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Abstract

Drug screening studies typically involve assaying the sensitivity of a range of cancer cell

lines across an array of anti-cancer therapeutics. Alongside these sensitivity measurements

high dimensional molecular characterizations of the cell lines are typically available, includ-

ing gene expression, copy number variation and genomic mutations. We propose a sparse

multitask regression model which learns discriminative latent characteristics that predict

drug sensitivity and are associated with specific molecular features. We use ideas from

Bayesian nonparametrics to automatically infer the appropriate number of these latent char-

acteristics. The resulting analysis couples high predictive performance with interpretability

since each latent characteristic involves a typically small set of drugs, cell lines and genomic

features. Our model uncovers a number of drug-gene sensitivity associations missed by

single gene analyses. We functionally validate one such novel association: that increased

expression of the cell-cycle regulator C/EBPδ decreases sensitivity to the histone deacety-

lase (HDAC) inhibitor panobinostat.

Author summary

A core tenant of precision medicine is that treatment should be tailored to the patient. In

the context of cancer, large-scale screens, assaying the sensitivity of many cell-lines to pan-

els of drugs, have the potential to enable discovery of biomarkers of sensitivity to specific

therapeutics. However, existing computational approaches have not taken full advantage

of these data. We develop a novel multi-task regression model, Lacrosse, which uses a

Bayesian non-parametric prior to model “latent characteristics” of cell-lines that confer

sensitivity to specific drugs and are predictable from genomic features. The resulting algo-

rithm improves upon existing work by: a) jointly modeling multiple drugs to share statisti-

cal signal b) incorporating prior knowledge in terms of known inhibition targets c) using

a sparse latent variable regression approach giving interpretable summaries of detected

gene-drug associations. In particular, our analysis uncovers groups of drugs whose effi-

cacy depends on genomic features in a similar way. We find new potential biomarkers of
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drug sensitivity, one of which we validate experimentally: that panobinostat is less effective

when C/EBPδ is over-expressed.

Introduction

Several drug screening studies have assayed the sensitivity of a library of cancer cell lines to an

array of anti-cancer compounds. Notable examples are the Cancer Cell Line Encyclopedia [1,

CCLE], Genomics of Drug Sensitivity in Cancer [2, 3] the 2012 DREAM challenge [4, 5] and

the Cancer Therapeutics Response Portal v2 [6, CTRPv2]. Along with viability response

curves, these studies provide high-dimensional molecular profiling of the assayed cell lines.

For example, CCLE includes gene expression microarrays, copy number variation (CNV), and

oncogene mutation status assays.

These data have the potential to both help understand the key differences between cancers

and cancer subtypes that drive resistance to specific drugs, and to one day help choose the

appropriate drug (or combination of drugs) for an individual patient, the core idea of precision

medicine. As a result there is a need for analyses that both identify what differences between

cancers cause the observed sensitivity patterns, and which differences can accurately predict

what drugs will be efficacious for a tumor based on its genomic profile. The existing analyses

of these datasets involve simple per drug regressions, such as elastic net [7]. While these

methods are able to pick out the strongest signals in the data, they suffer from not taking

advantage of known relationships between drugs and between genomic features. For example,

we know which drugs have the same molecular target, and which features are related to the

same gene, e.g. gene expression, CNV and mutation status will all typically be assayed for a

given gene.

Cancer is highly heterogeneous in terms of its genomic features but many cancers share

common phenotypic characteristics (Fig 1a), the “hallmarks of cancer” [8]: broken apoptosis

or cell cycle regulation [9], disrupted DNA repair mechanisms [10], or “addiction” to specific

oncogene pathways [11]. Because these phenotypic features can not be directly observed from

genomic data, we regard them as unobserved, latent characteristics in this work. We expect

these unobserved, latent characteristics to be associated with genomic cell line features such as

gene expression. Moreover, we expect that the presence or absence of these latent characteris-

tics confers sensitivity or resistance to specific therapeutic compounds.

To predict cancer drug sensitivity based on latent characteristics derived from genomic-

drug screening data, we propose a novel approach, LAtent ChaRacteristics Of Small-molecule

SEnsitivity (Lacrosse). The statistical model underlying Lacrosse is a discriminative,

Bayesian non-parametric, sparse factor analysis, which falls under the general class of multi-

task regression models [12]. A handful of related statistical methods have been used for drug

sensitivity prediction. Menden et al. [13] used a single hidden layer feed-forward neural

network [14]. While multitask neural networks are easily constructed by allowing multiple

outputs to share the same hidden layers, Menden et al. took the alternative approach of featur-

izing the drugs using the chemoinformatic program PaDEL [15] and learning a single predic-

tive model learned using both the drug and cell lines features. In contrast, Lacrosse does

not featurize the drugs.

Lacrosse is closely related to kernelized Bayesian multitask learning [16, KBMTL].

While their approach gives excellent predictive performance, interpretability is somewhat lack-

ing since the kernels (similarity between cell lines) are calculated on entire “views” (e.g. contin-

uous gene expression) so that the influence of specific genes or pathways is not elucidated. We
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Fig 1. Joint analysis of cell line sensitivity across multiple drugs has the potential to improve predictive accuracy as well as model interpretability. a.

While cancers are genetically heterogeneous there are phenotypic characteristics shared by many cancers subtypes, some of which are illustrated here. We

refer to these as latent characteristics (LCs) because they are not directly observable from genomic data, but we hypothesize that each characteristic will

have a detectable genetic signature and a defined influence on drug sensitivity. b. Pearson correlation of drug sensitivity profiles (active area scores) across

CCLE, annotated by known inhibition targets. c The Lacrosse model consists of two components, shown here graphically. The first is a sparse linear

regression from cell line features, F (gene expression, copy number variation and genomic mutations) to continuous valued latent characteristics, X. The

second is a sparse factor analysis (matrix factorization) where the latent characteristics (the factors) explain the observed sensitivity scores through a sparse

loading matrix G.

https://doi.org/10.1371/journal.pcbi.1006743.g001
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compare to KBMTL here and show comparable, or even slightly improved predictive perfor-

mance, with the added benefit of increased interpretability.

A Bayesian multitask multiview linear regression (MVLR) was recently developed [17].

Sparse Cauchy priors are used to select features and a Dirichlet prior is used over a parameter

vector that selects predictive views. While the approach is multitask the relationship between a

feature and drug response is the same for all drugs included in the model, up to a positive mul-

tiplicative weight. This is analogous to Lacrosse restricted to only one latent characteristic.

A distinct approach is taken by Knijnenburg et al. [18] who develop ‘Logic Optimization for

Binary Input to Continuous Output’ (LOBICO) which finds small, interpretable logic networks

predictive of drug response for individual drugs. LOBICO is limited to binary cell-line features.

Two other recent studies have developed analyses that share ideas with Lacrosse but

which provide exploratory analyses rather than predictive models of drug response. This

makes it infeasible to compare to our approach in terms of predictive performance. First, Sea-

shore-Ludlow et al. [6] developed Annotated Cluster Multidimensional Enrichment (ACME),

which tests whether drug/cell line sensitivity biclusters have coherent biological signal in terms

of enriched protein targets (for the drugs) and mutations/lineage (for the cell lines). Second,

El-Hachem et al. [19] applied Similarity Network Fusion [20] to drug-drug networks derived

similarity in terms of chemical structure, drug sensitivity, and drug perturbation response.

Lacrosse also has similarities to nuclear norm regression [21], an extension of L1-regu-

larized regression [7] to the multitask setting by penalizing the trace/nuclear-norm (the sum

of singular values) of the coefficient matrix. Compared to their optimization based approach,

DNFSA, as a Bayesian probabilistic approach has the advantage of allowing incorporation of

prior knowledge in the form of known drug-drug relationships.

An additional unique aspect of Lacrosse is that it allows a graph over the drugs to be

specified encoding prior knowledge about which drugs are likely to have similar properties.

This graph is used to specify a Markov-random field which explicitly encourages drugs which

share edges to have more similar coefficients in the model.

Results

Summarizing dose-response curves using active area

Large-scale viability screens such as CCLE have typically summarized dose-response curves in

terms of the drug concentration required for 50% inhibition of growth, “IC50”. IC50 however

has several weaknesses: a) it is undefined if 50% inhibition is never reached, b) it is noisy due

to being overly reliant on viability measurements close to the IC50 value, and c) it ignores dif-

ferences in effectiveness for doses above the IC50 point. An simple alternative summary is

“active area”, the integrated area above the dose-response curve (S1 Fig). We have found active

area to be more predictable from molecular profiles than IC50: 10-fold cross-validation on

CCLE using group LASSO explains 27.5% of heldout variance in active area scores across

drugs, compared to only 14.4% for IC50. We therefore choose to use active area as the drug

sensitivity metric throughout this work.

Known drug targets only partially explain sensitivity profiles

For the 24 drugs in CCLE we analyzed the between-drug correlation of sensitivity profiles

(active area scores) across 432 cell lines (Fig 1b). In some cases the high correlation between

profiles is explained in terms of shared inhibition target: e.g. the MEK inhibitors PD0325901

and selumetinib have a highly similar sensitivity profile across cell lines. Similar statements

can be made for inhibitors of EGFR (erlotinib, lapatinib, vandetanib), TOP1 (topotecan,

irinotecan) and ALK (crizotinib, TAE684). However, in other cases are less easily explained:

Sparse discriminative latent characteristics for predicting cancer drug sensitivity
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PHA665752, a c-MET inhibitor, and LBW242, a SMAC mimic, have significantly correlated

profiles but no known shared mechanism of action. These observations motivate using known

inhibition targets as soft prior knowledge rather than hard constraints in our methodology.

Lacrosse overview

Lacrosse is a Bayesian-nonparametric, sparse, multitask regression that jointly predicts via-

bility for multiple drugs using cell line genomic features. Lacrosse posits that subsets of

cancer cell lines possess latent characteristics (LCs) which are predictive of their sensitivity

profile across different drugs. Whether a cell line possesses a particular LC is identified by

the presence of genomic features specific to the LC, that is, the LCs are generated by a sparse

regression on the cell line features.

Explicitly, given the matrix F of genomic features (# features × # cell lines), Lacrosse
models the matrix Y of viability scores (# drugs × # cell lines) as

Y � GX; X � BF; ð1Þ

where X are the LCs, and G and B are matrices of (sparse) regression coefficients to be learned

(Fig 1c). We use 40,492 genomic features from CCLE spanning gene expression, CNV and

mutations. These LCs represent a low dimensional embedding of the cell lines which preserves

information salient to their drug sensitivity profiles. Using this graphical model the LCs are

primarily focused on modeling the drug sensitivity patterns, but are also constrained to be pre-

dictable from cell line genomic features.

We additionally extend Lacrosse to allow prior knowledge about both drugs and geno-

mic features to be incorporated in the form of a graph where related drugs (or genomic fea-

tures) share edges. Connected nodes are encouraged to have the same regression coefficient

sparsity pattern using a Markov-random field (MRF) approach. In practice we use this capabil-

ity to inform the model about which drugs share molecular targets (hand-curated, Fig 2a) and

which cell line features correspond to the same gene.

Predictive performance

To assess the predictive performance of Lacrosse compared to existing state-of-the-art

methods we performed 10-fold cross-validation holding out 10% of cell lines for each fold

and calculated the proportion of variance explained (PVE) for each fold. We compared

Lacrosse to

• FA: sparse, nonparametric factor analysis jointly over the molecular characteristics and sen-

sitivity [22]

• REG: spike and slab Bayesian linear regression [23]

• L1: LASSO L1-regularized linear regression [24] using the glmnet R package

• L1 multi: multiresponse regression using group LASSO [25] resulting in a shared sparsity

pattern across all drugs, again using glmnet

• KBMTL: kernelized Bayesian multitask learning [16].

• Ridge: ridge regression.

• Elastic Net: with a ¼ 1

2

• Bayesian multitask multiview linear regression (MVLR) [17]

Sparse discriminative latent characteristics for predicting cancer drug sensitivity
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For each of these approaches we additionally consider an MRF extension (see Methods)

which encourages drugs with shared targets to have similar sets of coefficients with non-zero

weights. For LASSO regression we analogously enforce that any drugs sharing an inhibition

target have the same sparsity pattern. These extensions are denoted with a superscript asterisk

(�) on the method acronym.

Lacrosse outperforms these baselines in terms of its ability to predict sensitivity across

drugs for heldout cell lines in CCLE (see Fig 2b). The sparse factor analysis (FA) approaches

perform poorly, presumably because so much modeling capacity is effectively wasted in

modeling the thousands of genomic features that are not be associated with sensitivity. Of the

regression based approaches LASSO, group LASSO and KBMTL perform comparably with

PVE around 24%. Bayesian spike-and-slab sparse regression (REG) somewhat outperforms

these methods, with PVE = 26%. Finally Lacrosse, being able to share statistical signal

across drugs, performs best, with PVE = 28.5%. In all cases apart from FA, we additionally find

that explicitly incorporating known relationships between drugs (in terms of shared inhibition

targets) and genomic features (corresponding to the same gene) improves predictive perfor-

mance. Performance for FA may have dropped using known relationships since the model

Fig 2. Lacrosse combines prior knowledge (shared inhibition targets) and observed similarity between drugs to improve predictive performance and define

overlapping clusters of drugs with related dependence on genomic features. a. A Markov random field (MRF) is used to encode prior knowledge of which drugs

share inhibition targets. Lacrosse does not use the inhibition targets themselves, only that if two drugs share an inhibition target then they are more likely to share

sensitivity to a particular latent characteristic. b. Predictive performance results on CCLE. Here LASSO = L1 regression, REG = spike & slab regression. Lacrosse =

discriminative factor analysis. In general incorporating prior knowledge about between drug relationships (the methods denoted with �) improves predictive

performance. The Bayesian spike and slab regression based methods (REG and Lacrosse) also perform somewhat better than the L1 optimization method (LASSO,

L1 multi, and L1�), although this comes at considerable computational expense. The factor analysis models (FA and FA�) have quite poor performance, likely to due to

not being discriminative. The performance of KBMTL is similar to that of LASSO. c. Lacrosse� factor loadings: 14 latent characteristics (LCs) × 24 drugs, known

targets for each drug, and associated gene features (i.e. non-zero coefficients in B) for each LC. Encoding of gene features: e = expression, n = copy number variation,

m = mutation. d. A highly simplified layout of the MAPK pathway associated with latent characteristic 4.

https://doi.org/10.1371/journal.pcbi.1006743.g002
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capacity is already insufficient to accurately associate genomic features with sensitivity, and

added constraints further reduce the effective model capacity. Lacrosse including the MRF-

extension achieves a median PVE across folds of 31.5%.

We additionally assessed predictive performance in terms of PVE on the 545 drugs, 783 cell

lines CTRPv2 dataset (Fig 3), again using 10-fold cross-validation. The three tested single task

methods—ridge regression, Elastic Net and LASSO—all performed similarly. Group LASSO

outperforms LASSO (p = 0.032, paired t-test), and is itself outperformed by Group Elastic Net

(p = 0.0028, paired t-test). In our hands KBMTL underperforms Group LASSO (p = 0.036)

and Group Elastic Net (p = 0.005) and has comparable performance to the single task methods.

MVLR significantly underperforms the single task methods (p = 0.007, 0.005, 0.006 for ridge,

LASSO and Elastic Net respectively) although we emphasize that MVLR is only designed for

joint modeling of closely related drugs (e.g. those with shared inhibition targets) so it is unsur-

prisingly it performs poorly at simultaneous modeling of over 500 drugs with many different

mechanisms-of-action. Finally Lacrosse outperforms Group Elastic Net by a significant

margin (p = 0.0008, paired t-test). The PVE across folds was not found to be significantly non-

normal by a Shapiro-Wilk test for any method, but we none-the-less confirmed all compari-

sons found significant by t-test were also significant by Wilcoxon signed rank test, apart from

KBMTL outperforming Group LASSO. We confirmed the qualitative ordering of the methods

held up when assessing performance using the concordance index (S2 Fig). While Lacrosse
obtains a higher mean c-index than Group Elastic Net (0.613 vs 0.608) this difference is not

statistically significant.

We varied Lacrosse’s MRF strength parameter and found performance to be robust

within a wide range of values (S3 Fig). The 29 LCs discovered running on the full CTRPv2

dataset are available here: https://www.dropbox.com/s/cucayg3nulkikjb/CTRPv2_LCs.zip?

dl=0.

Comparison with LOBICO [18] is complicated by the fact that it operates on binary features

(typically mutations) and response (binarized AUC or IC50) (the continuous response is used

Fig 3. Cross-validated predictive performance on the large CTRPv2 sensitivity screen. Lacrosse significantly

outperforms Group Lasso and Elastic Net, which themselves surpass the single task methods as well as KBMTL and

MVLR.

https://doi.org/10.1371/journal.pcbi.1006743.g003
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to weight samples however). Considering this we compared LOBICO to single-task LASSO

either using continuous AUC as response, or L1-regularized logistic regression using the same

binarization as for LOBICO. For all three methods we used mutation data only (for 1600

genes) to accommodate LOBICO’s requirement for binary features. Across 11 randomly cho-

sen drugs from CTRPv2 LOBICO is substantially and consistently outperformed by both

L1-regression based models (S4 Fig). We hypothesize that while LOBICO can explore a small

hypothesis space of genes (<100) known to be important in conferring sensitivity or resis-

tance, it is unable to effectively screen a larger number of potentially relevant features. While

Iorio et al. [3] were able to build significantly predictive and interpretable LOBICO models

with> 600 features, they did not compare predictive performance to sparse regression

methods.

We explored whether the predictive model learnt on CTRPv2 would generalize to indepen-

dent data. We first assessed generalization performance in CCLE (S5 Fig). For all 14 drugs

common to both datasets we see statistically significant prediction (Benjamini-Hochberg

adjusted Spearman correlation between predicted and observed AUC p< 0.004), and qualita-

tively the concordance indices are comparable to in-sample accuracy assessed using pre-vali-

dation in CTRPv2, with the exceptions of Nutlin-3 and RAF265. Since CTRPv2 includes all

cell lines assayed in CCLE we next assayed generalization in The Genentech Cell Line Screen-

ing Initiative (gCSI) [26]. 37 cell lines were profiled in gCSI that were not in CTRPv2. We

show results both for all cell lines in gCSI and the 37 non-overlapping cell lines alone in S6 Fig.

Of the 10 drugs in common between CTRPv2 and gCSI, 7 are statistically significantly pre-

dicted on the full gCSI cell line collection (Benjamini-Hochberg adjusted Spearman correla-

tion p< 0.05), but MS-275, Bortezomib and Crizotinib are not. On the 37 shared cell lines

only Vorinostat shows significant prediction, but this maybe due to limited power with only

n = 37 test points. Finally we applied the CTRPv2 model in GDSC1000 [3] for 69 shared drugs.

Across all n = 1110 cell lines in GDSC1000, 59 drugs showed significant prediction, compared

to 50/69 when using the n = 501 non-overlapping cell lines (Benjamini-Hochberg adjusted

Spearman correlation p< 0.05, S7 Fig).

Drug-gene associations

Analysis of the latent characteristics can provide insights into signaling and regulatory path-

ways predictive of drug response. We tested pairwise relationships between the drugs and

genomic features in each LC from CCLE using Spearman correlation, with selected LCs of

interest shown in Fig 4. Remaining LCs are shown in S8 Fig. While many strong associations

are seen, other associations are weaker, suggesting that the relationships uncovered by

Lacrosse rely on sharing statistical power across drugs within an LC. LC 1 has positive load-

ing for all drugs, suggesting there is some shared behavior across all the drugs in this dataset, a

phenomenon previously described as “general levels of drug sensitivity” (GLDS) [27]. Indeed,

LC 1 is highly correlated with the first GLDS (R2 = 0.75, p< 2 × 10−16, S9 Fig). The expression

level of FBXW8 is a genomic feature of LC 1, which is interesting since this gene is known to

play an essential role in cancer cell proliferation [28]. This association was not picked up by

the per drug regression, presumably because Lacrosse gains statistical power by analyzing

all the drugs simultaneously.

Some LCs include known related drugs, e.g. LC 2 involves the DNA-damaging agents irino-

tecan and topotecan, as well as another chemotherapeutic agent, paclitaxel. It is reassuring to

see SLFN11 expression modulating sensitivity to irinotecan and topotecan in this LC, since

this is a known and experimentally validated relationship [29]. Increased CD63 expression

decreases sensitivity to the drugs in LC 2, particularly paclitaxel, irinotecan, topotecan and
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panobinostat. While this association is novel to the best of our knowledge, CD63 is known to

be an exosomal marker that correlates with invasiveness in ovarian cancer cell lines [30].

LC 4 includes mutation of B-RAF as a genomic feature and drives sensitivity to the B-RAF

inhibitor RAF265 and MEK inhibitors (PD0325901 and selumetinib/AZD6244). As a result,

we conclude LC 4 corresponds to the MAPK pathway, a signaling cascade involving B-RAF,

MEK and ERK (see Fig 2d). Since Lacrosse builds a sparse predictive model so may

exclude some meaningful associations. Indeed we find LC4 level is correlated with B-RAF

(p = 6 × 10−20) and KIT (p = 0.016) mutations, PDGFRB expression (p = 1 × 10−4) and

MAP2K1 copy number (p = 0.03). 86/253 (34%) genes in the KEGG MAPK pathway are sig-

nificantly correlated with LC4 level across cell lines, a 1.5× enrichment compared to back-

ground (Fisher’s exact p = 0.002). Other interesting associations in LC 4 are those with

TMC6 and SPRY2. SPRY2 is downstream of the MAPK pathway, but SPRY2 inhibition also

activates MAPK and can lead to tumorigenesis [31], suggesting an as yet poorly characterized

feedback loop. While TMC6 is not known to be involved in MAPK signaling, there are sug-

gestive hints: TMC6/8 forms a complex with ZnT-1 [32], a zinc-finger protein which itself

activates the MAPK pathway [33]. Potentially also of interest is that nonsense mutations in

TMC6 cause a hereditary condition called Epidermodysplasia verruciformis involving sus-

ceptibility to human papillomavirus and resulting in cutaneous squamous cell carcinomas

[32].

The influence of JunB on the VEGF inhibitor sorafenib and heat shock protein 90 (HSP90)

inhibitor tanespimycin in LC 12 is likely due to regulation of the VEGF pathway by JunB [34],

and the fact that HSP90 is required for VEGF induction. Finally we note that hypermethyla-

tion of TMCO5A is associated with worse prognosis in ovarian cancer [35].

Fig 4. A subset of the learned latent characteristics represented as clusters of genomic features (rows) and drugs (columns).

Numbering corresponds to the internal LC identifier and is arbitrary. Colors represent −log10 p for the relationship between the

feature and drug, with the sign representing positive or negative associations (using Spearman correlation). Genomic feature suffixes

e = expression, n = copy number variation, m = mutation. The remaining LCs are shown in S8 Fig.

https://doi.org/10.1371/journal.pcbi.1006743.g004
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Functional validation

In LC 5 we observe that sensitivity to the HDAC-inhibitor panobinostat is associated with C/

EBPδ, a transcription factor that regulates cell cycle progression and apoptotis, and is therefore

a putative tumor suppressor [36]. While C/EBPδ has not previously been associated with drug

sensitivity, high expression is known be associated with poor prognosis across glioblastomas

[37] and the closely related C/EBPβ is recognized as a synergistic master regulator with STAT3

of the mesenchymal phenotype in aggressive glioma [38]. Since this association was not

reported using single drug analyses of the CCLE dataset and because of the significant current

interest in HDAC-inhibitors, we aimed to functionally validate this finding. The association

between C/EBPδmRNA expression and sensitivity to panobinostat is replicated in LC 2 from

CTRPv2, with the pairwise relationship also being highly significant (Spearman ρ = −0.30,

p< 1 × 10−15).

The relationship between C/EBPδ expression and sensitivity to panobinostat is strongest in

breast cancer cell lines (Fig 5a). Of these, we chose the invasive ductal carcinoma cell line BT-

549 as our model system, since BT-549 expresses relatively high levels of C/EBPδ and has low

sensitivity to panobinostat (Fig 5b), allowing us to effectively test the hypothesis that knocking

down C/EBPδ will increase panobinostat sensitivity. We treated BT-549 cells overnight with

either a short interfering (si) RNA targeting C/EBPδ or a control non-targeting siRNA. We

confirmed cells remained viable after C/EBPδ knock-down (S10a Fig) and that the knock-

down was successful by Western blot (S10b Fig). Cells were then incubated for 24h at different

panobinostat concentrations. The C/EBPδ knock-down (KD) increases sensitivity to panobi-

nostat: a reduction in viability to 66% is detectable for the KD condition at a drug concentra-

tion of 1μM, whereas for the control cells viability remains at 97% (Fig 5c). At 10μM viability is

reduced to 46% and 63% for the KD and control respectively. Using 4-parameter log-logistic

growth curves estimated using the drc R package [39] IC50 values are 5.1μM (KD) and

17.0μM (control). Based on a ANOVA comparing one vs. two cubic spline fits, the difference

in these response curves is statistically significant (p = 0.03).

Discussion

We introduced Lacrosse, a model capable of learning latent characteristics which explain

observed sensitivity of cancer cell lines to groups of related drugs, and which are predictable

from genomic features. Using a Bayesian nonparametric approach Lacrosse is able to

Fig 5. Knock-down of the cell-cycle regulator C/EBPδ increases sensitivity to the HDAC-inhibitor panobinostat in vitro. a. The negative association between C/

EBPδ expression and sensitivity to panobinostat is seen across a range of cancers, but is most pronounced in breast cancer cell lines. Whiskers denote 95% confidence

intervals. b. Within breast cancer cell-lines we chose to use BT-549 since it has relatively high C/EBPδ expression and low panobinostat sensitivity. c. siRNA mediated

knock-down of C/EBPδ increases the sensitivity of BT-549 cells to panobinostat.

https://doi.org/10.1371/journal.pcbi.1006743.g005
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adaptively learn an appropriate number of latent characteristics from data. Compared to kernel

methods such as KBMTL, Lacrosse’s underlying sparse regression allows straightforward

interpretation via visual inspection of the small number of LCs. Lacrosse allows straightfor-

ward incorporation of “soft” prior knowledge in the form of a graph over drugs representing

known drug-drug relationships (shared inhibition targets in our analysis). Including such prior

information in a non-Bayesian method such as nuclear norm regression would be challenging.

Lacrosse uncovers both known and novel associations, one of which we were able to validate

experimentally. Our finding that reducing C/EBPδ expression increases sensitivity to panobino-

stat suggests a therapeutic avenue if C/EBPδ expression could be reduced in vivo using a similar

siRNA approach or alternative targeted methods such as anti-sense oligonucleotides [40].

Our positive functional validation result is encouraging, but there are limitations of our

analysis. Genomic features, especially gene expression and CNV, have high levels of correla-

tion so it is difficult to say which out of set of correlated features is most likely to be causally

related to sensitivity. However, correlation is less problematic if we are primarily interested in

the model’s ability to predict sensitivity, a valuable task in its own right due to its potential

application in precision medicine. Lacrosse is relatively computational intensive, taking

around 10h to complete 10,000 Gibbs sampling iterations on a modern workstation, compared

to only around 20min for group Lasso (including cross-validation) on the same data. However,

any future clinical application would not require retraining the model, only performing pre-

diction, which is extremely fast once the model is trained. We experimented with running

Lacrosse on subsets of cell-lines corresponding to specific cancer types, but found the

reduced sample size resulted in substantially reduced predictive performance and a smaller

number of LCs. One interesting future direction would be to extend Lacrosse to be multi-

task over not only drugs but also cancer types, allowing sharing of statistical strength across all

cell lines but allowing tissue-of-origin specific associations when supported by the data.

We focused here on the CCLE and CTRPv2 dataset due to their dense coverage of drug-cell

line pairs. In principle it would be beneficial to integrate additional large scale drug viability

assays such as GDSC [3]. However, the agreement between these screens is modest due to the

use of different growth assays and other technical variation [41] which would make such an

analysis extremely daunting. CCLE does not include any epigenomic features such as methyla-

tion so we were not able to incorporate this into the model. However, it would be straightfor-

ward to include such data if it were available for a different dataset.

An intriguing direction is to utilize more features of the drugs than just known inhibition

targets. For example, Menden et al. [13] showed promising performance summarizing the

chemical structure of each drug as a feature vector using PaDEL-Descriptor [15], a popular

chemo-informatics tool. An alternative would be to leverage a graph kernel like Weisfeiler-

Lehman [42]. This avenue opens the exciting possibility of generalizing not only to new cell

lines but also to new drugs.

Methods

Data acquisition and pre-processing

Cell line molecular profiles and drug sensitivity scores were obtained from the CCLE data por-

tal. For mRNA expression gene-centric RMA-normalized values were log and then z-trans-

formed (analysis date 2012-09-29). Mutations in 1651 genes determined by hybrid capture

sequencing were summarized to a binary variable for each assayed gene denoting 1 for any

nonsynonymous change and 0 otherwise (analysis date 2012-05-07). We used the CCLE rec-

ommended data where variants that are a) common polymorphisms, b) have allelic fraction

<10%, c) are putative neutral variants or d) are located outside of the CDS for all transcripts
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are removed. Per gene DNA copy number as determined using Affymetrix SNP6.0 arrays were

obtained (analysis date 2013-12-03). Pharmacologic profiles were taken from

CCLE_NP24.2009_Drug_data_2015.02.24.csv, specifically columns “IC50” and “ActArea”.

For CTRPv2 data was obtained using PharmacoGx [43]. The mRNA expression, copy num-

ber and mutation data is the same as for CCLE and were pre-processed analogously. Pharma-

coGx recomputed active area scores were used as the response.

The Indian buffet process

The Indian buffet process [44, IBP] defines a distribution over infinite binary matrices, which

can be used to construct latent feature models where the number of features is unbounded a

priori. Models constructed using the IBP are sparse in that only a small number of features are

typically active for each entity. The IBP is the infinite limit of the finite K model,

vkja � Beta
a

K
; 1

� �

ð2Þ

Zdkjvk � BernoulliðvkÞ ð3Þ

Taking the limit K!1, and rearranging columns of Z carefully, we obtain a stochastic process

most easily described by a culinary metaphor. Consider a buffet with a seemingly infinite num-

ber of dishes (latent factors/LCs) arranged in a line. The first customer (drugs) starts at the left

and samples Poisson(α) dishes. The dth customer (drug) moves from left to right sampling

dishes with probability
mk
d where mk is the number of customers to have previously sampled dish

k. Having reached the end of the previously sampled dishes, he tries Poisson a

d

� �
new dishes. Ele-

ment Zdk of the D × K binary feature allocation matrix Z is 1 if and only if customer d tried dish

k. In Lacrosse element Zdk corresponds to whether drug d is influenced by LC k.

Statistical model

In the Lacrosse generative process the Indian buffet process matrix, Z, determines which

elements of a factor loadings matrix, G are non-zero. G is then used in the model,

Y
½D�N�
¼ G
½D�K�

X
½K�N�
þ �; X

½K�N�
¼ B
½K�P�

F
½P�N�
þw;

where �, w represent noise, Y are the sensitivity measurements, X are the latent factors, B are

regression coefficients, and F are the genomic features. For our application D is the number of

drugs, N is the number of cell lines and P is the number of molecular features, including gene

expression, CNV and mutations. Here K is the number of latent factors. The model is closely

related to reduced rank regression, with the addition of the noise w on X.

We use a spike and slab prior on elements of G:

GdkjZdk � ZdkN ð0; 1Þ þ ð1 � ZdkÞd0 ð4Þ

where Zdk 2 {0, 1} indicates whether Gdk is non-zero, N is the Gaussian distribution, and δ0 is

a delta point mass at 0. By using the Indian buffet process as a prior on Z we allow the model

an unbounded number of latent characteristics K.

We also use a spike and slab prior on B,

BkpjVkp � VkpN ð0; 1Þ þ ð1 � VkpÞd0;

Vkp � BernoulliðppÞ pp � Betaðb=P; 1Þ
ð5Þ
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We know that the sensitivity profile for some drugs is more easily predicted than others, so

we use diagonal rather than spherical (isotropic) noise on Y, specifically the hierarchical prior

�dnjl
e
� Nð0; 1=le

dÞ;

l
e
djb � Gð1; 1=bÞ;

b � Gð1; 1Þ

ð6Þ

where G is the Gamma distribution. We use an analogous prior on the noise for X, denoted w,

since some latent characteristics may be better predicted by the molecular characteristics than

others.

Inference is performed using 10,000 iterations of standard Gibbs sampling [45] imple-

mented in C++ using Eigen (eigen.tuxfamily.org) and interfaced to R using RCpp/
RCppEigen [46].

Markov random field extension

The relationships between drugs and between features are easily represented by a Markov ran-

dom field (MRF). For example, two drugs sharing a common target molecule are linked in the

MRF, and two any features such CNV and gene expression for the same gene will have an edge

between them. Following [47] we modify the IBP probability (see Eq 2) of a column Z:k to be

PðZ:kjtkÞ / exp
X

d0<d

wd0dZd0kZdk

 !

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
MRF term

Y

d

vZdk
k ð1 � vkÞ

1� Zdk

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
usual IBP term

ð7Þ

where wd0d is the edge weight between drugs d0 and d in the MRF. We use an analogous prior

on Vkp to couple the probability of having non-zero coefficients in B for different features asso-

ciated with the same gene.

Cell culture and siRNA transfections

Human breast carcinoma cell line BT-549 was obtained from American Type Culture Collec-

tion (Manassas, VA) and cultured in RPMI-1640 medium, 2mM L-Glutamine (Gibco, Ther-

moFisher Scientific, Waltham, MA), supplemented with 10% FBS (Gibco, ThermoFisher

Scientific, Waltham, MA), and 0.023 U/ml (BT-549) in a humidified atmosphere with 5% CO2

at 37˚C.

For CCAAT/enhancer binding protein delta (C/EBPδ) silencing, cells were seeded (150 000

into 6-well plate or 10 000 cells into 96-well plate) and grown overnight prior to transfection.

Cells were transfected using a non-targeting Silencer Select Negative Control siRNA (4390843,

ThermoFisher Scientific, Waltham, MA) or siRNA targeting C/EBPδ (s2895, 4392420, Ther-

moFisher Scientific, Waltham, MA) using Lipofectamine 2000 (Invitrogen, ThermoFisher

Scientific, Waltham, MA) according to the manufacturer protocol. Reagents were diluted in

Opti-MEM reduced serum medium (Gibco, ThermoFisher Scientific, Waltham, MA) and

transfection complexes were added to the cells at a final concentration of 20 nM. Transfection

media was replaced with 10% FBS antibiotic-free RPMI with panobinostat (range of concen-

tration from 0.01μM to 10μM) after overnight incubation with siRNAs and incubated for 24 h.

Cells were harvested for assessment of knock-down efficiency using Western blot analysis or

viability using RealTime-Glo MT Cell Viability Assay (Promega, Madison, WI) according to

the manufacturer protocol.
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Western blot

Cell protein extracts were prepared with lysis buffer containing 50 mM Tris pH 8, 2% sodium

dodecyl sulphate (SDS), 5 mM Ethylenediaminetetraacetic acid (EDTA), 5 mM Ethylene gly-

col-bis (2-aminoethylether)-N,N,N’,N’-tetraacetic acid (EGTA), 25 mM sodium fluoride

(NaF) and 1 mM sodium orthovanadate (Na3VO4) supplemented with the protein inhibitor

cocktail Complete Mini, EDTA-free (Roche, Indianapolis, IN). Lysates were briefly sonicated,

vortexed, incubated 5 min at 4˚C and vortexed again. Cellular debris were cleared by centrifu-

gation at 12 000 rpm during 10 min. Supernatants were aliquoted and stored at -80˚C for fur-

ther use. Protein quantification assay was performed using a BCA Protein Assay kit (Pierce,

ThermoFisher Scientific, Waltham, MA). The protein extracts (15 μg) were applied on a 12%

polyacrylamide-SDS gel electrophoresed at 200V during 45 min and transferred to a Immobi-

lon transfer membrane (EMD Millipore, Billerica, MA) using the Mini Trans-Blot Cell (Bio-

Rad, Hercules, CA) settled at 160V for 1 h. The membrane was blocked with 5% reconstituted

skim milk powder in TBST solution (10 mM Tris–HCl pH 7.4 containing 150 mM NaCl and

0.05% Tween 20). The blots were incubated with CEBPD antibody (1:500, ab65081, Abcam,

Burlingame, CA) in TBST overnight at 4˚C. After washing with TBST, horseradish peroxi-

dase-conjugated secondary antibodies (1:10 000, ab97051, Abcam, Burlingame, CA) were

applied and the blots developed by the Enhanced Chemiluminescence Detection System

(Pierce, ThermoFisher Scientific, Waltham, MA). Levels of beta-tubulin were used as an inter-

nal standard for equal loading.

Supporting information

S1 Fig. Active area is an alternative summary metric for dose-response curves. It has advan-

tages relative to the more popular IC50: it is well-defined even if no growth inhibition is

observed at any tested drug concentration, it is less sensitive to measurements around the

IC50 point, and better represents whether there is a tail of resistance cells.

(EPS)

S2 Fig. Predictive performance on CTRPv2 assessed using mean concordance index across

drugs (10-fold cross-validation).

(EPS)

S3 Fig. Lacrosse’s performance on CTRPv2 is robust to the exact choice of the MRF

strength parameter (edge weight).

(EPS)

S4 Fig. LOBICO [18] attempts to find small logical networks that combine mutation

status to predict binarized drug response. We tested LOBICO using only mutation data

from CTRPv2 and found it was consistently and severely outperformed by LASSO in terms

of predictive performance. LASSO here refers to linear regression on the AUCs, whereas GLM

is L1-regularized logistic regression on the same binarized response as for LOBICO. 10-fold

cross-validation was used for all methods: to choose λ for the regression approaches and the

model complexity for LOBICO (using the same 8 complexity settings as used in the LOBICO

paper). It is possible that LOBICO would be more competitive if we used a smaller set of

known important mutations. Since we are interested in discovering such relationships de novo
we did not explore this approach further.

(EPS)

S5 Fig. Lacrosse’s generalization performance in CCLE having been trained on CTRPv2.

(EPS)
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S6 Fig. Lacrosse’s generalization performance in gCSI having been trained on CTRPv2.

(EPS)

S7 Fig. Lacrosse’s generalization performance in GDSC1000 having been trained on

CTRPv2.

(EPS)

S8 Fig. Other latent characteristics discovered by Lacrosse using CCLE, showing the

drugs in the LC and predictive genomic features. p-values are from a Spearman correlation

test. LCs noted in the text are shown in Fig 3.

(EPS)

S9 Fig. Comparing the global latent characteristic discovered by Lacrosse to the general

level of drug sensitivity (GLDS) described by Geeleher et al. [27].

(EPS)

S10 Fig. Successful knock-down of C/EBPδ using siRNA in the BT-549 breast cancer cell-

line. a. By bright-field microscopy cells appear healthy/viable after knock-down. b. Western

blot analysis confirms that C/EBPδ protein levels are substantially reduced following overnight

(O/N) treatment with the targeting siRNA, and that this knock-down remains substantial after

24 hours.
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