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Transmissible gastroenteritis virus induced apoptosis
in swine testes cell cultures
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Summary. Transmissible gastroenteritis virus (TGEV) is a coronavirus which
causes severe gastroenteritis and atrophy of intestinal villous epithelial cells in
piglets. However, the mechanism of cell death caused by TGEV is not known. In
this study, we report that TGEV induces cell death by apoptosis. TGEV-induced
apoptosis was demonstrated by agarose gel electrophoresis, electron microscopy,
and terminal deoxytransferase digoxigenin-dUTP nick end labeling (TUNEL).
Double labeling experiment confirmed the result from electron microscopy and
showed that most of the apoptotic cells were bystander cells as they were neg-
ative for TGEV nucleic acids. Results of this study indicate that TGEV induces
apoptosis in vitro and that most of the cells undergoing apoptosis are bystander
cells, thus amplifying the cytopathic effect of TGEV.

∗
Transmissible gastroenteritis virus (TGEV), a coronavirus, is a pleomorphic en-
veloped virus with a positive-sense single-stranded RNA genome [31]. TGEV is
associated with an economically important disease, transmissible gastroenteritis
(TGE), and causes severe vomiting, diarrhea, and high mortality in piglets during
the first few weeks of life [31]. TGE has been recognized since 1946 [6] and has
been extensively studied. However, the mechanism of TGEV-induced cell death
is still unclear. Recently, several DNA [9, 23, 27, 29, 30] and RNA viruses
[8, 10, 12, 18, 26, 32, 36, 41, 46] have been shown to induce cell death by
apoptosis. We investigated whether TGEV kills cells by apoptosis, if there is a
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correlation between cytopathic effect (CPE) and apoptosis, and whether infected,
bystander or both infected and bystander cells undergo apoptosis.

The virulent Miller strain of TGEV (National Veterinary Services Laboratory,
Ames, IA), referred to as CHV, was used to inoculate swine testes (ST) cells on 6-
well plates (Corning Costar Corporation, Oneonta, NY) or 8-well chamber slides
(Nunc, Naperville, IL) at a multiplicity of infection of 0.01. Uninoculated and
inoculated cells on 6-well plates were observed for cytopathic effect (CPE) and
at 12, 24, 32, 40, and 48 h postinoculation (h p.i.). The cells were then scraped
with a cell scraper (Fisher, PA), transferred to 1.5 ml microfuge tube, and cen-
trifuged at 1100× g for 3 min. Cells were washed, and resuspended in 200ml of
cold phosphate buffer saline (PBS) pH 7.2. Total cell DNA was obtained using a
Qiagen tissue kit (Qiagen, CA). DNA was precipitated and resuspended in 60ml
of TE buffer. Finally, 10ml of the total 60ml cell DNA was electrophoresed on a
1.2% agarose gel (Amresco, Solon, OH). DNA bands were stained with ethidium
bromide, visualized by UV illuminator, and recorded on Polaroid type 57 film
(Polaroid Corporation, Cambridge, MA). This assay was repeated three times
using 3 different sets of cells. Cytopathic effect (CPE) characterized by rounding
and sloughing of cells was detected at 24 h p.i. in TGEV-inoculated ST cell cul-
tures. The extent of CPE increased by 48 h p.i. (Table 1). Apoptosis was observed
at 24 h p.i. and was characterized by fragmentation of DNA to approximately
180 base pair ladder. Both CPE and relative amounts of low molecular weight
(LMW) DNA were evident at 24 h p.i. and peaked at 48 h p.i. (Table 1 and
Fig. 1).

For electron microscopy study, uninoculated and TGEV-inoculated cells on
6-well plates were washed twice with cold phosphate buffer saline (PBS) pH 7.2,
fixed with 3% glutaraldehyde for 3 min, and harvested by scraping at 12, 24,
32, 40, and 48 h p.i. Media from uninoculated and TGEV-inoculated wells at

Fig. 1. Analysis of DNA fragmentation as an evidence
of apoptosis by agarose gel electrophoresis. A 10ml of
total DNA extracted from TGEV-inoculated or uninoc-
ulated ST cell cultures was loaded on to each lane of a
1.2% agarose gel. A DNA ladder of bands in multipli-
cation of about 180 nucleotides in size was detected in
the DNA of TGEV-inoculated cell culture at 24 h p.i.
with highest concentration at 48 h p.i.
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Table 1. Progression of cytopathic effect and concentration
of low molecular weight DNA in TGEV-inoculated ST cell

cultures at 12, 24, 32, 40, and 48 h postinoculationa

Measurement Hours

12 24 32 40 48

% CPE 0 2 10 25 50
Relative amount
of LMW DNA b − ± + ++ + + +

aProgression of CPE and amount of LMW DNA was
done by using 3 replications of uninoculated and inoculated
ST cells culture

bRelative amount of LMW DNA was determined by com-
paring the intensity of the DNA bands in agarose gels as fol-
lows: − = no band,± = very weak,+ = weak,++ =
moderate,+ + + = strong

each time point was collected and centrifuged to collect the detached cells. The
pellets of detached cells were fixed, resuspended, and mixed with suspension of
the adherent cells at each time point. Cells were pelleted at 6000× g for 2 min at
4 ◦C. The pellets were washed three times with 0.1 M sodium cacodylate buffer
(pH 7.2) for 15 min each, post fixed with 1% osmium tetroxide in 0.1 M sodium
cacodylate buffer for 2 h atroom temperature, dehydrated in an acetone series,
and embedded in plastic [11]. All cells from at least two sections of TGEV-
inoculated and uninoculated cells at each time point were examined by electron
microscopy (Hitachi H500). Examination of thick sections of TGEV-inoculated
ST cells revealed several cells with condensation and margination of nuclear
chromatin (Fig. 2B). In contrast, these changes were not observed in uninoculated
ST cells (Fig. 2A). Ultrastructural changes characteristic of cell lysis and apoptosis
were detected in TGEV-infected cells. Lytic cells were characterized by disrupted
nuclear and cytoplasmic membranes, and degenerate cell organelles (Fig. 3B).
There were several cells undergoing lysis, and most of these cells had several
viral particles budding from the endoplasmic reticulum (Fig. 3B). Apoptotic cells
were characterized by condensation and sharp margination of nuclear chromatin,
formation of large, electrolucent vacuoles in the cytoplasm, intact cell organelles,
and intact nuclear and cytoplasmic membranes (Fig. 3C). Viral particles were
not detected in apoptotic cells. In contrast, cells in the uninoculated wells were
normal (Fig. 3A).

In situ hybridization (ISH) was performed before in situ detection of apop-
tosis. Fluorescein-labeled RNA probe was prepared from plasmid pPSP.FP1 as
reported previously [34] which contains the TGEV S gene segment from nu-
cleotides 1 678 to 2 250 [3, 42]. Specificity of the probe for TGEV was deter-
mined by dot blot hybridization [43]. Briefly, uninoculated and TGEV-inoculated
ST cells on 8-well chamber slides at 12, 24, 32, 40, and 48 h p.i. were used
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Fig. 2. Thick sections of uninoculated (A) and TGEV-inoculated ST cell cultures (B) at 24 h
p.i. The section of TGEV-inoculated ST cell culture showed sharp condensation and margina-
tion of nuclear chromatin along the nuclear membrane of the apoptotic cells (arrowhead)



Transmissible gastroenteritis virus induced apoptosis 2475

Fig. 3 (continued)

for in situ hybridization (ISH) as described previously [35]. Uninoculatd and
TGEV-inoculated cells were treated with proteinase K (1mg/ml) at 37◦C for
10 min, washed, and incubated with 20% cold acetic acid for 15 sec. Uninoc-
ulated and TGEV-inoculated cells were hybridized with 50ml of hybridization
buffer containing 2ml of fluorescein-labeled RNA probe (1 ng/ml). Uninocu-
lated and TGEV-inoculated cells were treated with RNase A(20mg/ml) at 37◦C
for 30 min, and washed in series of SSC. The hybridization signal was detected
by incubating with either anti-fluorescein peroxidase antibody (1:50) or anti-
fluorescein alkaline phosphatase antibody (1:400) (Boehringer Mannheim, Indi-
anapolis, IN) for 1 h atroom temperature. Slides were incubated with DAB or NBT
and BCIP and counterstained with either hematoxylin or nuclear fast red. Con-
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Fig. 3. Electron micrograph of uninoculated (A) and TGEV-inoculated ST cell culture (B, C)
at 32 h p.i. Bars: 10mm (A), 5mm (B), and 2.5mm (C). The virus inoculated cells in TGEV-
inoculated ST cell culture (B) had several virus particles in vesicles of the endoplasmic
reticulum (inset) and were undergoing cell lysis. In contrast, the uninfected cells in TGEV-
inoculated ST cell culture (C) had no virus particles in the endoplasmic reticulum (inset) and
exhibited shrinking of cells and nuclei, condensation of nuclear chromatin, and intact cell

and nuclear membranes

trols included uninoculated ST cells, RNase-treated cells inoculated with TGEV,
TGEV-inoculated cells hybridized with positive-sense fluorescein-labeled RNA
probe, and TGEV-inoculated ST cells hybridized with hybridization buffer free
of probe. The cells in the TGEV-inoculated wells were positive for TGEV and
cells in the uninoculated wells were negative. The TGEV positive cells had brown
color localized in the cytoplasm without any color in the nucleus (Fig. 4B). In
contrast, cells in the uninoculated wells were negative (Fig. 4A).

Cells on 8-well chamber slides were counted to determine cell viability at
each time point. Both the adherent and detached cells were collected, centrifuged,
resuspended in PBS (pH 7.2), and stained with trypan blue to determine cell via-
bility [33]. Cell viability was determined in triplicates. The viability count results
showed that the percentage of live cells decreased after 24 h p.i. and was lowest at
48 h p.i. (Fig. 5A). The adherent cells on 8-well chamber slides were used to detect
apoptosis in situ. The TUNEL method was performed using an ApopTag kit (On-
cor, Gaitherburg, MD) according to manufacturer’s instructions with slight modi-
fications. Briefly, 8-well chamber slides were subjected to the enzymatic incorpo-
ration of digoxigenin-labeled nucleotide with enzyme terminal deoxynucleotidyl
transferase, washed and incubated with either anti-digoxigenin peroxidase and
3,3′-diaminobenzidine (DAB) or (1:400) anti-digoxigenin alkaline phosphatase
(Boehringer Mannheim, Indianapolis, IN) and 45ml of 4-nitroblue tetrazolium
(NBT), and 35ml of 5-bromo-4-chloro-3-indolyl-phosophate (BCIP) in detection
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Fig. 4. In situ hybridization of uninoculated (A) and TGEV-inoculated ST cell culture (B) at
32 h p.i. with fluorescein-labeled RNA probe produced from pPSP.FP1 (20× magnification).
Infected ST cells exhibited dark brown color specifically localized in the cytoplasm but

uninoculated cells were negative
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Fig. 5. Relative frequency of viable (A) and apoptotic cells (B) in uninoculated and TGEV-
inoculated ST cell culture. The cell viability decreased with time in TGEV-inoculated ST
cell cultures and was lower than that in uninoculated ST cell cultures at each time point (A).
In contrast, apoptotic cells increased with time in TGEV-inoculated ST cell cultures and was

higher than that in uninoculated ST cell cultures at each time point (B)

buffer. The slides were counterstained with either nuclear fast red or hematoxylin.
The cells with the signal localized within the nucleus without diffuse staining in
the cytoplasm or extracellular area were interpreted as being apoptotic cells [5].
The number of apoptotic cells was determined by counting 1 000 cells in each of
5 different areas in each well of the 8-well chamber slides. Cells were counted
in four separate wells and the number of apoptotic cells determined by counting
5 000 cells. The mean percentage of apoptotic cells was determined using the
percentage of apoptotic cells in 20 000 cells counted in four inoculated, and four
uninoculated wells. The results are shown as the mean percentage of apoptotic
cells, and one standard deviation from the mean. TUNEL-positive cells in TGEV-
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Fig. 6. TUNEL analysis for the detection of apoptosis in uninoculated (A) and TGEV-
inoculated ST cell culture (B) at 40 h p.i. (20× magnification). Several apoptotic cells were
observed in TGEV-inoculated cell culture with dark purple staining localized in the nucleus
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inoculated wells were detected as early as 12 h p.i. and their number peaked at
48 h p.i. There were a higher percentage of apoptotic cells in the inoculated wells
than that in the uninoculated wells at each time point, and the percentage of pos-
itive cells increased with time (Fig. 5B). The apoptotic cells had purple nuclei
and no cytoplasmic staining (Fig. 6B). Several apoptotic bodies were blebbing
out of the cytoplasm and were scattered in the intercellular space. There were a
few TUNEL-positive cells in the uninoculated wells (Fig. 6A).

In order to determine TGEV-induced apoptosis in bystander cells, uninocu-
lated and TGEV-inoculated ST cells on 8-well chamber slides were used at 12,
24, 32, 40, and 48 h p.i. for ISH followed by TUNEL labeling. Media from 8-well
chamber slides at each time point was also collected and centrifuged for obtaining
the detached cells to perform double-labeling technique. TGEV-infected cells in
TGEV-inoculated wells had purple cytoplasm whereas apoptotic cells had brown
nuclei (Fig. 7B and 7C). In contrast, the ST cells in uninoculated wells had nei-
ther purple cytoplasm nor brown nucleus (Fig. 7A). Both the TGEV-positive and
apoptotic cells were detected as early as 12 h p.i. (Fig. 7B) and their numbers
increased with time. The majority of the adherent cells were positive for either
TGEV nucleic acid, or apoptosis. Most of the apoptotic cells lacked TGEV RNA
whereas most of the TGEV-positive cells did not exhibit apoptosis. At 48 h p.i.
there were, however, a few double positive cells which were positive for TGEV
RNA and had round TUNEL-positive particles in the cytoplasm (Fig. 7C). These
particles were apoptotic bodies that were phagocytized from the apoptotic cells
rather than nuclei of the double positive cells. About 75–80% of the detached
cells at 24, 32, 40, and 48 h p.i. were positive for either TGEV nucleic acid or
apoptosis. Another 20–25% of the detached cells at these time points were double
positive cells. Most of these cells appeared to be necrotic cells as these cells were
swollen, lacked nucleus, and had diffuse TUNEL signal. However, there were
about 2–5% of the necrotic double-positive detached cells that had discrete stain-
ing of apoptotic bodies. These infected cells may phagocytize apoptotic bodies
from the neighbor cells.

This is the first report showing that TGEV is capable of inducing apoptosis.
This was demonstrated by several methods including analysis of total cellular
DNA for low molecular weight DNA by agarose gel electrophoresis, TUNEL
labeling for detection of DNA fragmentation in situ, and transmission electron
microscopy for nuclear morphology. There was general agreement in results ob-
tained with different techniques. In the analysis of total cellular DNA, DNA

c
Fig. 7. Double labeling analysis of viral RNA and apoptotic cells in uninoculated (A) and
TGEV-inoculated ST cell culture at 12 h p.i. (B) and 40 h p.i. (C) (20× magnification). Cells
with purple color cytoplasm were positive for TGEV RNA and were detected in TGEV-
inoculated ST cell culture only. Cells with dark brown nuclei (arrows) by TUNEL labeling
represented apoptotic cells and several apoptotic bodies (arrowheads) were scattered through-
out the slides. However, there were no cells that were positive for both TGEV RNA and

apoptosis
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fragmentation bands were detected at 24 h p.i. which peaked at 48 h p.i in the
TGEV-inoculated cells. The DNA fragmentation pattern in multiplication of 180–
200 base pairs strongly supports the presence of an apoptosis process in the cell
culture [39]. There was a correlation between appearance of apoptosis and CPE
that began at 24 h p.i. and peaked at 48 h p.i.

Using electron microscopy, we found several cells in TGEV-inoculated wells
having sharp nuclear chromatin condensation along the nuclear membrane with
intact nuclear and cell membranes. These are considered the characteristic of
apoptosis [14]. Viral particles were present in lytic cells but not in the apoptotic
cells, suggesting that infected cells were undergoing cell lysis. McClurkin and
Norman [25] also reported changes in TGEV-inoculated cells suggestive of apop-
tosis, although the characteristics of apoptosis were not recognized at that time.
They observed changes in the nuclei of the ST and swine kidney cell cultures
infected with several isolates of TGEV stained with acridine orange which were
characterized by shrunken, marked clumping and margination of the chromatin
material along the nuclear membrane [25].

By using TUNEL labeling, we were able to identify apoptotic cells in the
TGEV-inoculated cell culture. The number of apoptotic cells increased with time
and peaked at 48 h p.i. However, TUNEL labeling is believed to be more sensitive
than a DNA fragmentation assay as it can detect apoptotic cells earlier [7]. Both the
individual and syncytial cells were positive by TUNEL. We performed a double-
labeling experiment to determine whether infected or bystander cells were the
primary cells undergoing apoptosis. Surprisingly, the uninfected bystander cells
were undergoing apoptosis but infected cells were not. These results were also
confirmed by electron microscopy.

The mechanism of TGEV-induced apoptosis in bystander cells is not known.
Two coronaviruses, mouse hepatitis virus and feline infectious peritonitis virus,
have also been shown to induce apoptosis in bystander cells [8, 10]. Several cy-
tokines, such as tumor necrosis factor-a (TNF-a) [13, 15, 47] and transforming
growth factor-b (TGF-b) [40, 45] have been shown to promote apoptosis in sev-
eral cells. Interferon (IFN)-g and TNF-a [28, 38] have been shown to induce
apoptosis by upregulating Fas antigen expression. It is known that rat testicular
cells are highly capable of expression Fas ligand [37]. The testicular cell lines
from mice have also been shown to be capable of expressing Fas antigen and can
be upregulated by IFN-g [21]. The rat testicular cells are capable of expressing
both interferon-a and -g [4].

TGEV has been shown to be a good IFN-a inducer [17, 19] which inhibits
TGEV replication in vitro but has little or no effect in vivo [17, 22]. IFN-a also has
cytotoxicity effect for both porcine intestinal explant and porcine cell lines (ST,
PK-15 porcine kidney and intestinal epithelial cells) either infected or uninfected
with TGEV [2, 20, 44]. Therefore, the antiviral activity of IFN-a against TGEV
may partly be due to cytotoxicity effect [44]. Furthermore, cytopathic strain of
bovine viral diarrhea virus can prime uninfected cells to undergo apoptosis by type
I IFN[1]. IFN-a has been shown to upregulate dsRNA-activable protein kinase
PKR that is a tumor suppressor gene by activating apoptosis [24]. It has also been
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proposed that the mechanisms responsible for IFN-a inducing TGEV-infected ST
cells destruction may contribute to the pathogenesis of TGEV infection in vivo
[2]. Therefore, IFN-a might play a role in inducing apoptosis in bystander cells
and thus amplifying the cytopathic effect of TGEV.

At this time, we do not know if IFN-a, other cytokines, some soluble factors
released from infected cells or viral products are responsible for inducing apopto-
sis in bystander cells. In this study, we have shown that TGEV induces apoptosis
in ST cell culture, and infected cells undergo cell lysis. Most of the apoptotic
cells were bystander cells whereas most of the productively infected cells did not
undergo apoptosis. However, whether TGEV is capable of inducing apoptosis in
enterocytes in vivo is still unresolved.
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