represent data from three independent
experiments. Asterisks indicate significant differences between the basal and post-pneumococcal
challenge timepoints within each group. Asterisks in black lines indicate significant differences between
the indicated groups. * (p < 0.05) and ** (p < 0.01).

The challenges with poly(I:C) (Figure 6) or S. pneumoniae (Figure 7) significantly increased the
levels of IFN-β, IFN-γ, IL-6, and IL-12 in the control AM cultures, as well as in those obtained from
NV1505- or PG1505-treated infant mice. However, the concentrations of IL-6, IFN-β, and IFN-γ were
significantly higher in AM cultures from NV1505- or PG1505-treated infant mice when compared to
the control group, while IL-12 was not different from the control macrophages. In addition, both the
poly(I:C) (Figure 6) and S. pneumoniae (Figure 7) challenges significantly increased the levels of IL-10 and
IL-27 in AM cultures. However, the concentrations of IL-27 were significantly higher in AM cultures
from NV1505- or PG1505-treated infant mice when compared to the control group. No differences
were observed in IL-10 levels when control AMs were compared to those obtained from NV1505- or
PG1505-treated infant mice (Figures 6 and 7).

The challenge with RSV significantly increased IFN-β, IFN-γ, IL-6, IL-12, IL-10, and IL-27 in all the
experimental groups (Figure 8). However, the concentrations of IFN-β, IFN-γ, IL-6, IL-12, and IL-27
were significantly higher in AM cultures from NV1505- or PG1505-treated infant mice when compared
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to the control group. No differences were observed in IL-10 levels when control AMs were compared
to those obtained from NV1505- or PG1505-treated infant mice (Figure 8).

Figure 8. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on alveolar macrophage
cytokine profiles in response to the respiratory syncytial virus (RSV) challenge. Infant mice were nasally
primed with nonviable L. rhamnosus CRL1505 (NV1505) or its peptidoglycan (PG1505) during two
consecutive days. Alveolar macrophages were isolated from infant mice and challenged in vitro with
RSV. The levels of interferon (IFN)-β, IFN-γ, interleukin (IL)-6, IL-10, IL-12, and IL-27 were evaluated
on alveolar macrophage supernatants after 24 h. The results represent data from three independent
experiments. Asterisks indicate significant differences between the basal and post-RSV challenge
timepoints within each group. Asterisks in black lines indicate significant differences between the
indicated groups. * (p < 0.05) and ** (p < 0.01).

We further characterized the response of AMs to the RSV challenge by studying the expression
levels of the IFN-α, IFN-β, IFN-γ, Mx1, RNAseL, OAS1, IL-1α, IL-1β, TNF-α, IL-6, IL-10, and IL-27 genes.
In these experiments, animals primed with NV489 and PG489 obtained from the nonimmunomodulatory
L. rhamnosus CRL489 strain were used for comparisons. Primary cultures from AMs obtained from
the control and NV1505- and PG1505-treated mice, as well as NV489- and PG489-treated animals,
were prepared and stimulated with RSV (Figure 9). As expected, the expressions of IFN-α, IFN-β, and
IFN-γ in AMs from NV1505- and PG1505-treated mice were significantly higher than that observed in
macrophages from the controls or mice treated with NV489 or PG489. In accordance with the improved
IFN response, the levels of the antiviral factors RNAseL and OAS1 in macrophages from the NV1505
and PG1505 groups were significantly higher than the control, NV489, or PG489 groups (Figure 9). Of
note, the expression levels of Mx1 were similar in all the experimental groups. The expression levels
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of IL-1α and IL-10 were not different when the experimental groups were compared (Figure 9). The
TNF-α and IL-1β expression levels were significantly lower in AMs from NV1505- and PG1505-treated
mice when compared with the other groups. In addition, AMs from the NV1505 and PG1505 groups
had significantly higher IL-6 and IL-27 expression levels when compared to the control group or
those obtained from NV489- and PG489-treated animals (Figure 9). The multiple comparisons of
the magnitude of the fold expression changes with respect to the control indicated clear differences
between the NV1505 and NV489 groups, as well as PG1505 and PG489 (Figure 9). Moreover, both
NV1505 and PG1505 were equally effective for modulating the transcriptomic response of AMs in
response to the RSV challenge (Figure 9).

Figure 9. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on alveolar macrophage
cytokines and antiviral factor profiles in response to the respiratory syncytial virus (RSV) challenge.
Infant mice were nasally primed with nonviable L. rhamnosus CRL1505 or CRL489 (NV1505 or NV489)
or their peptidoglycans (PG1505 or PG489) during two consecutive days. Alveolar macrophages were
isolated from infant mice and challenged in vitro with RSV. The expression of IFN-α, IFN-β, IFN-γ,
Mx1, RNAseL, OAS1, IL-1α, IL-1β, TNF-1α, IL-6, IL-10, and IL-27 genes were evaluated in alveolar
macrophages by quantitative PCR (qPCR) after 12 h. The results represent data from three independent
experiments. Significant differences when compared to the control group: * (p < 0.05) and ** (p < 0.01).
The multiple comparisons of the magnitude of the fold expression changes with respect to the control
are shown for the NV1505 vs. NV489, PG1505 vs. PG489, and NV1505 vs. PG1505 groups.

3.5. Induction of Activated/Trained AMs by Nonviable L. rhamnosus CRL1505 and Its Peptidoglycan

It was reported that respiratory viral infections are capable of inducing a trained immunity in
AMs, improving their ability to respond to a subsequent bacterial challenge [25]. These trained AMs
were characterized as cells with a high MHC-II expression, as well as with a higher capacity to release
cytokines and chemokines upon restimulation. Then, we next aimed to evaluate whether such kinds of
trained AMs were induced during the course of the RSV-S. pneumoniae superinfection and the effects of
NV1505 and PG1505 on this particular immune cell population. NV489 or PG489 treatments were also
used for comparisons. The total resident AM populations in the lungs (CD45+CD11c+SiglecF+ cells)
were evaluated one day after NV1505 and PG1505 treatments, two days after the primary RSV infection,
or two days after the secondary pneumococcal challenge (Figure 10). The total number of AMs was not
modified by the NV1505, PG1505, NV489, or PG489 treatments. The AM numbers slightly increased
upon the challenges with RSV or S. pneumoniae, but no differences were found between the treated and
control mice within the same period (Figure 10). The CD11c+SiglecF+MHC-IIhigh AM population was
then evaluated. In control mice, CD11c+SiglecF+MHC-IIhigh cells represented less than 25% of the
total AM population, most being AM MHC-IIlow cells. The number of CD11c+SiglecF+MHC-IIhigh
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cells increased two and two point five-fold after the primary RSV infection and the secondary
pneumococcal challenge, respectively (Figure 10). The treatments with NV1505 and PG1505 did not
induce modifications in the number of CD11c+SiglecF+MHC-IIhigh cells at the basal time, although the
mid fluorescence intensity (MFI) of the MHC-II expressions in AMs of these two groups of mice were
significantly higher than the controls (Figure 10). In addition, the number of CD11c+SiglecF+MHC-IIhigh

cells in NV1505- and PG1505-treated mice was higher than the controls after the primary RSV infection
and the secondary pneumococcal challenge (Figure 10). Mice treated with NV489 or PG489 were not
different from the controls in the three timepoints evaluated (Figure 10).

Figure 10. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on the alveolar macrophage
numbers. Infant mice were nasally primed with nonviable L. rhamnosus CRL1505 or CRL489 (NV1505 or
NV489) or their peptidoglycans (PG1505 or PG489) during two consecutive days, challenged with the
respiratory syncytial virus (RSV), and infected with S. pneumoniae five days after the viral infection.
Total resident alveolar macrophage populations in the lungs (CD45+CD11c+SiglecF+ cells), as well as
their expression of MHC-II, were evaluated one day after the treatments (basal), two days after the RSV
primary infection, and two days after the secondary pneumococcal challenge. Forward scatter (FSC)
and side scatter (SSC). The results represent data from three independent experiments. Significant
differences when compared to the control group: * (p < 0.05) and ** (p < 0.01).

We further characterized the cytokine and chemokine profiles of AMs in response to the secondary
challenge with S. pneumoniae. For this purpose, mice were treated with NV1505, PG1505, NV489,
or PG489 and then infected with RSV. Five days after the viral challenge, AMs were collected, and
primary cultures were stimulated in vitro with S. pneumoniae. The production of IFN-β, IFN-γ, IL-6,
IL-12, IL-10, IL-27, TNF-α, IL-1β, CCL2, CCL3, CXCL2, and CXCL10 was evaluated in AM culture
supernatants (Figure 11). As expected, the levels of IFN-β, IFN-γ, IL-6, IL-10, and IL-27 in AM cultures
from NV1505- and PG1505-treated mice were significantly higher than that observed in AMs from
the controls or mice treated with NV489 or PG489 (Figure 11). Interestingly, the production of TNF-α,
CCL2, CXCL2, and CXCL10 in response to the pneumococcal challenge by AMs from the NV1505 and
PG1505 groups was significantly higher than that observed in AMs from the controls and NV489- or
PG489-treated mice (Figure 11). The multiple comparisons of the magnitude of the fold changes in the
cytokine and chemokines productions with respect to the control indicated clear differences between



Cells 2020, 9, 1653 16 of 27

the NV1505 and NV489 groups, as well as PG1505 and PG489 (Figure 11). In addition, both NV1505
and PG1505 were equally effective for modulating the cytokine/chemokine profiles of AMs in response
to the secondary S. pneumoniae challenge (Figure 11).

Figure 11. Effects of nonviable L. rhamnosus CRL1505 and its peptidoglycan on alveolar macrophage
cytokine profiles in response to the secondary S. pneumoniae infection. Infant mice were nasally primed
with nonviable L. rhamnosus CRL1505 or CRL489 (NV1505 or NV489) or their peptidoglycans (PG1505
or PG489) during two consecutive days and challenged with the respiratory syncytial virus (RSV).
Alveolar macrophages isolated from infant mice were stimulated in vitro with S. pneumoniae. The
production of IFN-β, IFN-γ, IL-6, IL-12, IL-10, IL-27, TNF-α, IL-1β, CCL2, CCL3, CXCL2, and CXCL10
was evaluated in alveolar macrophage culture supernatants after 24 h. The results represent data from
three independent experiments. Significant differences when compared to the control group: * (p < 0.05)
and ** (p < 0.01). The multiple comparisons of the magnitude of the fold changes with respect to the
control are shown for the NV1505 vs. NV489, PG1505 vs. PG489, and NV1505 vs. PG1505 groups.

Finally, we aimed to characterize in vivo the kinetics of the immune response to secondary
pneumococcal pneumonia. For this purpose, mice were treated with PG1505, infected with RSV,
and then challenged with S. pneumoniae. The levels of TNF-α and CXCL2, as well as the number
of neutrophils and macrophages in the BAL samples, were determined at several points after the
pneumococcal challenge (Figure 12). PG1505-treated mice had an earlier production of TNF-α
and CXCL2 in the respiratory tract after the pneumococcal challenge, showing a peak at hour 12
post-infection and a trend to decrease until hour 54. Similarly, BAL neutrophil and macrophage counts
in PG1505-treated mice showed a peak of cell recruitment at hour 24 post-infection and a trend to
decrease until hour 54. On the contrary, control mice had a delayed increase of inflammatory cells
and cytokines when compared to PG1505-treated mice. In addition, control mice had elevated levels
of TNF-α and CXCL2, as well as the number of neutrophils and macrophages in the BAL samples,
until the end of the studied period (Figure 12).
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Figure 12. Effects of the peptidoglycan of L. rhamnosus CRL1505 on the immune response to the
secondary S. pneumoniae infection. Infant mice were nasally primed with the peptidoglycan of
L. rhamnosus CRL1505 (PG1505) during two consecutive days and challenged with the respiratory
syncytial virus (RSV). Five days after the viral challenge, mice were infected with S. pneumoniae. The
numbers of macrophages and neutrophils and the levels of TNF-α and CCL2 in bronchoalveolar
lavages (BAL) were evaluated on several hours post-pneumococcal challenge. The results represent
data from three independent experiments. Significant differences when compared to the control group:
* (p < 0.05) and ** (p < 0.01).

4. Discussion

AMs are the most abundant cells of the innate immune system in the lungs. They are the
first immune cell population to encounter bacteria and viruses that reach the alveolar space and
have a relevant role in the generation and regulation of effector responses against those pathogenic
microorganisms [26]. In the present study, we focused on the specific role of AMs in the ability of
nasally administered nonviable L. rhamnosus CRL1505 and its peptidoglycan to modulate respiratory
immunity and protect against bacterial and viral pathogens. Macrophage depletion experiments and
a detailed study of their production of cytokines and antiviral factors clearly demonstrated the key
role of this immune cell population in the improvement of both the reduction of pathogen loads and
the protection against lung tissue damage induced by the immunobiotic CRL1505 strain. Studies
at basal conditions during primary RSV and S. pneumoniae infections and secondary pneumococcal
pneumonia brought the following five notable findings regarding the immunomodulatory effects of
NV1505 and PG1505: (a) AMs play a key role in the beneficial modulation of TLR3-triggered respiratory
innate immune response and the protection against RSV infection, (b) AMs are necessary for the
improved protection against primary and secondary pneumococcal pneumonia, (c) the generation of
activated/trained AMs would be essential for the enhanced protection against respiratory pathogens,
(d) other immune and nonimmune cell populations in the respiratory tract may contribute to the
protection against bacterial and viral infections, and (e) the immunomodulatory properties of NV1505
and PG1505 are strain-specific.

(a) The role of AMs in the modulation of antiviral immunity by nasally administered NV1505 and
PG1505. Research on the biology of RSV infection has established that AMs are required for an
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efficient viral clearance and control of immunopathology. The phagocytic activity of AMs is crucial
for the elimination of infected cells during the course of the RSV infection. In addition, AMs play
a prominent role in the defense against RSV by producing type I IFNs, which act on this same cell
population or on other immune and nonimmune cells of the respiratory tract, modulating their
expression of hundreds of IFN-stimulated genes (ISGs) that contribute to viral clearance [27,28].
IFN-α/β production by AMs also upregulate the expression of several chemokines in the
respiratory tract that induce the recruitment of inflammatory monocytes/macrophages that
further support the clearance of virus-infected cells [29]. On the other hand, it was reported
that IFN-γ is of importance for the protection against the RSV [10,11]. The impairment in the
production of IFN-γ by AMs was associated with an enhanced severe illness [13–15]. Then,
the efficient and timely production of type I IFNs, ISGs, and IFN-γ by AMs is important to
confer protection against the RSV. We previously reported enhanced levels of IFN-β and IFN-γ
in BAL samples of infant mice treated with NV1505 or PG1505 after TLR3 activation or a RSV
challenge [17,19]. In this work, we extended those previous findings by demonstrating the
ability of NV1505 and PG1505 nasal treatments to enhance the production of type I IFNs and
IFN-γ specifically by AMs in response to a RSV infection or poly(I:C) stimulation. Moreover,
we reported here for the first time an improved expression of OAS1 and RNAseL in AMs after
the nasal treatments with NV1505 or PG1505. OAS1 is capable of inhibiting protein synthesis
and viral growth by degrading viral and cellular RNA, and it has been shown to interfere
with RSV replication [27,30]. In addition, the members of the OAS family are able to activate
RNAseL. The intracellular endoribonuclease RNaseL activated by OAS molecules cleaves viral
and cellular RNA, resulting in apoptosis [31]. It was reported that IFN-γ is able to upregulate
the activities of OAS/RNAseL, increasing the protection against the RSV infection [32]. Then,
the enhancement of these antiviral factors is consistent with the improved clearance of the RSV
observed previously [17,19] and in this work. Furthermore, the identification of the differential
antiviral factors and cytokines profiles induced by the CRL1505 strain in AMs indicate that the
immunobiotic treatment has the potential to protect against other respiratory viruses, as we
have demonstrated for the influenza virus (IFV) [33]. The precise role of AMs in the protection
against the RSV was demonstrated in animal models in which this immune cell population was
specifically depleted. Experiments in CD169-diphtheria toxin receptor transgenic mice, which are
depleted from CD169+ AMs after the administration of the diphtheria toxin, demonstrated that
macrophage eliminations impaired the production of IFN-β, IL-6, and TNF-α in the respiratory
tract in response to the RSV infection [34]. Similar results were obtained in New Zealand black
mice, which lack normal macrophage functions and show an enhanced lung immunopathology
upon an RSV exposure [28]. The depletion of murine AMs by the administration of clodronate
liposomes before the challenge with the RSV significantly impaired lung IFN-α, TNF-α, and IL-6
productions and diminished the activation and recruitment of NK cells. Those changes were
associated to an enhanced lung RSV load [35]. By using a similar approach, we demonstrated
here that the depletion of AMs by clodronate liposomes at the time of NV1505 or PG1505 nasal
priming significantly diminished, but not completely abolished, the ability of treated infant
mice to produce improved levels of IFN-β or IFN-γ in response to TLR3 activation or a RSV
infection. These results indicate that AMs have an important role in the production of IFN-β and
IFN-γ, but other respiratory cell populations may also contribute to the improved levels of both
antiviral factors, as discussed below. Of note, the depletion of AMs during the nasal priming
with NV1505 or PG1505 completely abolished the ability of the treatments to improve IL-10 in
the respiratory tract or to reduce the biochemical markers of a lung injury after TLR3 activation.
Then, AMs had an essential role in the protection induced by NV1505 and PG1505 against the
lung detrimental inflammation. The infection of human AMs by the RSV stimulates the secretion
of several proinflammatory cytokines, including IL-6, TNF-α, IL-1β, and IL-8 [10]. Conversely,
similar experiments have described the secretion of IL-10 by these respiratory innate immune
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cells [10]. This ability of AMs indicates that they not only have an important role in the generation
of the inflammatory response but, also, in its regulation. It was widely shown that AMs are
important in the control of detrimental inflammation in the context of respiratory virus infections.
The alterations of AM functions by the infection with the RSV have been associated to an
exacerbated viral-mediated bronchiolitis [15]. In fact, the depletion of AMs greatly increased the
recruitment of inflammatory cells to the lungs during the early stage of the RSV infection, including
CD11bhiGr1hi neutrophils and inflammatory CD11chiMHC-IIhiCD11b+ dendritic cells (DCs) that
contribute to a hyperresponsiveness in infected mice [11]. Notably, this deregulated inflammatory
response contributes poorly to the elimination of the virus while promoting local damage and
affecting the lung functions. Then, the immunoregulatory functions of AMs seems crucial for
avoiding the lung inflammatory-mediated damage during the course of the RSV infection. Several
mechanisms have been proposed for the immunoregulatory functions of AMs in the context
of viral infections, including the phagocytosis of virus-infected apoptotic cells, preventing the
release of cellular contents and the triggering of further inflammatory factor productions [36],
as well as the production of IL-10 [10,36]. Interestingly, another anti-inflammatory strategy of
AMs is their ability to promote Treg cell responses by directly interacting with these cells or
indirectly through the production of certain cytokines [37,38]. We previously reported increased
levels of IL-10 in the respiratory tracts of NV1505- or PG1505-treated mice in response to the
RSV infection, although the immune cell population producing this anti-inflammatory cytokine
was not determined [17,19]. The data of this work indicate that Treg cells would be the cells
responsible for the improved levels of IL-10 in the respiratory tract of RSV-infected infant mice
and that AMs would indirectly contribute to this effect. We demonstrated here for the first
time that AMs from mice nasally primed with NV1505 or PG1505 had a significantly increased
capacity to produce IL-27 in response to the RSV infection. The immunoregulatory cytokine
IL-27 has been shown to protect against lung inflammatory damage during the course of viral
infections. It was reported that the depletion of IL-27 enhanced the lung-damaging inflammation
in RSV-infected mice [37]. In addition, it was shown that IL-27 helps in the control of the RSV
infection severity by suppressing Th17- and Th2-mediated inflammations [39,40]. Interestingly,
comparative studies of the IFV infections in IL-27RA-/- and IL-10-/- mice demonstrated that the
former had a more severe disease course than the latter [41], demonstrating that not all the
anti-inflammatory effects of IL-27 are mediated by the induction of IL-10 production, as it was
suggested before [42,43]. Of note, it was reported that IL-27 is not sufficient for the optimal
induction of Treg cell maturation in the respiratory tract and that IL-6 is required for the IL-27/Treg
cell protections against inflammatory damage. The early production of IL-6 after the RSV infection
induces the expression of IL-27 by myeloid cells, including AMs, which, in turn, stimulates Treg
cell maturation. The depletion of IL-27 or IL-6 in the respiratory tract during the RSV have the
same detrimental effect on the maturation of Treg cells and RSV-mediated immunopathology [37].
Then, our results show that the improved production of IL-27 and IL-6 by AMs of NV1505- and
PG1505-treated mice may play an important role in limiting inflammation and protecting lung
function during the RSV infection by increasing the maturation and activation of Treg cells. In
this way, AMs indirectly increase IL-10 production in the respiratory tract of CRL1505-treated
mice. It should be noted that similar results were observed when the TLR3 agonist poly(I:C) was
used instead of the RSV challenge. Poly(I:C) significantly increased the production of IL-27 by
AMs, which is consistent with previous findings, demonstrating that the stimulation of bone
marrow-derived macrophages significantly increased the IL-27 expression in response to the
TLR3 and TLR7 agonists [44]. Moreover, the ability of AMs to produce both IL-27 and IL-6 in
response to TLR3 activation was enhanced in cells obtained from NV1505- and PG1505-treated
mice. Then, it is tempting to speculate that NV1505 and PG1505 treatments would be capable
of protecting against inflammatory-mediated lung injuries induced by other respiratory viruses
with a dsRNA genome or that produce this molecule during their replication.
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(b) The role of AMs in the modulation of antipneumococcal immunity by nasally administered
NV1505 and PG1505. Our results also demonstrated that AMs are necessary for the improved
protection against primary and secondary pneumococcal pneumonia induced by the CRL1505
strain. The depletion of AMs by clodronate liposomes at the time of NV1505 or PG1505 nasal
priming abolished the ability of the treatments to reduce lung and blood pneumococcal cell counts
after the primary infection while significantly diminishing, but not completely abolishing, their
capacity to reduce those parameters after the secondary infection. Similar to our findings in the
RSV infection experiments, improved levels of IFN-β and IFN-γwere found in the respiratory tract
of NV1505- and PG1505-treated mice after the primary or secondary pneumococcal challenges.
Both cytokines have been associated with the protection against this respiratory pathogen. It was
demonstrated in vitro that macrophages produce type I IFNs upon S. pneumoniae stimulation via a
mechanism dependent on bacterial uptake, and in vivo studies confirmed that AMs are the main
source of type I IFNs upon the pneumococcal challenge [45]. Type I IFNs produced by AMs act
on alveolar type II pneumocytes, protecting them from cell death and increasing their resistance
to the S. pneumoniae infection [45]. Moreover, it was reported that type I IFNs increase the
pulmonary barrier function and protect against the pneumococcal invasive disease [46–48]. The
treatment with recombinant IFN-β resulted in an increased expression of tight junction proteins
and the local containment of S. pneumoniae, while, in ifnar1−/− mice, which have an increased
susceptibility to fatal pneumococcal disease, reduced expression levels of the tight-junction genes
Tjp1, Cldn5, and Cldn18 were found [48]. On the other hand, the appropriate production of IFN-γ
in the respiratory tract has been associated with the protection against S. pneumoniae. Improved
levels of IFN-γ stimulates pulmonary macrophages that are critical for the host defenses against
pneumococcal infections [49]. Genome-wide microarray-based transcriptional analysis of the
whole lungs of mice infected with S. pneumoniae revealed that the upregulation of IFN-γ and
IFN-γ-related genes was associated with the protection against this respiratory pathogen [50].
Our results show that the increase of both IFN-β and IFN-γ induced by NV1505 or PG1505 is
necessary to protect against pneumococcal infections. Moreover, our data suggest that this effect
may be dose-dependent. This fact would explain why AM depletions completely abolished the
improved protection against the primary pneumococcal infection while only reduced the effect
on the secondary infection. Other respiratory immune and nonimmune cell populations may
be the sources of IFN-β and IFN-γ, which are triggered by the RSV infection and improved by
NV1505 or PG1505. In addition, the depletion of AMs abolished the reduction of lung injuries and
the enhancement of the respiratory IL-10 production induced by NV1505 or PG1505 in both the
primary and secondary pneumococcal infections. These results are consistent with previous works
reporting that the depletion of AMs before the infection with S. pneumoniae led to an increased
local inflammatory response and enhanced mortality [51]. The improved production of IL-6 and
IL-27 by AMs from NV1505- and PG1505-treated mice in response to the pneumococcal challenge
suggest that these cells would also modulate the Treg cell activity and indirectly increase IL-10
production in the context of the S. pneumoniae infection, as it was described above for the RSV. The
induction of a different cytokine profile in AMs by NV1505 or PG1505—in particular, the increases
in type I IFNs, IFN-γ, IL-6, and IL-27—would be associated not only with an enhanced resistance
to the primary RSV infection but, also, to the secondary pneumococcal challenge. An interesting
question to answer in the future is to find out whether the immunomodulatory effects of NV1505
and PG1505 could also protect the host against the secondary bacterial pneumonia produced after
the primary infection with other respiratory viruses. It should be noted that respiratory viruses
are able to use different mechanisms to modulate the expressions of respiratory cytokines. In this
regard, it has been shown that the increased susceptibility to the S. pneumoniae infection after the
primary IFV challenge is associated to several changes in respiratory cytokines. The suppression
of neutrophil activity and the impairment of AM functions by the excessive production of type I
IFNs and IFN-γ, respectively, have been found to contribute to the enhanced susceptibility to
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secondary pneumococcal pneumonia [52–54]. In addition, it was reported that IL-27 production
in an IFNAR-signaling-dependent manner induced by IFV impairs IL-17A-producing γδ T
cells, leading to a reduced neutrophil response and resistance to a secondary pneumococcal
infection [55]. Thus, experimental studies with other respiratory viruses are necessary to elucidate
whether the immunomodulatory effects of NV1505 or PG1505 are beneficial only in post-RSV
pneumococcal pneumonia or are more general. Moreover, considering that the correct regulation
of both the induction and subsequent control of inflammation during respiratory infections is
imperative in minimizing severe immunopathology, the detailed study of the influence of NV1505
and PG1505 on the kinetics of IFN-β, IFN-γ, IL-6, and IL-27 productions in the respiratory tract
after primary viral infections and secondary pneumococcal pneumonia would be of great value
to gain a better understanding of the mechanisms involved in their beneficial effects.

(c) The generation of activated/trained AMs by NV1505 and PG1505 would be essential for enhanced
protection against respiratory pathogens. Recent research has revealed that, after a primary
immunologic challenge, innate immune cells such as macrophages can be trained to carry a
nonspecific immune memory that improves their responses to subsequent related or unrelated
immunologic exposures [56,57]. Such innate immune memory has been designated as “trained
immunity”, and it has been recently evaluated in the context of respiratory infections [25,57]. The
induction of innate immune training in the respiratory tract was demonstrated by studies of an
adenoviral infection in mice. The work reported that the respiratory viral infection induced a
trained immunity phenotype in AMs characterized by an increased expression of MHC-II and
release of cytokines and chemokines upon restimulation [25]. Moreover, the induction of trained
AMs resulted in a higher resistance against a heterologous bacterial infection. The study also
demonstrated that IFN-γ production during the primary viral infection was associated to the
generation of trained AMs [25]. The role of IFN-γ in the induction of trained macrophages was
supported by several subsequent studies [56,57]. Interestingly, transcriptomic studies evaluating
the expression of ISGs in macrophages prestimulated it with IFN-γ in response to a second
stimulation with the same cytokine demonstrated the existence of an IFN memory. Some
ISGs, including Mx1, Irf7, Ifi44, Nos2, Il12br, Ciita, and Tlr11, were expressed earlier and/or in
higher levels in IFN-γ-prestimulated macrophages than in naïve cells [56]. In addition, in vivo
studies in which IFN-γ primed AMs were subjected to a secondary challenge revealed a rapid
upregulation of IFN-γ and STAT1 signaling pathways [57]. Moreover, primed AMs had improved
proinflammatory cytokine responses upon a secondary exposure to Cryptococcus neoformans. The
results of this work show some similarities with those mentioned reports. Steady-state mouse
resident AMs do not express CX3CR1 or CD11b, while they have high levels of CD11c and Siglec-F
expressions (reviewed in [26]). Our studies focused on this resident CD45+CD11c+SiglecF+ AMs,
demonstrated that the nasal priming with NV1505 or PG1505 significantly increased their
expression of MHC-II two days after the RSV and S. pneumoniae infections, which correspond
to 7 and 12 days after the CRL1505 treatments, respectively. This is consistent with studies
demonstrating that trained CD11c+CD64+SiglecF+ AMs began to develop between 5–7 days
after the primary stimuli [25]. In addition, AMs from NV1505- and PG1505-treated infant mice
had an improved in vitro production of IFN-γ, TNF-α, IL-6, CCL2, CXCL2, and CXCL10, which
was correlated with a more intense and faster inflammatory response in vivo upon a secondary
pneumococcal challenge. Then, it is tempting to speculate that the nasal priming of NV1505
or PG1505 would be capable of activating AMs and inducing trained cells that are involved in
the protection of secondary infections produced after the primary RSV infection or the TLR3
activation. However, in order to define forcefully the generation of trained AMs by NV1505 or
PG1505 treatments, several complementary studies are necessary that are related to the biology
of the trained immunity. Specific histone modifications in methylation patterns, as well as
transcription factors binding to the promoter regions of key immune genes, have been associated
with the trained immunity in macrophages [56,57]. The epigenetic reprogramming of innate
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immune cells during the generation of trained immunity has been also strongly associated with
changes in the cellular metabolism. In this sense, an increased glycolytic metabolism has been
described in trained AMs after an adenovirus infection [25]. Furthermore, protection against
secondary infectious challenges have been demonstrated to last for a long period: 10 to 16 weeks
after the primary stimuli [25,57]. Then, future studies are needed to evaluate the specific histone
modifications and/or transcription factor bindings, as well as the metabolic changes that occur
after the NV1505 or PG1505 priming of AMs that likely aid in their improved response to the
in vivo challenge with the RSV or S. pneumoniae. In addition, a more precise investigation of the
duration of the immunomodulatory effects induced by NV1505 and PG1505 in AMs would help
to better understand their mechanisms of action and foresee possible protections against other
respiratory pathogens.

(d) Other immune and nonimmune cell populations in the respiratory tract may contribute to the
improved protections against bacterial and viral infections induced by NV1505 and PG1505. As
mentioned before, the depletion of AMs did not completely abolish the ability of NV1505 or
PG1505 to increase the respiratory levels of IFN-β and IFN-γ, indicating that other respiratory
cell populations would contribute to this effect. Another source of improved IFN-β production
could be airway and lung epithelial cells. For instance, our studies in intestinal epithelial cells
demonstrated that L. rhamnosus CRL1505 is able to increase the expression of type I IFNs and
ISGs, enhancing the protections against viral infections [58,59]. The nasal priming with NV1505
or PG1505 could have a similar effect on respiratory epithelial cells that would contribute to the
protection against the RSV. In addition, the production of IFN-β by epithelial cells would be
involved in the protection against pneumococcal infection through the improved production of
antimicrobial factors [60] and pulmonary barrier functions [45,48]. On the other hand, an earlier
production of IFN-γ in response to a respiratory viral infection has been attributed to NK cells, and
several studies have demonstrated the ability of nasally administered lactobacilli to improve the
activity of this immune cell population (reviewed in [61]). We have not previously evaluated the
effect of nasally administered L. rhamnosus CRL1505 or its peptidoglycan on respiratory NK cell
numbers and activities, which is an interesting topic for future near research. Another potential
source of the improved levels of IFN-γ in the respiratory tract of NV1505- or PG1505-treated mice
is CD4+ T cells. In this sense, we demonstrated previously that NV1505 is capable of increasing
the number of lung CD11c+CD11blowCD103+ DCs [19], which have been reported to be a potent
inducer of Th1 responses in the respiratory tract [62]. Consistently, the number of CD4+IFN-γ+ T
cells were increased as earlier as three days after the challenge with the RSV in NV1505-treated
infant mice [19].

(e) The immunomodulatory properties of NV1505 and PG1505 are strain-specific. The comparative
analysis performed in this work with nonviable L. rhamnosus CRL1505 and CRL489 and
their peptidoglycans revealed that the protection against the primary RSV infection and
secondary pneumococcal pneumonia induced by CRL1505 in infant mice are strain-dependent
characteristics. This is consistent with our previous reports demonstrating a strain-dependent
effect of lactobacilli peptidoglycan in the context of a primary pneumococcal infection in
immunocompromised malnourished mice [63]. The studies with PG1505 and the peptidoglycans
from the nonimmunomodulatory strain L. rhamnosus CRL534 or with the immunobiotic
L. plantarum CRL1506 showed that PG1505 has unique functional properties that cannot be
extended to peptidoglycans, even from other immunomodulatory lactobacilli strains. Supporting
our findings, it was shown that the nasal priming with heat-inactivated L. reuteri F275 significantly
increased the protection of mice against the pneumonia virus of mice (PVM) infection, while its
purified peptidoglycan did not confer protection [64,65]. Further comparative studies with
L. rhamnosus CRL1505 peptidoglycan and a higher number of peptidoglycans isolated from the
same species in terms of their structure, as well as their interactions with the receptors and cells
of the respiratory immune system, could contribute significantly to the understanding of the
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molecular basis of the interaction between beneficial microorganisms and the host and its impact
on respiratory infections.

In conclusion, we have provided evidence of a key role of AMs in the immunomodulatory effects
of nasally administered nonviable L. rhamnosus CRL1505 and its peptidoglycan and in their ability to
increase resistance to the primary RSV infection and secondary pneumococcal pneumonia in infant
mice. These findings significantly improve our knowledge about the immunological mechanisms
involved in the modulation of respiratory immunity induced by beneficial microbes.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/7/1653/s1,
Figure S1. Alveolar macrophages depletion strategy. Figure S2. Effect of alveolar macrophages depletion on
the ability of non-viable L. rhamnosus CRL1505 and its peptidoglycan to improve the resistance to primary
pneumococcal pneumonia. Figure S3. Effect of alveolar macrophages depletion on the ability of non-viable
L. rhamnosus CRL1505 and its peptidoglycan to modulate respiratory cytokines during primary pneumococcal
pneumonia. Table S1. Primer sequences used in this study.
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