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Abstract

Potyviridae, the largest family of known RNA viruses (realm Riboviria), belongs to the picorna-like supergroup and has important agri-
cultural and ecological impacts. Potyvirid genomes are translated into polyproteins, which are in turn hydrolyzed to release mature
products. Recent sequencing efforts revealed an unprecedented number of potyvirids with a rich variability in gene content and ge-
nomic layouts. Here, we review the heterogeneity of non-core modules that expand the structural and functional diversity of the
potyvirid proteomes. We provide a family-wide classification of P1 proteinases into the functional Types A and B, and discuss pretty
interesting sweet potato potyviral ORF (PISPO), putative zinc fingers, and alkylation B (AlkB)—non-core modules found within P1
cistrons. The atypical inosine triphosphate pyrophosphatase (ITPase/HAM1), as well as the pseudo tobacco mosaic virus-like coat
protein (TMV-like CP) are discussed alongside homologs of unrelated virus taxa. Family-wide abundance of the multitasking helper
component proteinase (HC-pro) is revised. Functional connections between non-core modules are highlighted to support host niche
adaptation and immune evasion as main drivers of the Potyviridae evolutionary radiation. Potential biotechnological and synthetic
biology applications of potyvirid leader proteinases and non-core modules are finally explored.

Keywords: Potyviridae, virus comparative genomics, non-core proteome module, evolutionary radiation, host adaptation, immune
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Introduction
Understanding the origin and evolution of viruses is complex, yet
it is fundamental to fully realize the ecological, agricultural and
medical impact of the virosphere (Jones and Naidu 2019, Zimmer-
man et al. 2020, Holmes et al. 2021, Liang and Bushman 2021).
Plant virus diseases are major threats to food security; they oc-
cur worldwide and greatly affect developing countries (Jones and
Naidu 2019, Savary et al. 2019). Conceptual frameworks rational-
ize the polyphyletic origins and evolution of the plant virome, as
well as its ecological impact on crops and wild species (Lefeuvre
et al. 2019, Dolja, Krupovic and Koonin 2020). Genomic resources
for plant viruses have increased in the past four decades (Pasin,
Menzel and Daròs 2019), but our knowledge of plant virus evolu-
tion and host adaptation mechanisms is nonetheless incomplete.

The plant-infecting Potyviridae is the largest RNA virus family
(realm Riboviria) (Fig. 1A). The most recent virus taxonomy based
on phylogenomic analyses places the family within the phylum
Pisuriviricota (Fig. 1B), which comprises of members of the former
picorna-like supergroup (Koonin et al. 2020). Potyvirid genomes are
a mosaic of modules with polyphyletic origins that can be linked
to multiple unrelated viruses, either within and outside Pisuriviri-
cota (Dolja, Krupovic and Koonin 2020, Gibbs et al. 2020). Despite
their complex origin, emergence and diversification of modern po-

tyvirids have been traced to plant-associated astro-like viruses
(plastroviruses) and protopotyviruses, groups of viruses identified
in plant transcriptomes and aquatic samples (Lauber et al. 2019,
Wolf et al. 2020) (Fig. 1B).

Potyviridae includes > 200 plant virus species currently assigned
to the twelve genera Arepavirus, Bevemovirus, Brambyvirus, By-
movirus, Celavirus, Ipomovirus, Macluravirus, Poacevirus, Roymovirus,
Rymovirus, Tritimovirus, and Potyvirus, with this last being the most
speciose (Gibbs et al. 2020, International Committee on Taxon-
omy of Viruses 2020). Potyvirids have positive single-stranded RNA
genomes of 8-11 kb that are translated into polyproteins, which
are in turn hydrolyzed by viral proteinases to release a set of ma-
ture products (Adams, Antoniw and Beaudoin 2005, Revers and
García 2015). First studies of potyvirid genomes identified a basic
layout with conserved gene abundance and order. Yet recent dis-
coveries spurred by sequencing technological advances have re-
vealed a large variability in the genomic structures and gene con-
tent. Potyvirid polyproteins indeed show a common core led by
diversified leaders that are enriched in non-core modules which
expand the proteome structural and functional heterogeneity.

Here, we present a pan-family survey of the structural and
functional diversity of the Potyviridae proteomes by delineating
core and non-core modules (see Supporting Information). We pro-
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Figure 1. Potyviridae within the known RNA virosphere. (A) Species and
genus abundance in the recognized families of the realm Riboviria;
families with > 100 species are labeled (see Table S1 of Supporting
Information). (B) Schematic phylogenetic tree of the RNA virus
RNA-dependent RNA polymerases (RdRp). RNA virus phyla are
indicated, and the branches of Pisuviricota are expanded; reverse
transcriptases of group II introns and non-long-terminal-repeat
transposons were used as an outgroup; scale bar = 0.5. The overall tree
topology was taken from Wolf et al. (2018), and updated to include the
virus lineages (red text) with reported ancestral status to Potyviridae
(Lauber et al. 2019, Wolf et al. 2020).

vide a family-wide classification of P1 proteinases, and review
knowledge of non-core domains. We examine abundance of the
leader helper component proteinase (HC-pro) within the family,
and uncover a putative papain-like protease domain in polypro-
tein leaders of known and putative Celavirus members. Using
non-core module evolution as a case study, we summarize main
molecular mechanisms that have acted in the Potyviridae radia-
tion.

We also discuss the finding that common immune evasion roles
can be identified in potyvirid leader cistrons and those of plant,
fungal and animal viruses; pointing to host adaptation as a main
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Figure 2. Layout and leader diversity of Potyviridae polyproteins. RNA
molecules and encoded polyproteins are represented as lines and
arrowed boxes, respectively; the hypervariable N termini (leaders), and
the conserved middle and C-terminal (core) regions are indicated.
Representative layouts are as follows: I, Type-A P1 and HC-pro in
full-length polyproteins; II, Type-A P1 and HC-pro in truncated
polyproteins generated by P3 frameshifting (P3N-PIPO, and P3N-ALT); III,
PISPO production by frameshifting in Type-A P1 cistrons; IV, tandem of
Type-A and Type-B P1; V, Type-B P1 and HC-pro; VI, single or tandem
copies of HC-pro, and P1 absence; VII, leader-less RNA1, and additional
RNA2; VIII, Type-A or Type-B P1 including alkylation B (AlkB) or
DUF3725; IX, inosine triphosphate pyrophosphatase (HAM1) in
polyproteins with Type-B P1 and no HC-pro; X, atypical leader with
non-conserved domains. Diagrams are for illustrative purposes and not
to scale; PPV, plum pox virus; SPFMV, sweet potato feathery mottle virus;
CVYV, cucumber vein yellowing virus; WSMV, wheat streak mosaic
virus; ANSSV, areca palm necrotic spindle–spot virus; CYNMV, Chinese
yam necrotic mosaic virus; BaYMV, barley yellow mosaic virus; ENMV,
endive necrotic mosaic virus; BlVY, blackberry virus Y; UCBSV, Ugandan
cassava brown streak virus; CeLV, celery latent virus.

driver of their evolution. A perspective on the applications of po-
tyvirid leader proteinases and other non-core modules in biotech-
nology and synthetic biology is also presented.

Core and non-core modules of Potyviridae
proteomes
Genera of Potyviridae have a common polyprotein core which is
expanded by a heterogeneous array of non-core modules (Fig. 2).
A set of eight mature proteins is conserved in the middle and
carboxy (C) terminus of the polyproteins, namely P3, 6 kDa pro-
tein 1 (6K1), cytoplasmic inclusion (CI) protein, 6 kDa protein 2
(6K2), viral genome-linked protein (VPg), nuclear inclusion pro-
tein A proteinase (NIa-pro), nuclear inclusion protein B (NIb), and
coat protein (CP) (Revers and García 2015). P3N-PIPO and P3N-ALT
are generated by a frameshifting mechanism in the P3 cistron,
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and are conserved (Yang, Li and Wang 2021, Choi et al. 2022).
These conserved proteins have a common but polyphyletic origin
(Gibbs et al. 2020). NIa-pro and NIb are homologous to picorna-like
signature genes, being, respectively, a chymotrypsin-like cysteine
proteinase and an RNA-dependent RNA polymerase (RdRp) with
phylogenetic affinity to animal-infecting Astroviridae and other
Pisuriviricota members. CP was likely acquired from other filamen-
tous RNA viruses, whereas CI is a superfamily 2 helicase most
closely related to flavivirid homologs (Koonin et al. 2008, Zamora
et al. 2017, Dolja, Krupovic and Koonin 2020).

Organization of polyprotein amino (N) termini (leaders) is
highly variable and bears distinctive genus- or even species-
specific features (Fig. 2). Protein hidden Markov model (HMM) pro-
files allow for sensitive homology detection and have been applied
to infer evolution of viral proteomes, as well as virus identification
in metatranscriptomic datasets and taxonomic assignment (Nasir
and Caetano-Anollés 2015, Wolf et al. 2018, Bin Jang et al. 2019,
Callanan et al. 2020). A combination of HMM and protein profile
scans was applied here to quantitatively survey the diversity and
abundance of the Potyviridae non-core modules. P1 and HC-pro are
the most common, but not universal, leader cistrons (Yang, Li and
Wang 2021). Other non-core modules identified in few potyvirid
species include the pretty interesting sweet potato potyviral ORF
(PISPO), putative zinc fingers and DUF3725, alkylation B (AlkB), in-
osine triphosphate pyrophosphatase (ITPase/HAM1), as well as a
pseudo tobacco mosaic virus-like coat protein (TMV-like CP) do-
main.

Diversity and evolution of non-core
modules
P1 proteinases—two phylogenetically and
biochemically distinct lineages
P1 is the least abundant among the potyvirid proteinases (Figs 2
and 3A). The C terminus includes a well-conserved chymotrypsin-
like serine protease domain, a common module of RNA viruses,
which autocatalytically releases P1 from the polyprotein (Rodami-
lans et al. 2018, Mann and Sanfaçon 2019). The N terminus is hy-
pervariable, intrinsically disordered and dispensable for P1 prote-
olysis (Valli, López-Moya and García 2007, Pasin, Simón-Mateo and
García 2014). It can tolerate sequence insertions and diverse atyp-
ical domains and functional motifs can be found within it (Fig. 2).
Potyvirus P1 is active in planta and in plant-based translation sys-
tems but its proteolysis is very low or absent in animal systems
(Rohožková and Navrátil 2011). This supports the hypothesis that
activation of potyviral P1 requires a plant co-factor, the identity of
which is yet unknown.

Family-wide phylogenesis of the conserved protease domain
supports the presence of two distinct lineages—Types A and B
(Fig. 3B). Type A is predominant (88%; Fig. 3C), and includes
homologs that display plant co-factor dependency in in vitro
cleavage assays; it is found in all members of Potyvirus and Ry-
movirus, and in 3/7 of ipomoviruses (Fig. 3D). Type-B proteinases
do not need plant co-factors, displaying robust self-processing
in multiple translation systems including bacteria (Rodamilans,
Valli and García 2013, Shan et al. 2018). This lineage is found
in all Ipomovirus, Roymovirus, Poacevirus, Tritimovirus, and Bram-
byvirus members (Fig. 3D). A tandem of both lineages is found in
the ipomoviruses cucumber vein yellowing virus (CVYV), squash
vein yellowing virus (SqVYV), and Coccinia mottle virus (CocMoV)
(Figs 2, 3B and D) (Dombrovsky, Reingold and Antignus 2014, Des-
biez et al. 2016).

Type-A P1 acts as a viral accessory factor, since deletion mu-
tants are infectious and capable of replication and systemic move-
ment (Rohožková and Navrátil 2011, Pasin, Simón-Mateo and Gar-
cía 2014). Consistent with its dispensability, ∼10% of the recog-
nized potyvirid species lack P1 (see Arepavirus, Bevemovirus, By-
movirus, Celavirus, and Macluravirus of Fig. 3D).

Pretty interesting sweet potato potyviral ORF
(PISPO)
The potyvirus sweet potato feathery mottle virus (SPFMV) has a
large Type-A P1 and defective HC-pro (Yang, Li and Wang 2021).
Transcriptional slippage takes place within P1 with the derived
transcripts coding for a truncated P1 and the frameshift protein
PISPO, which participates in RNA silencing suppression (Fig. 2, and
see below) (Mingot et al. 2016, Untiveros et al. 2016). Besides SPFMV,
PISPO is present in sweet potato virus 2, C, and G (Clark et al. 2012).

Zinc fingers and DUF3725
Zinc-finger domains mediate interaction with DNA, RNA, and pro-
teins, and have a variety of cellular functions that include an-
tiviral immunity regulation. A divalent cation coordinates two
cysteines and histidines in CCHH zinc-fingers, but different cys-
teine/histidine compositions are found in the non-canonical
CCHC, CCCH, and CCCC zinc-fingers, all of which have reported
RNA interacting ability (Cassandri et al. 2017, Corley, Burns and
Yeo 2020, Wang and Zheng 2021).

Putative CCCC or CCHC zinc fingers are present in all known
Type-B P1s, and are found with varying degrees of conservation
in the N terminus of many Type-A orthologs (Fig. 4). Duplicated
P1 zinc fingers can be identified in blackberry virus Y (BlVY; Bram-
byvirus) and sweet potato mild mottle virus (SPMMV; Ipomovirus).
Conserved CCCC and CCHC motifs of Type-B P1s were function-
ally linked to RNA silencing suppression (Valli, Dujovny and Gar-
cía 2008, Kenesi et al. 2017, Gupta and Tatineni 2019a). Consis-
tently, zinc fingers are known in diverse RNA silencing suppres-
sors of plant viruses (Csorba, Kontra and Burgyán 2015, Sõmera,
Sarmiento and Truve 2015).

Type-A P1s lack silencing suppression activity and biological
roles of their putative zinc fingers remain unknown. The CCCC
motif in some of them partially overlaps DUF3725 (Pfam: PF12523)
(Fig. 4). DUF3725 is found in Streptomyces bacteriophage proteins
(ATE85218.1) that share similarities to the zinc-binding domain
of DnaG-like primases, which coordinates template binding and
RNA primer synthesis in the replication of double-stranded DNA
viruses (Gao et al. 2019).

Alkylation B (AlkB)
AlkB domains are ubiquitous among prokaryotes and eukaryotes;
having iron(II)- and α-ketoglutarate-dependent dioxygenase ac-
tivity that reverses nucleic acid methylation damage (Fedeles et
al. 2015).

AlkB is found in atypical P1s of endive necrotic mosaic virus
(ENMV; Potyvirus) and BlVY (Brambyvirus; Fig. 5). AlkB of the lat-
ter catalyzes the in vitro removal of RNA methyl groups (van den
Born et al. 2008). Hypermethylation of viral RNA genomes nega-
tively affects plant and animal cell infection (Martínez-Pérez et al.
2017, Zhang, Qian and Jia 2021). AlkB was suggested to safeguard
viral genomic integrity through repair of methylation damage and
promote long-term infection of perennial hosts (van den Born et
al. 2008, Martínez-Pérez et al. 2017). A plant AlkB domain inserted
within the tobacco etch virus (TEV) genome was rapidly lost and it
did not confer any fitness benefit (Willemsen et al. 2017), detailed
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Figure 3. Family-wide phylogeny and abundance of Type-A and Type-B P1 lineages. (A) Abundance of the potyvirid-encoded proteinases P1, HC-pro
and NIa-pro. Ratio of species with at least one domain of the indicated proteinase vs. total species is shown in parentheses (Table S2). (B) P1 phylogeny.
Protease domain sequences were aligned (Figure S1), and phylogeny was inferred (Supporting Methods); numbers beside branches indicate bootstrap
support values; scale bar = 1. All Potyvirus branches are unlabeled and are included in the Type-A lineage; branches of remaining genera are labeled.
The ipomoviruses cucumber vein yellowing virus (CVYV), Coccinia mottle virus (CocMoV), squash vein yellowing virus (SqVYV) encode a Type-B
homolog and an additional Type-A copy (branch II). Common reed chlorotic stripe virus (CRCSV), Spartina mottle virus (SpMoV), and longan witches’
broom-associated virus (LWBD) are orphans. (C) Family counts of Types A and B. (D) Abundance of Types A and B across genera of Potyviridae. Absolute
numbers (Counts) and counts per species (%) are shown. Unassigned includes CRCSV, SpMoV, and LWBD.

characterization of AlkB roles in potyvirid infection remains to be
addressed.

AlkB is embedded within replication-associated proteins of
plant RNA viruses in the families Alphaflexiviridae, Betaflexiviri-
dae, Closteroviridae, and Secoviridae (Fig. 5). Phylogenomic analysis
of plant viruses has highlighted a divergent evolutionary history
for AlkB compared to other viral protein domains; it was con-
cluded that AlkB probably emerged by multiple independent ac-
quisition events (Bratlie and Drabløs 2005). For example, the di-
vergent genomic organization and significant phylogenetic sepa-
ration of BlVY and ENMV suggests that the two viruses acquired
the domain independently (Fig. 5B). BlVY and ENMV have been
identified in plants of the Rosaceae and Asteraceae, respectively
(Susaimuthu et al. 2008, Desbiez et al. 2017), known to host several
AlkB-encoding viruses (Fig. 5C). Mixed infections are common in
plants, and the AlkB origin in potyvirids can possibly be traced to
independent events of inter-family gene transfer.

AlkB is distributed across divergent taxonomic groups of RNA
and DNA viruses that include invertebrate RNA viruses (Shi et al.
2016), DNA bacteriophages (Yoshikawa et al. 2018), and giant DNA

viruses (Fig. 5). A complex DNA methylation landscape was ob-
served in genomes of the last of these (Jeudy et al. 2020), and viral
AlkB may have roles in its regulation.

Inosine triphosphate pyrophosphatase
(ITPase/HAM1)
ITPase is widespread in cellular organisms, hydrolyzing triphos-
phates of non-canonical purine nucleotides to prevent their incor-
poration in nucleic acids and preserve genome integrity (Simone,
Pavlov and Borgstahl 2013).

A viral ITPase, also known as HAM1, was first identified in Ugan-
dan cassava brown streak virus (UCBSV) and cassava brown streak
virus ( CBSV) (Figs 2 and 6). The two are atypical ipomoviruses
that lack canonical Type-A P1 and HC-pro, encoding a single Type-
B P1 with RNA silencing suppressor activity (Mbanzibwa et al.
2009, Dombrovsky, Reingold and Antignus 2014, Alicai et al. 2016,
Shan et al. 2018). ITPase was later identified in Euphorbia ringspot
virus (EuRSV; Potyvirus ), encoding Type-A P1 and HC-pro (Fig. 6A)
(Knierim, Menzel and Winter 2017). CBSV ITPase, although not es-
sential for infection of experimental hosts, was involved in viral
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Figure 4. Putative zinc-finger motifs and DUF3725 in P1. Alignment of a conserved cysteine-rich region of Type-A and Type-B P1s is shown; inverted
triangles indicate putative zinc-finger residues described to be involved in RNA silencing suppression activity of Type-B homologs (Valli, Dujovny and
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accumulation and symptom development. Contrary to the pre-
dicted antimutagenic activity of ITPase, viral mutation rates were
not reduced in transgenic plants overexpressing CBSV ITPase, nor
they were increased in CBSV clones lacking ITPase (Tomlinson et
al. 2019). Use of improved sequencing approaches and alternative

experimental systems could help shed light on the ITPase roles in
potyvirid infection.

Metagenomics surveys have uncovered ITPase across diverse
RNA and DNA virus taxa (Fig. 6). The ITPase fold is found in plant
and invertebrate RNA viruses (Shi et al. 2016, Le Lay et al. 2020,
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Figure 5. AlkB in Potyviridae and divergent virus taxa. (A) Diagrams of representative ORF bearing AlkB; relevant domains are colored. Species and
taxonomic groups (left) are labeled; BlVY, blackberry virus Y (genus Brambyvirus); ENMV, endive necrotic mosaic virus (genus Potyvirus); Escherichia coli
alkB as a standard. (B) AlkB phylogeny. Protein sequences in plant viruses were aligned (Figure S2), and phylogeny was inferred; numbers beside
branches indicate bootstrap support values; scale bar = 1; E. coli AlkB was included as a reference (black); Potyviridae accessions are labeled (red). (C)
Conserved residues in viral AlkB proteins. Alignment blocks show regions of E. coli AlkB that participate in catalysis (inverted triangles) or
α-ketoglutarate binding (diamonds) (Yu et al. 2006). Position of the first residue is indicated (left), and the (poly)protein size is shown in parentheses.
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Leiva et al. 2022), as well as in bacteriophages and giant DNA
viruses (Kiljunen et al. 2005, Deeg, Chow and Suttle 2018, Sun and
Ku 2021).

Tobacco mosaic virus-like coat protein (TMV-like
CP)
Bymovirus is the only potyvirid genus whose member transmis-
sion is mediated by soil-borne plasmodiophorids (Jiang et al. 2020).
Bymoviruses have bipartite genomes with RNA1 encoding the
potyvirid polyprotein core, and RNA2, which encodes a second
polyprotein processed in P2-1 and P2-2 (You and Shirako 2010). P2-
1 is closely related to HC-pro (see below). P2-2 shares no similarity

with other potyvirid proteins, and bymoviruses with its truncation
or complete deletion are able to replicate and systemically move,
but could not be transmitted by the natural vector (You and Shi-
rako 2010).

Plasmodiophorid-transmitted viruses include Virgaviridae and
Benyviridae members (Tamada and Kondo 2013), whose capsid pro-
teins show homology with bymovirus P2-2 (Dessens and Meyer
1996) (Fig. 7A). HMM-profile scans detect a ‘pseudo’ TMV-like CP
domain conserved in P2-2 of all full-length bymovirus accessions
and absent in oat mosaic virus, whose reference sequence is of
a mechanically propagated isolate which lacks most of P2-2 (You
and Shirako 2010). TMV-like CP sequences of bymoviruses cluster
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Figure 6. HAM1/ITPase in Potyviridae and divergent virus taxa. (A) Diagrams of representative viral ORF including the inosine triphosphate
pyrophosphatase (ITPase/HAM1) fold; relevant domains are colored. Left, taxonomic groups and species are shown; UCBSV, Ugandan cassava brown
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sequences. Alignment blocks show regions of E. coli RdgB that participate in substrate binding or catalysis (inverted triangle) (Savchenko et al. 2007).
Position of the first residue is indicated (left), and (poly)protein size is shown in parentheses.

within a monophyletic clade, which supports their common ori-
gin (Fig. 7B). The P2-2 domains show phylogenetical relatedness
to CP of Virgaviridae, and of wheat stripe mosaic virus (WhSMV), a
putative benyvirus (Fig. 7B). Besides plant viruses, the TMV-like CP
fold is found in algae and invertebrate RNA viruses but has negli-
gible homology with cellular proteins (Nasir and Caetano-Anollés
2015, Shi et al. 2016, Vlok, Gibbs and Suttle 2019).

Helper component proteinase (HC-pro)
HC-pro is a multifunctional leader proteinase with roles in virus
transmission, polyprotein processing, and suppression of antivi-
ral RNA silencing (Valli et al. 2018). The HC-pro RNA silencing sup-
pressor activity is indispensable for potyvirus infection (Garcia-
Ruiz et al. 2015), and, based on current data, it can be safely con-
sidered a Potyvirus core component. Within a family-wide perspec-
tive, the reported genomic variation beyond the genus Potyvirus
supports the HC-pro classification as a non-core module. Sev-
eral ipomoviruses naturally lack HC-pro and its sequence is ab-
sent in ∼3% of potyvirid genomes (Figs 3A and 8A). Experimen-
tal evidence using a clone of wheat streak mosaic virus (WSMV;
Tritimovirus) with complete HC-pro deletion shows the protein is
dispensable for virus replication and movement (Stenger, French
and Gildow 2005). Tritimoviruses as well as ipomoviruses enlist
Type-B P1 as the viral silencing suppressor (Valli, Dujovny and
García 2008, Mbanzibwa et al. 2009, Giner et al. 2010, Young et al.
2012). HC-pro is thus dispensable in potyvirids that encode pro-
teins evolved to take over key functions originally described for
homologs of model potyviruses. Adaptive HC-pro functional loss
and dependency evolution were reported for onion yellow dwarf

virus, which encodes a defective HC-pro trans-complemented by
a co-infecting potyvirus (Jayasinghe et al. 2021). Bymovirus RNA1
lacks leader proteases, whereas RNA2 encodes the HC-Pro ho-
molog P2-1 (Adams, Antoniw and Beaudoin 2005), two function-
ally and phylogenically divergent HC-pro copies are present in
arepaviruses (Qin et al. 2020) (Fig. 8A and B).

HC-pro has a papain-like cysteine protease domain that au-
tocatalytically hydrolyzes its C terminus (Guo, Lin and Ye 2011),
and shows significant sequence divergence within the family that
can be possibly rooted close to the bevemovirus ortholog and by-
movirus P2-1 (Fig. 8B). HC-pro shows homology to the nsP2 main
proteinase of alphaviruses, as well as leader proteinases of clos-
teroviruses, picornaviruses and arteriviruses (Gorbalenya, Koonin
and Lai 1991, Mann and Sanfaçon 2019). Homology identification
between HC-pro and Cryphonectria hypovirus 1 (CHV1) p29 was in-
strumental to postulate the evolutionary relationship between Po-
tyviridae and Hypoviridae, a family of fungal RNA viruses (Koonin et
al. 1991) (Figs 1B and 8C). Papain-like cysteine proteases are com-
mon in cellular organisms, and main components of plant immu-
nity (Misas-Villamil, van der Hoorn and Doehlemann 2016).

Celery latent virus—an outlier
Celavirus is a single-member genus with celery latent virus (CeLV)
as the largest and most divergent of recognized potyvirids (Gibbs
et al. 2020). CeLV polyprotein initiates with a signal peptide that
could translocate reporter proteins to the endoplasmic reticu-
lum (Rose et al. 2019), no other N-terminal signal peptides are
known in potyvirids. Sensitive HMM-profile scans failed to iden-
tify P1, HC-pro, or other potyvirid non-core modules. Inspection
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Figure 7. Monophyletic origin of the pseudo TMV-like CP domains of
Bymovirus. (A) Genomic diagrams of the potyvirid barley yellow mosaic
virus (BaYMV; genus Bymovirus) and soil-borne cereal mosaic virus
(SBCMV; Furovirus), a Virgaviridae vectored by soil-borne
plasmodiophorids. Relevant domains are colored; TMV-like CP, tobacco
mosaic virus-like coat protein domain. BaYMV RNA2 encodes P2-1, with
HC-pro homology, and P2-2, with a conserved ‘pseudo’ TMV-like CP
domain. (B) TMV-like CP phylogeny of bymoviruses and reference RNA
viruses. Protein sequences were aligned (Figure S3), and phylogeny was
inferred; number beside branches indicates the bootstrap support value;
scale bar = 1. Bymovirus accessions are in red—barley mild mosaic
virus (BaMMV), rice necrosis mosaic virus (RNMV), wheat spindle streak
mosaic virus (WSSMV), wheat yellow mosaic virus (WYMV). Wheat
stripe mosaic virus (WhSMV) is a putative benyvirus (Valente et al. 2019).

of the CeLV leader nonetheless reveals the presence of a putative
papain-like protease domain with sequence similarity to HC-pro
and bymovirus P2-1, as well as p29 of the hypovirus CHV1 (Fig. 8C).
The identified catalytic residues and cleavage site are conserved in
Striga potyvirus B (QVG60634.1; Fig. 8C), a virus phylogenetically
related to CeLV and recently reported as Striga-associated poty-
like virus 2 (Choi et al. 2022).

Mechanisms of non-core module evolution
Our pan-family, quantitative survey of the Potyviridae proteomes
defines the abundance of non-core modules and highlights dis-
crete distribution patterns along the evolutionary tree of the fam-
ily (Fig. 9A). High mutation rates, recombination, gene duplication
and de novo emergence as well as extensive gene loss and gain, and
host-niche adaptation drive virus evolution. Which are the main
molecular mechanisms behind non-core proteome expansion in
the family’s evolutionary radiation?

Recombination is common in RNA viruses and an important
component of potyvirid speciation (Sztuba-Solińska et al. 2011). Its

significance in potyvirid non-core module evolution can be clearly
exemplified by AlkB identification in the potyvirus ENMV and the
brambyvirus BlVY (Fig. 9B), possibly linked to independent acqui-
sition events occurred in mixed infections with unrelated plant
viruses.

Gene duplication is a major source of phenotypic novelty in
cellular organism (Innan and Kondrashov 2010). It is however
rare in RNA viruses, with the Closteroviridae coat protein dupli-
cation as a notable exception in plant viruses (Simon-Loriere
and Holmes 2013). Tandem P1 or HC-pro copies in ipomoviruses
and arepaviruses, respectively, were related to duplication events
(Valli, López-Moya and García 2007, Qin et al. 2020). Empirical
results nonetheless show that redundant sequences are rapidly
purged from potyvirid genomes despite the potentially beneficial
effect of the encoded proteins. Artificial insertion of a second HC-
pro copy in the genome of TEV was deleterious and rapidly lost
(Willemsen et al. 2016). Experimental evolution of a PPV clone en-
coding its own Type-A P1 and a second ortholog from a phylo-
genically distant potyvirus led to an array of progeny viruses with
enhanced fitness that were characterized by an almost or com-
plete duplication loss (Rodamilans, Casillas and García 2021). To-
gether the results indicate that both sequence identity and func-
tional redundance constrain gene duplication in potyvirids. Fur-
ther supported by the polyphyletic origin of duplicated copies
(e.g. see Ipomovirus-encoded P1s labeled by II and V in Fig. 3), it
can be concluded that gene duplication events detected in po-
tyvirids are likely by-products of interspecific, ortholog recombi-
nation (Fig. 9B).

Neofunctionalization and functional specialization in po-
tyvirids can be inferred from biochemical and biological char-
acterization of P1 lineages (Fig. 9B). P1 was identified as a host
adaptation determinant based on gene swapping and infection
assays, and on genome-wide analysis of nucleotide variation (Sal-
vador et al. 2008, Maliogka et al. 2012, Shan et al. 2015, Nigam et
al. 2019), at a protein level, it shows conserved structural disorder
(Pasin, Simón-Mateo and García 2014). Structurally flexible seg-
ments in viral proteins increase mutation tolerance and adapt-
ability through acquisition of new linear motifs or protein do-
mains (Gitlin et al. 2014, Charon et al. 2018, Mishra et al. 2020).
Strong evolvability and adaptation capacities of P1 are corrobo-
rated by family-wide identification of heterogenous motifs and
domains within the P1 N termini, as well as the de novo emergence
of PISPO through overprinting. Subfunctionalization allows the di-
vision of functions in duplicated genes (Innan and Kondrashov
2010). A zinc finger motif is conserved in all Type-B proteins but
absent in most of P1s (Fig. 4); subfunctionalization of a Type-B-like
ancestor could have participated in Type-A specialization.

Recently proposed scenarios place the bisegmented by-
moviruses at the evolutionary diversification root of potyvirid
genera, which are suggested to have originated through genomic
segment fusion (Qin et al. 2020). Celaviruses have monopartite
genomes (Rose et al. 2019, Choi et al. 2022), and their ancestral sta-
tus compared to bymoviruses as supported by RdRp phylogeny
makes direction of the multipartitism transition uncertain. Ex-
perimental examples are known of transitions from an originally
non-segmented virus to a bisegmented one (Lucía-Sanz and Man-
rubia 2017). Supported by identification of a conserved pseudo
TMV-like CP in bymoviruses, an intriguing possibility to explain
the bipartidism emergence is the recruitment by a monopar-
tite ancestor of a new genomic segment from co-infecting to-
bamoviruses to access to a vector transmission mode unprece-
dented within the family; transfer of the HC-pro homolog P2-1
could have been required to stabilize this de novo association and
the gained multipartite state.
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aligned (Figure S4), and phylogeny was inferred; number beside branches indicates the bootstrap support value; scale bar = 1. Roman numerals
indicate genera; branch II includes Bymovirus P2-1; Arepavirus members encode an HC-pro tandem and branches of the first and second encoded
copies are labeled with III(1) and III(2), respectively; LWBD, CRCSV, SpMoV are orphans. (C) Putative HC-pro-like domain in Celavirus. Alignment of
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Immune evasion through leader and
non-core modules of potyvirids and other
RNA viruses
In microbial systems, large taxonomic variability can be summa-
rized by sets of redundant, polyphyletic functions (Louca et al.
2018). Functional analyses of cellular pangenomes suggest that
gain of non-core genes influences adaptation of plant microbes
to ecological niches (Box 1). Notwithstanding the low level of
structural and biochemical conservation: Do Potyviridae non-core

modules share biological function(s) and a common evolutionary
driver? We present evidence supporting a main biological role of
these non-core modules in counteracting host defensive reactions
and thus host adaptation.

Potyvirid leader modules and RNA silencing
evasion
Plant RNA viruses have evolved a variety of strategies to modulate
disease severity and escape cellular antiviral responses (Paudel
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and Sanfaçon 2018, Li and Wang 2019, Križnik, Baebler and Gru-
den 2020). Being the first translation products, viral leader cistrons
are considered important virulence and pathogenicity factors that
can coordinate the early infection stages.

Potyvirid leaders are enriched in non-core modules (Fig. 2),
and experimental evidence supports their roles in immune eva-
sion and symptom development (Figs 10 and 11). RNA si-

lencing is a major antiviral mechanism of plants. Potyvirus
HC-pro is among the best characterized silencing suppressors,
with multiple roles that include direct sequestration of small
RNA molecules and inhibition of RNA silencing factors (Valli
et al. 2018). In addition to HC-pro, other potyvirid leader pro-
teins have been implicated in evasion of antiviral RNA silencing
(Fig. 10A).
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Type-A P1 does not suppress RNA silencing in transient expres-
sion assays, and enhances potyviral infection in plants defective
in RNA silencing (Young et al. 2012, Pasin, Simón-Mateo and Gar-
cía 2014), which suggests that the protein has additional roles in-
dependent of silencing suppression. P1 cis-expression strengthens
the HC-pro activity, and improved translation in heterologous sys-
tems was implicated to this effect (Tena Fernández et al. 2013).
P1 evolution for the mere enhancement of HC-pro expression ap-
pears unlikely, since optimization of the nucleotide Kozak context
would be a more economic strategy.

Robust RNA silencing suppressor activity was nonetheless re-
ported for several Type-B proteins common in Ipomovirus, Poace-
virus, Tritimovirus, Roymovirus and Brambyvirus members. These
viruses encode HC-pro with no detectable suppressor activity or
silencing suppressor motifs, or lack the cistron altogether, as seen
in some ipomoviruses. Type-B P1 binds short RNA molecules; this
ability correlates with its silencing suppression activity (Valli, Du-
jovny and García 2008, Kenesi et al. 2017, Gupta and Tatineni
2019a). Other data show that RNA silencing suppressor activity of
Type-B proteins is conferred by GW motifs that guide recognition
and inhibition of the antiviral silencing component ARGONAUTE
1 (AGO1) (Giner et al. 2010, Kenesi et al. 2017). Motif requirements
for silencing suppression activity has been investigated in Type-
B homologs of Ipomovirus, Poacevirus, and Tritimovirus (Giner et al.
2010, Gupta and Tatineni 2019a,b, Chen et al. 2020). Type-B P1 pro-
teolytic activity is not needed for silencing suppression of the ipo-

movirus SPMMV and the poacevirus Triticum mosaic virus (TriMV)
(Giner et al. 2010, Gupta and Tatineni 2019a). The P1 cistron was
expressed alone, however, and it is unclear if proteolysis is needed
during infection to release mature, active silencing suppressors
from polyproteins.

GW motifs involved Type-B protein activity are also present in
the potyviral PISPO, and the SPFMV P1N-PISPO fusion acts as a si-
lencing suppressor that functionally replaces HC-pro (Mingot et al.
2016, Untiveros et al. 2016). GW motifs are present in HC-pro; al-
though not involved in silencing suppression, they are needed to
recruit AGO1 for pro-viral functions (Pollari et al. 2020), which fur-
ther highlights the leader cistron multifunctionality in host adap-
tation.

Negative autoregulation of potyvirid infection for
immune evasion
Diseases result from failures of cellular homeostasis (Kotas and
Medzhitov 2015). Negative feedback and incoherent feedforward
loops are major autocontrol mechanisms that allow biological
systems to adapt to changing environment and perturbations
without homeostasis loss, disease or autoimmunity. They regulate
natural and engineered cellular systems, as well as phase transi-
tions and adaptation to resource changes of bacteriophages (Pit-
sili, Phukan and Coll 2020, Brady et al. 2021, Frei and Khammash
2021, Yao et al. 2021). The importance of negative autoregulation
in plant virus infection just starts to be appreciated.
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Mechanisms have been reported in plant viruses that avoid cel-
lular toxicity or excessive inhibition of antiviral pathways, which
can trigger host damage and pathogen fitness loss (Paudel and
Sanfaçon 2018, Križnik, Baebler and Gruden 2020). Promotion of
RNA silencing spread was reported for tobamovirus movement
protein and sobemovirus P1 (phylogenically unrelated to potyvirid
P1), restriction of the silencing suppressor activity of cucumber
mosaic virus 2b, geminiviral βC1 and polerovirus P0 was proposed
to minimize host homeostasis perturbation (Vogler et al. 2008, La-
combe et al. 2010, Zhang et al. 2017, Ismayil et al. 2020, Watt et al.
2020, Clavel et al. 2021, Shukla et al. 2021).

HC-pro is a symptom determinant; its uncontrolled expres-
sion severely affects plant physiology, growth, fertility, and can
trigger hypersensitive response or lethal necrosis (Pacheco et al.
2012, Valli et al. 2018). These findings suggest that tight control
of proteins with strong silencing suppressor activity is desirable
for optimal viral fitness, but how can it be achieved by an RNA
virus that lacks transcriptional regulations? Recent data on P1
highlight a post-translational negative autoregulation that pro-
vides an evolutionary answer to the virus dilemma of counter-
acting defenses of the host without killing it. P1 can antago-
nize HC-pro, since the P1-HC-pro fusion lacks RNA silencing sup-
pressor activity and could not sustain viral infection in hosts
with unopposed antiviral immunity (Pasin, Simón-Mateo and Gar-
cía 2014). P1 is itself under autoinhibitory control. Several pro-
teases display autoinhibitory domains or are synthesized as pre-
cursors that undergo structural rearrangements to activate (Hed-
strom 2002, Gohara and Di Cera 2011, Trudeau et al. 2013). N-
terminal deletions of PPV P1 identified a gain-of-function phe-
notype consistent with an autoinhibitory mechanism in which
the N terminus negatively regulates P1 proteolysis, and self-
cleavage results from autoinhibition relief by plant co-factor(s)
(Pasin, Simón-Mateo and García 2014, Shan et al. 2018). A re-
cent study model proposes the autoinhibited P1 self-cleavage as
an immune evasion mechanism that regulates PPV replication
through controlled release of the functional silencing suppressor
HC-pro (Pasin et al. 2020). Self-controlled P1 processing kinetics
would thus balance the strength of RNA silencing suppression
with magnitude of phytohormone-mediated defense activation
to mitigate resource burden and promote long-term viral fitness
(Fig. 10B).

Additional immune evasion roles of potyvirid
non-core modules
RNA silencing and other RNA metabolic pathways contribute to
plant defense against potyvirids (Li and Wang 2019, Xu et al. 2020).
They are further interconnected with autoimmunity, hormonal,
and autophagic responses to provide robust plant immunity and
tolerance to viruses (Cui et al. 2020, Pasin et al. 2020, Pitzalis et al.
2020, Shukla et al. 2021).

HC-pro interacts physically with RNA turnover components
and inhibits EXORIBONUCLEASE 4 (XRN4) to counteract antivi-
ral RNA decay (Fig. 10A) (Li and Wang 2018, De et al. 2020). Clover
yellow vein virus (ClYVV) P1 was involved in overcoming the reces-
sive resistance conferred by eukaryotic translation initiation fac-
tor 4E in pea (Nakahara et al. 2010). Selective translation enhance-
ment of viral genomes by TEV P1 has been reported, which might
contribute to suppressing expression of host immune factors
(Martínez and Daròs 2014). An evasion strategy of alphaviruses
relies on disruption of stress granule formation by G3BP target-
ing mediated by peptide motifs that resemble the IxFG motif con-
served in P1 N termini (Pasin, Simón-Mateo and García 2014, Panas

et al. 2015, Reuper and Krenz 2021); P1 roles in stress granule pro-
cesses are unknown.

Methylation impacts small RNA stability and loading in silenc-
ing complexes, and it is modulated by several silencing suppres-
sors (Ji and Chen 2012, Csorba, Kontra and Burgyán 2015). HC-pro
alters small RNA methylation through HUA ENHANCER1 methyl-
transferase interference and local disruption of the methionine
cycle (Ji and Chen 2012, Ivanov et al. 2016, Del Toro et al. 2021). Roles
of AlkB and its RNA demethylase activity in potyvirid infection are
less clear (Fig. 10A). It has been suggested that regulation of RNA
methylation during infection contributes to viral immune evasion
by fine-tuning viral replication rates or by post-transcriptional
control of host gene expression (van den Born et al. 2008, Zhang,
Qian and Jia 2021). N6-methyladenosine amount modulation was
recently proposed as a new plant antiviral mechanism that hin-
ders long-distance viral movement (Martínez-Pérez et al. 2021),
and recent data indicate it could be effective against potyvirids
as supported by reported changes in N6-methyladenosine levels
upon bymovirus infection (Zhang et al. 2021).

HAM1 and its ITPase activity were recently shown to be CBSV
necrosis determinants (Tomlinson et al. 2019). Although the mech-
anistic details were not studied, levels of inosine triphosphate (an
ITPase substrate) were shown to regulate key factors potentially
involved in antiviral immunity such as the viral RdRp catalytic
speed and possibly viral replication rates, as well as plant stress
response activation (Dulin et al. 2015, Kazibwe et al. 2020).

Recent results indicate possible P1 roles in coordinating plant
homeostasis during mixed infections, since the protein impaired
activity of the crinivirus silencing suppressor P25 (Domingo-Calap
et al. 2021).

Expansion and immune evasion roles of RNA
virus leaders
Diversification and immune evasion roles have been described
for leaders or 5’ genomic cistrons of phylogenetically divergent
groups of RNA viruses of plants, fungi and animals.

Plant RNA viruses of the Sobemoviridae family, genera Enam-
ovirus and Polerovirus (family Luteoviridae), as well as Waikavirus
and Fabavirus (family Secoviridae) belong to the picorna-like su-
pergroup (Wolf et al. 2018). Cistrons encoded by their 5’ genomic
portions show RNA silencing suppressor activity (Csorba, Kontra
and Burgyán 2015, Sõmera, Sarmiento and Truve 2015, Stewart
et al. 2017, Carpino et al. 2020). Leader proteinases of Closteroviri-
dae (phylum Kitrinoviricota) affect pathogen virulence, superinfec-
tion exclusion, and promote viral amplification, possibly by vi-
ral replicase activation or subversion of host antiviral defenses
(Dolja, Kreuze and Valkonen 2006, Atallah et al. 2016, Kang et al.
2018). Similar to potyvirids, proliferation of closterovirus leader
proteases is reported. A single, a tandem, or three copies of leader
proteinases are found, respectively, in genomes of beet yellows
virus, citrus tristeza virus, and actinidia virus 1, among others
(Fig. 11).

Fungal RNA viruses of Hypoviridae recruit leader cistrons to
counteract antiviral immunity. RNA silencing suppressor activity
was reported for the CHV1 leader protease p29, and p24 of Cry-
phonectria hypovirus 4 (CHV4; Fig. 11) (Segers et al. 2006, Aulia et al.
2021).

Among animal viruses and similar to potyvirids, picornaviruses
show expansion of genomic layouts with highly divergent lead-
ers (Fig. 11) (Gorbalenya and Lauber 2010, Zell 2018). Their leader
proteins have a low level of structural and biochemical conserva-
tion, but share common biological functions in immune evasion
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(Agol and Gmyl 2010). Leader proteinase (Lpro) of foot-and-mouth
disease virus (FMDV; Aphthovirus) suppresses host cellular trans-
lation and antiviral responses by direct proteolysis of host trans-
lation factors and other RNA-binding proteins, signaling compo-
nents, and conjugated ubiquitins (Saiz and Martinez-Salas 2021).
Cardiovirus L, which is not a protease, antagonizes immune re-
sponses by suppressing interferon production, and can be func-
tionally replaced by FMDV Lpro (Freundt, Drappier and Michiels
2018, Visser et al. 2020). Theiler’s murine encephalomyelitis virus
(TMEV; Cardiovirus) encodes the accessory L∗, which directly tar-
gets RNase L ankyrin domains for interferon pathway inhibition
and virus persistence promotion (Drappier et al. 2018). Murine
but not human RNase L was found to be inhibited by L∗ (Drap-
pier et al. 2018); this species-specific activity brings to mind the
host-dependent activation of potyvirid Type-A P1 proteolysis (see
above). The small protein UP was recently identified in the 5’ re-
gion of diverse enteroviruses; UP modulates virus infection and
tropism, and was suggested to participate in autophagy subver-
sion for virus particle release (Lulla et al. 2019).

Leader size and domain organization vary considerably among
members of the order Nidovirales. Arteriviruses are important vet-
erinary disease agents; nsp1 is the first and most variable pro-
tein encoded. It is a leader proteinase, and up to three active
copies are found in Deltaarterivirus (Vatter et al. 2014, Gulyaeva
et al. 2017). Nsp1 proliferation resembles those of potyvirids en-
coding tandems of P1 or HC-pro (Fig. 2). Arterivirus nsp1 and
its copies nsp1α, nsp1β, and nsp1γ counteract host immune de-
fenses through interferon pathway suppression (Han and Yoo
2014, Lunney et al. 2016). Nsp1 of betacoronaviruses is released
from polyprotein N termini to rapidly repress translation of cellu-
lar transcript and expression of innate immunity factors by 40S
ribosomal subunit association (Nakagawa and Makino 2021). Im-
mune evasion roles are conserved in nsp1 of alphacoronaviruses
(Shen et al. 2020).

Pestivirus Npro (phylum Kitrinoviricota) is an accessory leader
proteinase that acts as an interferon pathway antagonist to pre-
vent cell apoptosis (Tautz, Tews and Meyers 2015, Jo et al. 2019).

Roles in immune evasion thus appear to be a functional link
that connects Potyviridae non-core modules to each other, as well
as leader cistrons of potyvirids with those of multiple RNA viruses
(Fig. 11).

Biotech appeal of non-core modules
Infectious clones—established tools for potyvirid
biological characterization and biotechnological
advances
The accessory nature identified in non-core modules warrants
the use of suitable experimental systems for their biological role
characterization. Full-length infectious clones are universal, in-
dispensable tools for virus biology research and the development
of experimental systems for investigating diseases (Pasin, Men-
zel and Daròs 2019, Kannan et al. 2020). They have been gen-
erated for members of Potyvirus (Domier et al. 1989), Tritimovirus
(Choi et al. 1999), Macluravirus (Kondo and Fujita 2012), Poacevirus
(Tatineni et al. 2015), Ipomovirus (Pasin et al. 2017), Celavirus (Rose
et al. 2019), Arepavirus (Qin et al. 2020), as well as for bipartite
viruses of Bymovirus (You and Shirako 2010, Ohki, Sasaya and
Maoka 2019). Homology-based cloning methods are revolutioniz-
ing the potyvirid infectious clone construction, since they are ef-
ficient and require limited viral sequence information (Desbiez et
al. 2012, Zhao et al. 2020). T-DNA vectors with stabilizing features
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Figure 12. Potyvirid vectors for sequence delivery and expression in
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have been used for one-step assembly of potyvirid clones suit-
able for Agrobacterium-mediated delivery (Pasin et al. 2017, 2018).
A recently developed synthetic genomics framework with plant
virome capacity could streamline characterization and engineer-
ing of plant viruses with no biological material need (Pasin 2021).

Non-core module characterization to guide plant
expression vector development
Virus infectious clones can be engineered and optimized as ex-
pression vectors for plant biotechnology and synthetic biology
(Fig. 12) (Pasin, Menzel and Daròs 2019, Khakhar and Voytas
2021). Vectors based on potyvirids have been applied for dis-
parate uses, ranging from production of heterologous peptides in
plants, to flowering induction, gene silencing, metabolic engineer-
ing, CRISPR/Cas-targeted plant genome editing, and reprogram-
ming of crops and their organelles (Lin et al. 2007, Llorente et al.
2020, Martí et al. 2020, Torti et al. 2021, Tuo et al. 2021, Uranga et
al. 2021, Xie et al. 2021). Knowledge of Type-A P1 and its prote-
olytic activity has been instrumental in generating the first potyvi-
ral vectors (Fig. 12A). The bacterial β-glucuronidase (GUS) gene
was inserted between TEV P1 and HC-pro, and the heterologous
protein was released by polyprotein proteolysis mediated by P1
alone or in combination with NIa-pro (Dolja, McBride and Car-
rington 1992, Carrington et al. 1993). The same approach was used
successfully in potyvirids encoding Type-B P1. GUS or fluorescent
proteins were expressed using viral vectors derived from WSMV
(Tritimovirus) (Choi et al. 2002, Tatineni et al. 2011), and TriMV
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(Poacevirus) (Tatineni et al. 2015). The 2A ‘self-cleaving’ peptides
of FMDV or Thosea asigna virus were applied to engineer NIa-pro
independent processing of potyvirid polyproteins (Tatineni et al.
2011, Pasin, Simón-Mateo and García 2014).

The ClYVV P1/HC-pro junction was engineered for co-
expression of multiple heterologous proteins that were released
by P1 and NIa-pro proteolysis (Masuta et al. 2000). More recently,
ClYVV was used for plant overexpression of a gibberellin catabolic
enzyme inserted between P1 and HC-pro (Fig. 12B). Infections of
pea and broad bean plants with the recombinant ClYVV conferred
dwarfism, an agronomically important trait (Torti et al. 2021). Tra-
ditional plant breeding is time- and cost-consuming, and innova-
tive strategies are needed for accelerated and tailored crop trait
manipulation (Steinwand and Ronald 2020, French et al. 2021).
Transient, viral-mediated manipulation of plant size and other
agronomic performance traits holds promise to become a new
standard for fast, flexible crop reprogramming.

The NIb/CP polyprotein junction is an insertion site used for
heterologous gene expression that mimics the natural HAM1 lo-
cation in potyvirids (Fig. 2). Simultaneous insertions at the P1/HC-
pro and NIb/CP junctions allowed production of two recombinant
proteins from a single potyviral vector (Beauchemin, Bougie and
Laliberté 2005). Consistent with the AlkB location found in po-
tyvirids (Fig. 2), a new insertion site suitable for heterologous gene
expression was identified within the P1 N terminus (Fig. 12A). It
was used alone or in combination with inserts at the P1/HC-pro
and NIb/CP junctions for production of up to three recombinant
proteins (Rajamäki et al. 2005, Kelloniemi, Mäkinen and Valkonen
2008). Heterologous protein expression has been reported by gene
insertion upstream of TEV P1 (Fig. 12A). This strategy allowed cor-
rect targeting of heterologous proteins to subcellular compart-
ments (Majer, Navarro and Daròs 2015), and was used for metabo-
lite production by potyvirus-mediated enzyme delivery to chloro-
plasts (Martí et al. 2020).

In addition to protein overexpression, heterologous sequences
inserted within P1 or at the P1/HC-pro junction can trigger silenc-
ing of plant homologs (Gammelgård, Mohan and Valkonen 2007,
Xie et al. 2021). Potyvirid vectors have been used for virus-induced
gene silencing, as well as for simultaneous plant gene silencing
and heterologous protein production (Gammelgård, Mohan and
Valkonen 2007, Tuo et al. 2021, Xie et al. 2021).

Non-core modules—untapped synthetic biology
resources
Given their stringent specificity and orthogonality, potyvirid pro-
teinases have been engineered for commercial purposes as well
as for synthetic biology applications to control cellular func-
tions (Chung and Lin 2020, Dyer and Weiss 2021). These proteins
have been integrated into synthetic signaling pathways with de-
signs that included induction of degron-dependent protein deple-
tion, autoinhibition release of transcription regulators, and en-
zyme reconstitution through dimerization inhibition or activation
(Fernandez-Rodriguez and Voigt 2016, Gao et al. 2018, Fink et al.
2019). Use of potyvirid leader proteinases in synthetic genetic cir-
cuitries has not yet been reported. Given its activation require-
ments and strict cis-cleavage activity, Type-A P1 could nonetheless
be an appealing choice for biodesigns with high host specificity or
biocontainment levels.

Synthetic, tight control over protein activity can be achieved by
destabilizing tags, oligomerization domains, inhibitory modules,
or subcellar sequestration signals (Alberstein, Guo and Kortemme
2021, Chen and Elowitz 2021). Type-A P1 was shown to undergone

rapid degradation in plants and to inhibit activity of downstream
fusion partners, such as HC-Pro or GUS (Verchot and Carrington
1995, Martínez and Daròs 2014, Pasin, Simón-Mateo and García
2014, Shan et al. 2015), and could be repurposed for conditional,
fine-tuned activation of recombinant proteins.

HC-pro and other RNA silencing suppressors from plant viruses
are used routinely to enhance protein yields of plant transient
expression systems (Csorba, Kontra and Burgyán 2015, Sainsbury
2020); Type-B proteins and P1N-PISPO could be also useful in sim-
ilar applications. In-depth characterization of potyvirid AlkB and
ITPase activities may also lead to novel tools for epigenetic or
metabolic engineering applications.

Virus-directed continuous evolution has been used to obtain
biomolecules with improved or new functions in prokaryotic and
mammalian systems (Morrison, Podracky and Liu 2020), but suit-
able methods are lacking for plants. Experimental studies aiming
to evaluated the evolutionary fate of sequences inserted in po-
tyvirid genomes have revealed constraints linked to the evolution-
ary time, as well as genome position and specific insert features
(Willemsen et al. 2016, 2017, Willemsen and Zwart 2019). A potyvi-
ral reverse genetic system was nonetheless engineered for forced
evolution of P1 proteins (Rodamilans, Casillas and García 2021).

Leader proteinases—overlooked targets for
antiviral strategies
Human viruses are targeted by proteinase inhibitor therapies to a
clinically useful level (Agbowuro et al. 2018); yet the use of similar
antiviral strategies for plant virus control is lagging. Use of pro-
tease inhibitors for potyvirus control has shown limited success
so far (Gutierrez-Campos et al. 1999), but new promising antiviral
strategies have been reported. A plant protein involved in bacte-
rial immunity was successfully repurposed to specifically sense
NIa-pro and trigger antiviral cell death (Kim et al. 2016). This syn-
thetic antiviral system has been implemented in soybean, and fur-
ther optimized for enhanced control of the NIa-pro-induced cell
necrosis (Helm et al. 2019, Pottinger et al. 2020). Potyvirid leader
proteinases are attractive antiviral targets, since P1 and HC-pro
defects preclude infectivity (Kasschau and Carrington 1995, Ver-
chot and Carrington 1995, Pasin, Simón-Mateo and García 2014,
Shan et al. 2015). A zucchini yellow mosaic virus isolate with re-
duced HC-pro silencing suppressor activity has been registered
since 2007 for the US market as a cross-protection agent of cucur-
bits (U.S. Environmental Protection Agency 2007). RNA silencing
transgenic approaches that target P1 or HC-pro confer potyvirid
resistance in crops (Di Nicola-Negri et al. 2005).

Investigation of non-core module roles in plant-potyvirid in-
teractions recently allowed identification of new host factors and
signaling pathways that could be exploited in antiviral strategies.
High abscisic acid (ABA) levels were found to accumulate dur-
ing infection of a PPV mutant having a truncated P1 (Fig. 10B);
the finding prompted evaluation of ABA effects on infection. De-
fects of the cap-binding complex components ABA HYPERSENSI-
TIVE1/CAP BINDING PROTEIN 80 (ABH1/CBP80) and CAP BIND-
ING PROTEIN 20 (CBP20) are known to confer ABA hypersensitiv-
ity and were shown to significantly delay PPV infection (Pasin et
al. 2020). Cap-binding complex contribution in antiviral defense
was reported in other organisms, including insects and mam-
mals (Gebhardt et al. 2019, Blagrove and Barribeau 2021). ABA
treatments promote resistance to PPV, and possibly to other po-
tyvirids (Alazem, Widyasari and Kim 2019, Zhang et al. 2019, Pasin
et al. 2020, Chiu et al. 2021). Rapid catabolism, photolability, and
chemical instability make ABA unsuited for agricultural purposes.
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Availability of synthetic ABA receptor agonists with high stability
and binding affinities nonetheless paves the way for crop antivi-
ral strategies based on chemical manipulation of ABA signaling
(Hewage et al. 2020).

Research outlooks and conclusions
The phylum Pisuriviricota includes extremely diversified RNA
viruses whose radiation was proposed to be concomitant with key
eukaryogenesis events (Koonin et al. 2008). Potyviridae is currently
the largest family of Riboviria (Fig. 1A), yet thousands of novel RNA
viruses await accommodation in recognized taxa (Callanan et al.
2020, Edgar et al. 2022).

Gene gain and loss, specialization, and de novo emergence have
promoted the diversification of leader layouts of Potyviridae (Figs 2
and 9), as well as of divergent RNA viruses of plants and ani-
mals, e.g. closteroviruses, picornaviruses and arteriviruses (Dolja,
Kreuze and Valkonen 2006, Valli, López-Moya and García 2007,
Agol and Gmyl 2010, Gorbalenya and Lauber 2010, Gulyaeva et
al. 2017, Zell 2018). Functional expansion of a polyprotein core
through domain gain is hypothesized to have taken part in the
evolutionary transition from plastroviruses to modern potyvirids
(Lauber et al. 2019). We point out that evolution of potyvirid non-
core domains is diverse and can potentially be traced to multiple
or single acquisition events (see AlkB in Potyvirus and Brambyvirus,
or the pseudo TMV-like CP in Bymovirus, respectively; Figs 5 and 7),
recombination and retention of functionally divergent homologs
(P1 tandem in Ipomovirus; Fig. 3), as well as emergence of a new,
overlapping protein module through overprinting (PISPO in Po-
tyvirus). In-depth database search and sequence analyses uncov-
ered a putative HC-pro-like domain within Celavirus (Fig. 8C), as
well as the presence of the ITPase fold (HAM1, a former oddity of
a narrow group of potyvirids) in taxonomically divergent RNA and
DNA viruses (Fig. 6).

Identification of factors that interact with potyvirid non-core
proteins and elucidation of host perturbations linked to their
functional alteration are indeed major research priorities for dis-
secting their niche adaptation roles. Complete kinetic models
were described for RNA viruses that share with potyvirids sim-
ilar genome replication and protein expression strategies (Zitz-
mann et al. 2020, Lopacinski et al. 2021). Mathematical models
could provide a quantitative understanding of the complex dy-
namics that regulate potyvirid replication as well as host im-
mune responses and viral counterstrategies (Pasin et al. 2020). Ac-
cessory genes shape cellular pangenome diversity and are en-
riched in plant–microbe interaction determinants (Box 1), and
models have been developed to describe pangenome gene con-
tent variation (Domingo-Sananes and McInerney 2021). Can em-
pirical data from plant-potyvirid systems contribute to theoretical
frameworks for understanding cellular pangenome evolution and
ecological niche adaptation?

Functional redundancy of non-core modules has allowed the
establishment of relationships between potyviral HC-pro and the
non-canonical silencing suppressors P1N-PISPO and Type-B P1.
HC-pro counteracts RNA decay antiviral defenses and associates
with RNA turnover components for infection enhancement (Li
and Wang 2018, De et al. 2020). Are these and additional HC-
pro activities performed by other non-core modules? P1, HC-pro,
and HAM1 are involved in symptom development (Valli et al.
2018, Tomlinson et al. 2019, Pasin et al. 2020). Is there any mech-
anistic connection between these otherwise structurally unre-
lated modules? Members of Nidovirales, the largest known RNA
viruses, have evolved proofreading replication for maintaining in-

tegrity of genomes that can reach ∼40 kb (Robson et al. 2020). Po-
tyvirids are among the largest plant viruses and have unusually
low mutation rates estimated to be in the range 10−5–10−6 muta-
tions/site/generation (Sanjuán et al. 2010, Tromas and Elena 2010).
Are functions carried out by AlkB, HAM1, or other modules condi-
tioning the potyvirid evolution rates? Answers to these questions
will assist in the better understanding contribution of the non-
core proteome expansion in the Potyviridae evolutionary radiation
and RNA virus evolution.

Finally, driven by advances in high-throughput sequencing
technologies and easy access to underexplored geographical and
ecological areas (Villamor et al. 2019, Maclot et al. 2020, Sommers
et al. 2021), discovery of new potyvirids and poty-like ancestors
with unusual genomic organization, atypical protein modules,
and niche-optimized traits is likely to be further expanded in the
near future (Lauber et al. 2019, Wolf et al. 2020). Extending efforts
for potyvirid discovery and proteome functional characterization
would improve understanding of non-core module roles in host
adaptation evolution to eventually guide design of novel antiviral
strategies and synthetic biology solutions.

Box 1. Non-core genes in plant–microbe
interactions
Host niche adaptation is a major driving force of virus evolu-
tion (Simmonds, Aiewsakun and Katzourakis 2019), and func-
tional characterization of the Potyviridae non-core modules sup-
ports their roles in symptom development and antiviral immu-
nity evasion (main text). Pangenomes are increasingly used to
represent known structural variants of cellular taxa, wherein
the adaptive nature of accessory and rare genes is subject
to debate (Domingo-Sananes and McInerney 2021, Coelho et
al. 2022). Recent data nonetheless highlight the critical con-
tribution of gene content variation in the evolution of plant-
microbe dynamics and the genetic potential of holobionts
(Badet and Croll 2020, Zilber-Rosenberg and Rosenberg 2021).
Plant pathogenicity and adaptation factors are components of
accessory genomes, lineage-specific replicons or chromosomes
of bacterial and fungal species (Ma et al. 2010, Levy et al. 2017,
Laflamme et al. 2020, Langner et al. 2021, Chou et al. 2022).
Among plants, non-core genes of Arabidopsis thaliana, rice, rape-
seed, cabbage, sunflower, and wheat are known actuators of the
host–pathogen warfare (Zhao et al. 2018, Hübner et al. 2019, Van
de Weyer et al. 2019, Bayer et al. 2020, Upadhyaya et al. 2021).
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