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Abstract
The Drosophila giant fiber (GF) escape circuit is an extensively studied model for neuron connectivity and function.
Researchers have long taken advantage of the simple linear neuronal pathway, which begins at peripheral sensory
modalities, travels through the central GF interneuron (GFI) to motor neurons, and terminates on wing/leg muscles. This
circuit is more complex than it seems, however, as there exists a complex web of coupled neurons connected to the
GFI that widely innervates the thoracic ganglion. Here, we define four new neuron clusters dye coupled to the central
GFI, which we name GF coupled (GFC) 1–4. We identify new transgenic Gal4 drivers that express specifically in these
neurons, and map both neuronal architecture and synaptic polarity. GFC1–4 share a central site of GFI connectivity,
the inframedial bridge, where the neurons each form electrical synapses. Targeted apoptotic ablation of GFC1 reveals
a key role for the proper development of the GF circuit, including the maintenance of GFI connectivity with upstream
and downstream synaptic partners. GFC1 ablation frequently results in the loss of one GFI, which is always
compensated for by contralateral innervation from a branch of the persisting GFI axon. Overall, this work reveals
extensively coupled interconnectivity within the GF circuit, and the requirement of coupled neurons for circuit
development. Identification of this large population of electrically coupled neurons in this classic model, and the
ability to genetically manipulate these electrically synapsed neurons, expands the GF system capabilities for the
nuanced, sophisticated circuit dissection necessary for deeper investigations into brain formation.
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Significance Statement

Genetic model neural circuits with individually identifiable neurons help us to understand how nervous
systems wire together during development, and then operate through coordinated chemical and electrical
signaling. The Drosophila giant fiber circuit has long served as such a model, due to large neuron size,
genetic malleability, and easily visualized behavioral output: a jump in response to a threat. This study
unveils new members of this circuit, all of which synapse with the circuit at one site on the central giant fiber
interneuron. We use new tools to identify and transgenically manipulate these neurons and show that these
neurons are required for proper circuit development. This study provides a detailed circuit map for further
dissection of neuronal connectivity and electrically coupled communication.
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Introduction
The Drosophila giant fiber (GF) circuit is particularly

suitable for single-neuron resolution neurodevelopmental
studies for a number of reasons, all related to its role as an
escape response circuit (Allen et al., 2006; Boerner and
Godenschwege, 2011). The need for rapid signal conduc-
tion from the senses through brain to muscles promoted
the evolution of very large neurons throughout this circuit,
facilitating their visualization and manipulation (Power,
1948; Borgen et al., 2017). This enlargement is most
prominent in the long-distance GF interneuron (GFI),
which consolidates sensory information in the brain and
projects through the neck into the thoracic ganglion (TG)
via giant axons (Allen et al., 1998; Pézier et al., 2014). To
increase communication speed and fidelity between neu-
rons, the GF circuitry uses mixed chemical and electrical
synapses (Thomas and Wyman, 1984; Blagburn et al.,
1999; Fayyazuddin et al., 2006). These electrical syn-
apses, composed of the Shaking-B innexin, can pass
small tracer dyes to identify coupled partner neurons
(Phelan et al., 1996).

The GF circuit targets two large muscle sets used for
rapid escape behavior, the tergotrochanteral muscle
(TTM), which controls the legs for jumping, and the dorsal
longitudinal muscle (DLM), which controls the wings
(Tanouye and Wyman, 1980). The escape behavior is
easily scored, and muscles are accessible to electrophys-
iological recordings, providing two outlets to study whole-
circuit function (Martinez et al., 2007; Augustin et al.,
2011; von Reyn et al., 2014). The GFI connects to the TTM
via the tergotrochanteral motoneuron (TTMn) and to the
DLM via the peripherally synapsing interneuron (PSI),
which in turn synapses onto the dorsal longitudinal mo-
toneuron (Tanouye and Wyman, 1980; Allen et al., 2006).
While the GF circuit is reported to be quite simple,
electrophoretic injections with small dyes make it clear
that the GFI is actually part of a much larger circuit
network of undescribed neurons (Boerner and Goden-
schwege, 2011; Enneking et al., 2013; Kennedy and
Broadie, 2017).

This larger GF circuit should come as no surprise, as
most classically studied circuits are continuously being
updated to include new neurons, increasing the appreci-
ation of the complexity and interconnectivity within the
brain (Lin et al., 2016; Talay et al., 2017; Cande et al.,

2018). Describing the wiring diagrams of classic circuits
within model brains is important for understanding how
local circuits accomplish processing tasks while also
overriding or promoting behaviors controlled by sepa-
rated but interconnected circuits (Gaudry and Kristan,
2009; Stensmyr et al., 2012; von Reyn et al., 2014). More
complex model circuits can better help to answer ques-
tions about how circuits develop and evolve over time
(Ward et al., 2015; Tosches, 2017). Combining GF circuit
manipulability with the full complement of GFI-coupled
neurons should enable robust new avenues for experi-
mentation on how neurons select partners, determine
synaptic strength, and regulate neighboring circuits.

In this study, we use neurobiotin (NB) dye injection to
map previously uncharacterized GF-coupled (GFC) neu-
rons. We take advantage of the FlyLight Gal4 library col-
lection to identify transgenic drivers for the GFC neurons
(Brand and Perrimon, 1993; Jenett et al., 2012). This
approach defined four new GFI-coupled neuron clusters
(i.e., GFC1–4) within the GF circuit, which we characterize
for their architecture, neuronal polarity, and synaptic con-
nectivity. We show that the inframedial bridge (IB; Allen
et al., 1998) is the GFI site where all the GFC neurons
come together to synapse with the circuit. We ablate GF
neurons by transgenic expression of the apoptotic head
involution defective (Hid) protein (Zhou et al., 1997) to find
that GFC1 and PSI are required for proper GFI develop-
ment. We also find GFI axons always compensate for the
loss of their bilaterally symmetric partner through new
contralateral innervation. Together, this work broadens
the known GF circuit and opens new avenues for studying
electrically coupled circuit development, function, and
plasticity.

Materials and Methods
Drosophila genetics

All animals were maintained on a standard cornmeal/agar/
molasses Drosophila food diet in a 12 h light/dark cycling in-
cubator at 25°C. Timed-lay eggs were collected for 2–3 d, and
experimental animals were selected from rearing tubes 10–14
d later. The following Drosophila lines were used for genetic
crosses: w1118 (RRID:BDSC_3605); w1118; P{GMR78A06-
GAL4}attP2 (Jenett et al., 2012; RRID:BDSC_46999); w1118;
P{GMR73C07-GAL4}attP2 (RRID:BDSC_46689); w1118;
P{GMR24H07-GAL4}attP2 (RRID:BDSC_49317); w1118;
P{GMR42A06-GAL4}attP2 (RRID:BDSC_41245); w1118;
R10B11-p65.AD}attP40 (Dionne et al., 2018; RRID:
BDSC_68807); w1118; P{GMR14A06-GAL4.DBD}attP2 (RRID:
BDSC_68738); w1118, y1; 10X UAS-ivs-mCD8::GFP attP40
(Pfeiffer et al., 2010); UAS-hid.Z/CyO (Zhou et al., 1997; RRID:
BDSC_65403); and w1118; UAS-DenMark, UAS-syt::GFP
(Zhang et al., 2002; Nicolai et al., 2010; RRID:BDSC_33064).
Both females and males were used in this study, with sex-
specific selection stated in figure legends. All genotypes were
verified with visible markers.

Dye iontophoresis
GFI dye injections were performed similar to the previ-

ously published methods (Boerner and Godenschwege,
2011; Kennedy and Broadie, 2017). Briefly; glass elec-
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trodes (Kwik-Fil Borosilicate Glass 1B100F-4, World Pre-
cision Instruments) were pulled on a laser electrode puller
(Model P-2000, Sutter Instrument) to 10 M� resistance (3
M KCl). Electrodes were filled with 0.25% tetramethylrho-
damine isothiocyanate (TRITC)-dextran (10 kDa; Life
Technologies) and 7% neurobiotin (Vector Laboratories;
RRID:AB_2313575) in double-distilled dH2O. Filled elec-
trodes were placed on a silver chloride wire mounted on a
PCS-5000 Micromanipulator (Burleigh). Animals in physi-
ologic saline were cut along the dorsal midline to access
the cervical connective (CC), at which electrodes were
inserted into the GFI. A square-pulse stimulator (Grass
S48, Astro-Med) provided 7.5 100 ms pulses/s for 2 min
with the 20 nA injected current monitored by an
AxoClamp2B Amplifier. A Digidata data acquisition sys-
tem (1320A, Molecular Devices) was controlled with
Clampex 9.2 software.

Confocal imaging
Brains were fixed for 30 min in 4% paraformaldehyde/

sucrose (Electron Microscopy Services) in PBS (pH 7.2; Life
Technologies) and then rinsed 3� with PBS, and blocked for
1 h with 1% bovine serum albumin (BSA; Sigma-Aldrich) in
PBST (PBS � 0.2% Triton X-100; Thermo Fisher Scientific).
Labels were diluted in PBST with 0.2% BSA. The following
labels were used: streptavidin::Cy5 (1:20; Life Technologies);
rabbit anti-ShakB (1:250; Phelan et al., 1996); rabbit anti-
GFP (1:2000; Abcam; RRID:AB_303395); FITC goat anti-
GFP (1:500; Abcam; RRID:AB_305635); rabbit anti-RFP (1:
500; Rockland; RRID:AB_2209751); Alexa Fluor 488-
conjugated donkey anti-goat (1:250; Thermo Fisher
Scientific; RRID:AB_2534102); Alexa Fluor 488-conjugated
donkey anti-rabbit (1:250; Thermo Fisher Scientific; RRID:
AB_2556546); Alexa Fluor-568-conjugated donkey anti-
rabbit (1:250; Thermo Fisher Scientific; RRID:AB_2534017);
Alexa Fluor-647 conjugated donkey anti-rabbit (1:250;
Thermo Fisher Scientific; RRID:AB_2536183); and Alexa Flu-
or-633-conjugated goat anti-rabbit (1:250; Thermo Fisher
Scientific; RRID:AB_141419). Next, preparations were rinsed
3� for 30 min in PBST and 1� in PBS, and then were
mounted on glass microscope slides (Probe On Plus 25 �
75 � 1.0 mm, Thermo Fisher Scientific) in 2,2´-thiodiethanol
(Sigma-Aldrich; Staudt et al., 2007). To prevent crushing,
double-sided poster tape (Scotch) was placed on each side
of the brains. Coverslips (catalog #1.5H, Zeiss) were sealed
with nail polish (Hard as Nails, Sally Hansen). Fluorescent
images were collected using a Zeiss LSM 880 Confocal
Microscope with an AiryScan module, which has increased
lateral resolution (161 nm) and signal-to-noise ratio (Sivaguru
et al., 2016). Images show maximum Z-stack projections
under standard confocal mode, unless otherwise noted in
the figure legends.

Data analyses
Data processing and image creation were performed

with FIJI software (version 2; RRID:SCR_002285; Schin-
delin et al., 2012; Schneider et al., 2012). Neuronal models
and movies were created using Imaris (version 9.2; RRID:
SCR_007370).

Results
The giant fiber circuit exhibits extensive dye-coupled
connectivity

Small gap junction-permeable dyes used to study the GF
circuit have consistently revealed an extensive, but unchar-
acterized, network of dye-coupled neurons (Boerner and
Godenschwege, 2011; Enneking et al., 2013; Kennedy and
Broadie, 2017). To thoroughly study the architecture and
properties of these neurons, we iontophoretically injected
the GFI with the highly gap junction-permeable NB dye, and
then labeled the brains post hoc with a streptavidin-
conjugated fluorophore (Huang et al., 1992). Consistent with
previously published work, this intracellular dye injection
reveals an extensive network of neurons dye coupled to the
GFI (Fig. 1). This dye coupling is the direct result of gap
junction connectivity, as eliminating gap junctions using
shaking-B mutants (shakB2) prevents all NB dye transfer
(data not shown; Blagburn et al., 1999; Kennedy and
Broadie, 2017). A summary of this newly identified GF cir-
cuitry is shown in Figure 1.

Although there are a large number of dye-labeled pro-
cesses widely distributed throughout the TG (Fig. 1A), all
published GF circuit maps name only two GFI-coupled
cells: (1) TTMn and (2) PSI (Fig. 1B, old circuit map). Here,
we map and characterize all of the dye-coupled neurons
whose projections we can trace back to an identifiable
cell soma. We have named these neurons GFC followed
by an identifying number (Fig. 1A,B). In this study, we
report the characterization of four neuron clusters (GFC1–
4), each of which represents a bilaterally symmetric set of
two to seven neurons (Fig. 1B, new circuit map). The
processes of these neurons contact the descending GFI
axons and reach into all three TG segments (TG1–3), but
do not cross into the brain or abdominal ganglion (AG). To
understand how the GFCs integrate into the GF circuit, we
began by obtaining selective genetic access to these
neurons.

Transgenic Gal4 drivers for newly identified giant
fiber-coupled neurons

To accurately map and manipulate the separate GFC
neuron populations, we set forth to identify Gal4 drivers
with highly specific expression for each GFC using two
approaches. First, we conducted an in silico screen
through the entire Janelia FlyLight library, which includes
lines generated from the Vienna Tiles project (9436 lines;
Jenett et al., 2012; Tirian and Dickson, 2017). Using im-
ages of the GFI dye-labeled circuit (Fig. 1A), we screened
for matching GFP expression patterns (Fig. 2). We identi-
fied highly specific Gal4 drivers for GFC1 (78A06; Fig. 2A)
and GFC2 (73C07; Fig. 2B), as well as less specific drivers
for GFC3 and GFC4. Second, for cleaner GFC3 and GFC4
drivers, we used the recent automated Color-Depth Max-
imum Intensity Projection (MIP) tool for the Drosophila
transgenic database (Otsuna et al., 2018). Using the less
specific driver lines as templates to search this library, we
screened for specific Gal4 drivers for GFC3 and GFC4.
This complementary approach uncovered a highly spe-
cific driver for GFC3 (24H07; Fig. 2C) and a combined
driver for GFC3/4 (42A06; Fig. 2D). During our search with
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the MIP tool, we identified many additional GF circuit
drivers, aside from the ones used in this study. We se-
lected the cleanest drivers and report them in Table 1 for
use in future experiments.

To confirm that the new Gal4 transgenic driver lines
label the bona fide GFC components of the GF circuit, we
crossed each Gal4 line with the UAS-mCD8::GFP mem-
brane reporter (Fig. 2, column 1) and injected the GFI with
NB (Fig. 2, column 2). The merged images show perfect
overlap between each transgenic driver line and the spec-
ified subset of the dye-labeled neurons (Fig. 2, column 3).
Cell bodies are strongly labeled in all cases (Fig. 2, arrow-
heads), and individual neuronal processes of GFC1–4 can
be traced for both the GFP and NB signals (Fig. 2, arrows).
However, in some cases, such as GFC2 (73C07-Gal4), the
dye injection signal is much dimmer than for other neu-
rons, such as GFC1 (78A06-Gal4). Each GFC cluster is
schematically represented within the TG, with full color on
one side (Fig. 1, color scheme) and dashed outlines on the
other side, to show each individual GFC neuron as well as
their bilaterally symmetrical pattern (Fig. 2, column 4).
Using these Gal4-driven GFP expression patterns, we are
able to map each GFC cluster within the TG.

Projection architecture of GFC neurons within the
thoracic ganglion

GFC1 is composed of two bilaterally symmetrical neu-
rons on each side of TG2 (Fig. 2A). Each soma projects a
process medially, which crosses the midline at the IB
(Allen et al., 1998) and then splits, sending one branch

anteriorly and one posteriorly. The anterior process trav-
els halfway up TG1, then bends laterally and ventrally to
terminate in the anterior corner of TG1, almost at the
ventral-most point of the TG (Fig. 2A). This process ex-
tends several thin terminals, beginning in the same plane
as the GFI bend. The posterior process splits halfway
down TG2, just below the GFI bend. One branch pro-
ceeds laterally, then turns posteriorly toward the TG2
edge, with a ventral dive and several thin terminals, before
terminating in the TG2 posterior lateral corner (Fig. 2A).
The other process descends into TG3, bends inward
toward the midline, then laterally to the anterior edge.
From here, the process projects posteriorly and ventrally
to end in a fashion similar to that of the other two terminals
(Fig. 2A). All three GFC1 projections appear to innervate
the leg neuropils (Namiki et al., 2018).

The seven bilaterally symmetric GFC2 neurons are
largely restricted to TG2 (Fig. 2B). These cell bodies
neighbor GFC1 and similarly project fasciculating pro-
cesses medially. However, two-thirds of the way to the
midline, the processes bend posteriorly and then laterally,
to curve ventrally toward the lower edge of TG2 in the
region of the GFI axon bend (Fig. 2B). The processes then
curve anteriorly back toward the cell bodies, with a slight
dorsal trajectory before termination, projecting several
short, heavily branched termini in anterior and posterior
directions. Another process doubles back toward the
posterior deflection, travels medially to the midline and
then sends out two branches posteriorly (Fig. 2B). One
curves ventrolaterally to terminate along the first ventral

Figure 1. Giant fiber interneuron dye injection reveals coupled neurons. A, The GFI iontophoretically injected with neurobiotin (yellow)
shows extensive dye coupling to neurons in the TG. The established GFI-coupled neurons are (1) the PSI (orange) and (2) the TTMn
(red). The newly identified GFCs project into all three TG segments (TG1–3), but do not extend into the AGs. B, Left, The old GF circuit
map showing both of the previously characterized GFI (green) dye-coupled neurons: PSI (orange) and TTMn (red). Right, The new GF
circuit map with the addition of all the newly identified GFC neurons from this study: GFC1 (blue), GFC2 (purple), GFC3 (dark green),
and GFC4 (yellow).
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spiral, and the other travels dorsolaterally along the path
of the original anterior process, terminating as it turns up
toward the soma. There are two other processes that
depart from the midline: one travels dorsally and slightly
posteriorly before terminating, and one projects anteriorly
and dorsolaterally to terminate in the lower central TG1

(Fig. 2B). These processes both appear to innervate the
wing neuropils (Namiki et al., 2018).

GFC3 is composed of five bilaterally symmetrical neu-
rons with the cell bodies positioned dorsally in the pos-
terolateral corner of TG2 (Fig. 2C). These cells send out
fasciculating processes that first proceed ventrally in a

Figure 2. Transgenic Gal4 drivers for the newly identified GFC neurons. Gal4-driven expression of UAS-mCD8::GFP (green, column
1) overlapping with the GFI injection of neurobiotin dye (yellow, column 2) showing the identification of GFC drivers (merge, column
3). Arrows indicate processes with overlapping GFP and NB labeling, and arrowheads show the GFC cell bodies. The GFC neurons
are drawn both in color (Fig. 1 color scheme) and perforated outlines to show their bilateral pattern (column 4). TG segments are
selected to best show GFC projection architecture. All injections were performed on females. A, 78A06-Gal4 labels GFC1. The driver
strength is relatively weak, with a somewhat stochastic labeling of the GFC1 neurons. B, 73C07-Gal4 labels GFC2. This driver is
moderately strong, but also labels other neurons. C, 24H07-Gal4 labels GFC3. This driver strength is moderate, with labeling of other
neurons. D, 42A06-GAL4 labels both GFC3 and GFC4 neurons. The driver is relatively weak, with stochastic labeling of GFC4
neurons.

Table 1: Transgenic Gal4 driver lines for the giant fiber circuit

GFI GCI TTMn PSI GFC1 GFC2 GFC3
R14A01 R32C04 R25D08 R26E04 R93E07 R13C08 R44D02
VT004455 R74E09 R88F07 R75E05 R87D02 R77C12 R58E04
VT042336 VT002209 VT038335 VT030598 VT059438 VT043662 R75D03

New Gal4 drivers (distinct from those used in this study) that express selectively within the GF circuit, as compiled from the Janelia FlyLight and Vienna Tiles
library collections. Selective lines for GFC4 have not been uncovered and thus are not reported here.
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medial–anterior direction up to the central IB connection
with the GFI. At the IB, extensive GFC3 branches are
visible, extending laterally and dorsally, but no further in
either the anterior or ventral direction (Fig. 2C). These
processes also track along the large terminal bend of the
GFI axon. Dorsal to the IB, the main GFC3 processes
reverse course to travel posterolaterally, while remaining
ipsilateral to their cell bodies. The projection direction is
ventral until TG3 is reached, at which point the processes
move dorsally once again (Fig. 2C). These processes
terminate near the anterior portion of TG3 within the leg
neuropil, in a series of thin processes at approximately the
same axial plane as the IB and GFI axonal bends (Fig. 2C).
Of note, both GFC1 and GFC3 were unintentionally cap-
tured in a recent screen for descending neurons (Namiki
et al., 2018).

The four bilaterally symmetric GFC4 neurons are largely
restricted to TG1 (Fig. 2D). The GFC4 cell bodies lie in the
TG1 dorsal lateroposterior corner. The GFC4 processes
first fasciculate to project ventrally, then posteromedially,
running to the central IB (Fig. 2D). From the IB, the GFC4
processes then reverse course, remaining ipsilateral to
their cell bodies as they project dorsally, back the way
they came toward their cell bodies (Fig. 2D). When the
GFC4 processes are directly below their cell bodies, they
turn ventrally, and then travel toward the TG1 anterolateral
corner to terminate in long finger-like projections (Fig. 2D).
Like the other GFCs, the GFC4 processes appear to
innervate the leg neuropils (Namiki et al., 2018). Overall,
these transgenic driver lines allow detailed analysis of
GFC architecture, and provide highly specific genetic
control over the GFC neurons. To determine how these
neurons interact with the GF circuit, we next examined
their contact points with the GFI.

The inframedial bridge connectivity site of GFI–GFC
intersection

GFC1–4 are all dye coupled to GFI via direct or indirect
gap junction connections (Fig. 1), and all of these neurons
project to the central IB to overlap with the GFI (Fig. 2).
The IB has been defined as a region proximal to the GFI
lateral axonal bend, where the GFI axon puts forth tufted
projections and connects to the PSI (Allen et al., 1998).
We therefore hypothesized that the IB is the primary site
of GFI–GFC connectivity. To determine the location of
potential synaptic sites between the GFI and GFCs, we
injected the GFI with the large, nonpermeant dye TRITC-
dextran (10 kDa; Boerner and Godenschwege, 2011; En-
neking et al., 2013; Kennedy and Broadie, 2017) for all the
UAS-mCD8::GFP-labeled GFC1–4 lines (Fig. 3). We then
assayed for overlap regions where the GFC membrane
signal (Fig. 3, column 1) contacts the GFI TRITC signal
(Fig. 3, column 2). Merging the two channels to create
static (Fig. 3, column 3) and dynamic (Movies 1-4) 3D
reconstructions of the spatial overlap provides clear iden-
tification of GFI–GFC contact points.

GFP and TRITC signals are color coded by depth to
visualize the Z dimension (FIJI plugin: Temporal-Color
Code), with neurons proximal in Z space displaying the
same color (Fig. 3, columns 1 and 2). Overlap between

neurons is shown for GFC neurons (Fig. 3, green) and GFI
(Fig. 3, column 3, magenta). The results show that GFC1
contacts the GFI only at the IB with a simple crossing
branch (Fig. 3A, arrows, Movie 1). GFC2–4 also contact
the GFI directly at the IB, but with a much higher level of
complexity (Fig. 3B–D, arrows, Movies 2-4). Further,
GFC2 and GFC3 have processes that branch from the IB
and overlap the large terminal bend of the GFI axon (Fig.
3B,C; arrowheads, Movies 2, 3). This is the first example,
to our knowledge, of any contact along the GFI axonal
bend other than TTMn. We also observe a third contact
point between GFI and GFC3. The GFI axon bend occa-
sionally extends small processes, which can contact
GFC3 on posteriorly descending processes (Fig. 3C, ar-
rowhead; magnified in inset). As these overlaps are likely
sites for gap junction connectivity within the circuit, we
investigated these membrane contacts for electrical syn-
apses.

Shaking-B gap junction synapses between GFI and
GFC neurons

The GF circuit is characterized by mixed chemical and
electrical synapses (Blagburn et al., 1999; Allen et al.,
2006). To map GFI–GFC electrical synapses, we labeled
for the Shaking-B (ShakB) innexin, using an antibody
recognizing the “N � 16” isoform present at GFI synapses
(Phelan et al., 2008). Flies in which GFC1–4 neurons are
labeled with UAS-mCD8::GFP (Fig. 4, column 1, green)
were GFI injected with TRITC (Fig. 4, column 2, magenta)
and colabeled with ShakB antibody (Fig. 4, column 3,
cyan). All three channels were modeled with 3D rendering
software to visualize ShakB-positive GFI–GFC contacts
(Fig. 4, column 4, Movies 5–9). GFC1 (78A06-Gal4) exhib-
its a simple arborization, with a process coming across
the IB, and making a characteristic anterior–posterior split
(Fig. 4A, Movie 5). ShakB is clearly visible in the 3D
models, localized between the GFI and GFC1 as the
process exits the IB (Fig. 4, arrows and inset). GFC1
projects axons to all three TG segments, indicating that
there is a set of outputs triggered by the GFI escape
response in parallel to TTM and DLM activation.

GFC2 neurons have a larger process field, forming a
hemicircle in front of the GFI (Fig. 4B, Movie 6). Multiple
ShakB electrical synapses clearly occur between the GFI
and GFC2, although, due to the complexity of these con-
nections, it is not possible to determine whether the GFI is
contacting the GFC2 processes that come from the con-
tralateral or ipsilateral sides of the TG, or both (Fig. 4B).
GFC2 also contacts the GFI along the distal axonal bend
(Fig. 3B), so we also investigated these sites for ShakB
colocalization. The results show contact between the GFI
and GFC2 near the tip of the bend; however, ShakB
punctae are rarely seen colocalizing at these contacts
(Fig. 4C, Movie 7), suggesting that these are primarily
chemical synapse connections.

GFC3 has the most extensive IB contacts among all the
GFCs, as well as broad interactions with surrounding
neurons (Fig. 4D, Movie 8). GFC3 contacts the GFI with
ShakB electrical synapses (Fig. 4D, arrows), but GFC3
branches extending beyond the IB are mostly ShakB
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negative (Fig. 4D), indicating few electrical synapses.
GFC3 contacts the GFI axon bend even more extensively
than GFC2, but similarly has a small number of ShakB
electrical synapse contacts (Fig. 4E, Movie 9). All images
of GFI–GFC3 IB contact sites exhibit ShakB-positive elec-
trical synapses, but only one image of the GFI–GFC3

axonal bend shows a synaptic connection (Fig. 4E, arrow).
GFI axon bends are presynaptic to the TTMn, with exten-
sive ShakB electrical synapses (Phelan et al., 2008), but it
appears that only a small portion of this gap junction
connectivity is used for GFC2 and GFC3, with the primary
GFI–GFC electrical connections in the IB (Fig. 4B,D). With-

Figure 3. The GFI interacts with the GFC neurons at the inframedial bridge. Gal4 lines driving UAS-mCD8::GFP (column 1) intersect
with the GFI axon revealed by injection of TRITC (column 2), at the GFI IB and the GFI axonal bend (merge, column 3). The first two
columns use depth color coding to represent the Z-position within the TG, with more dorsal regions displaying cool colors and ventral
regions displaying warm colors (see color scale bar in A, column 2). Arrows indicate overlapping membrane contact between GFCs
and GFI at the IB. Arrowheads indicate GFC contact at the GFI axon bend. All injected flies are female. A, GFC1 (78A06-Gal4) interacts
with the GFI exclusively at the IB. B, GFC2 (73C07-Gal4) interacts with the GFI at the IB and the GFI axonal bend. C, GFC3
(24H07-Gal4) interacts with the GFI extensively at the IB and the GFI axonal bend. The GFI also produces small side projections that
contact GFC3 (inset, arrowheads). D, GFC4 (42A06-Gal4) interacts with the GFI at the IB.
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out a GFC4-specific driver, we are unable to specifically
test GFI–GFC4 ShakB synaptic connections. To deter-
mine the direction of information flow across GFI–GFC
synapses, as well as connectivity in other regions of the
TG, we next mapped the presynaptic and postsynaptic
neuronal polarity of GFC1–4 synapses.

Presynaptic and postsynaptic polarity of thoracic
ganglion GFC neurons

To investigate GFC postsynaptic domains, we used the
UAS-DenMark dendrite reporter, composed of the exog-
enous mouse intercellular adhesion molecule-5 dendritic
protein fused to RFP (Nicolai et al., 2010). For presynaptic
labeling, we used the UAS-synaptotagmin::GFP (Syt::
GFP) reporter, composed of the Syt1 integral synaptic
vesicle protein fused to GFP (Zhang et al., 2002). In GFC1,
the DenMark signal is absent from the finger-like projec-
tions at the process termini (Fig. 5A, column 1), and
Syt::GFP is strongly present in a punctate array, indicating
that these processes are presynaptic sites (Fig. 5A, col-
umn 2). In contrast, DenMark strongly labels GFC1 within
the IB (Fig. 5A, arrow), indicating that this site is postsyn-
aptic to the GFI (Fig. 5A, image column 3, top). The
Syt::GFP signal is absent (Fig. 5A, image column 3, bot-
tom), suggesting that the IB site is solely for input. To-
gether, these data indicate that GFC1 neurons receive
presynaptic input into their dendrites at the IB and then
project their contralateral axons for synaptic output into
the leg neuropil (Namiki et al., 2018).

In contrast, GFC2 looped processes are strongly la-
beled by DenMark, including contacts at the GFI axon
bend (Fig. 5B, column 1), with strongly colocalizing Syt::
GFP (Fig. 5B, column 2). Only the dorsolaterally projecting
processes in the wing neuropil display Syt::GFP without
DenMark present. Similarly within the IB, DenMark and
Syt::GFP again colocalize, although DenMark is at a low
level (Fig. 5B, image column 3). Thus, GFC2 neurons
appear to have many colocalized presynaptic and post-
synaptic domains. Note that it is not possible to tell where
in the loop GFC2 processes double back, and the pre-
synaptic and postsynaptic compartments may be in sep-
arate, adjacent processes (Fig. 5B). Based on our ShakB
findings (Fig. 4B), it is likely that GFI and GFC2 directly
synapse, but both appear presynaptic at the IB, and they
may also share postsynaptic targets that mediate GFI–
GFC2 coupling. Another possibility is that GFI–GFC2 dye
transfer does not occur at the IB, but instead they couple
indirectly via an intermediary neuron. This could explain
why the GFC2 is relatively poorly labeled by NB dye
injection into the GFI, compared with other GFCs.

GFC3 has preynaptic and postsynaptic domains similar
to GFC1 (Fig. 5C). The GFC3 long finger-like process
projections in TG3 have a very weak DenMark signal (Fig.
5C, column 1) and very clear Syt::GFP punctae (Fig. 5C,
column 2). Therefore, these sites are presumably presyn-
aptic in leg neuropil (Namiki et al., 2018). At the IB, GFC3
strongly expresses DenMark (Fig. 5C, image column 3),
which is thus postsynaptic. However, Denmark expres-
sion expands beyond the IB to include GFC3 branches

Movie 1. 3D animation of GFC1 and GFI interaction. Animated
3D reconstruction of mCD8::GFP-labeled GFC1 (green) and
TRITC-injected GFI (magenta) in thoracic ganglion segments 1
and 2 (TG1/2). GFC1 intersects with the GFI in a narrow projec-
tion that crosses the IB. This projection then splits to create
claw-like synaptic terminals in TG1–3 (TG3 not pictured). Scale
bar, 20 �m. [View online]

Movie 2. 3D animation of GFC2 and GFI interaction. Animated
3D reconstruction of mCD8::GFP-labeled GFC2 (green) and
TRITC-injected GFI (magenta) in TG1/2. GFC2 extends a large
TG2 loop with dorsal projections. GFC2 intersects with the GFI
extensively at the IB and to a lesser extent at the tip of the TG2
axonal bend. Scale bar, 20 �m. [View online]
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that parallel the GFI axon bend and descending pro-
cesses (Fig. 5C, arrowheads). Syt:GFP is undetectable at
all of these GFC3 sites, indicating that they are solely
postsynaptic (Fig. 5C, image column 3). Surprisingly, Den-
Mark/Syt::GFP expression is lethal with the 42A06-Gal4
driver, and we were therefore unable to evaluate GFC4
presynaptic and postsynaptic domains. Based on similar-
ities to GFC3, we predict that GFC4 has postsynaptic
sites at the IB and presynaptic sites in the TG1 leg neu-
ropil. Overall, DenMark and Syt::GFP clearly distinguish
presynaptic and postsynaptic regions of all GFC neurons,
except GFC2. As the GFCs are so intimately intercon-
nected with the GFI, we next tested whether these cou-
pled neurons play a role in GF circuit development or
maintenance.

GFC requirements for the development of GF circuit
architecture

We used Gal4-targeted expression of the Hid protein to
drive apoptosis in GFC neurons, in an attempt to eliminate
each GFC neuron and study the effects on the GF circuit
architecture (Zhou et al., 1997; Muthukumar et al., 2014).
Unfortunately, all of the GFC drivers used above (Fig. 2)
are lethal in combination with UAS-hid. We repeated the
study using split-Gal4 (spGal4) lines 10B11-AD � 14A06-
DBD (Luan et al., 2006; Pfeiffer et al., 2010; Dionne et al.,
2018) to eliminate the apoptosis of off-target cells. These
spGal4 lines were identified using the MIP search tool and
were selected for their strong expression in GFC1 with
minimal overlap in nonspecific neurons. This spGal4 com-

bination expresses strongly in GFC1, but also in PSI, as
seen when crossed with UAS-mCD8::GFP (Fig. 6A, green)
with injected TRITC (Fig. 6A, magenta) to label the GFI. In
the brain (Fig. 6A, top), only TRITC dye is present in the
GFI, where the GFI cell bodies (Fig. 6A, arrow) and their
dendrites (arrowheads) reside. Importantly, no mCD8::
GFP is present in the GFI (Fig. 6A, green). Similarly, the
giant commissural interneuron (GCI), which interconnects
the GFIs, displays no mCD8::GFP. In the TG, GFC1 (Fig.
6A, arrow) and PSI (Fig. 6A, arrowhead) express mCD8::
GFP (Fig. 6A, bottom).

NB dye injection into GFI in a UAS-hid/� control animal
shows both GFIs labeled in the brain (Fig. 6B, arrows). The
GCI (Fig. 6B, arrowheads) interconnecting the GFI cell
bodies (Allen et al., 1998) is also dye labeled. In the TG,
the intact dye-coupled GF circuit is present in all UAS-
hid/� control animals (Fig. 6B, bottom). When the spGal4
driver is crossed to UAS-hid and the GFI injected with NB,
GFC1 is ablated in 18 of 20 animals (90%); fully in 14 of 20
animals, partially in 4 of 20 animals (Fig. 6C). Partial
ablations are defined as several, but not all, neurons
within GFC1 clusters being killed. PSI is eliminated in 16
of 20 animals (80%). Two animals had no visible CC
axons and could not be injected for analysis. The ablation
of coupled cells causes stronger dye labeling in the per-
sisting neurons, as expected due to the reduced volume
of the GF circuit. As a consequence, the standard 2 min
NB dye injection can cause lysis of the GF circuit, and
therefore injection times were reduced to �30 s for these
ablation experiments. This finding is similar to previous

Movie 3. 3D animation of GFC3 and GFI interaction. Animated
3D reconstruction of mCD8::GFP-labeled GFC3 (green) and
TRITC-injected GFI (magenta) in TG2/3. GFC3 cell bodies project
processes to the IB and contact the GFI, with extensive branch-
ing, including along the GFI axonal bends. GFC3 then projects
into TG3 to terminate. Scale bar, 20 �m. [View online]

Movie 4. 3D animation of GFC4 and GFI interaction. Animated
3D reconstruction of mCD8::GFP-labeled GFC4 (green) and
TRITC-injected GFI (magenta) in TG1/2. GFC4 cell bodies
project processes from TG1 to the IB, then reverse course and
return to TG1 where they terminate. Scale bar, 20 �m. [View
online]
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reports when GFI dye coupling is eliminated through lack
of interconnecting gap junctions (Kennedy and Broadie,
2017).

When testing the GF circuit for connectivity changes,
we find GFC1/PSI ablation causes a striking impact on
GFI development (Fig. 6C). All control animals (UAS-
hid/�, n � 21) display a completely normal dye-coupled
GF circuit without detectable defects (Fig. 6B). With tar-

geted UAS-hid ablation (spGal4 10B11-AD � 14A06-
DBD�UAS-hid, n � 20 animals), in 9 of 14 animals
(�65%) with complete GFC1 ablation (including one case
with the PSI present; Fig. 6C, arrowhead), one of the GFI
neurons is completely absent (Fig. 6D,E). In partial GFC1
ablation cases, only one of four animals (25%) lost a GFI.
When a GFI is lost, there is no visible dye within the
neuron, including the soma and the axon (Fig. 6C), and we

Figure 4. GFCs form electrical synapses with the GFI at the inframedial bridge. Electrical synapses between GFI and GFC neurons
are shown in Gal4-driven UAS-mCD8::GFP animals (green, column 1) with TRITC dye injection into the GFI (magenta, column 2), while
colabeling with the Shaking-B antibody (cyan, column 3). Images were taken using the AiryScan mode of the microscope. The three
merged channels (column 4) show the regions of shared ShakB contact between GFI-GFCs. Arrows indicate sites of the GFI–GFC
ShakB synaptic contacts (magnified in insets). All injected flies are female. A, GFC1 (78A06-Gal4) makes ShakB electrical synapse
contacts with the GFI at the IB. B, GFC2 (73C07-Gal4) forms several ShakB electrical synapse contacts with the GFI. C, GFC2
(73C07-Gal4) contacts the GFI along the axonal bend. D, GFC3 (24H07-Gal4) contacts the GFI with multiple ShakB electrical
synapses. E, GFC3 (24H07-Gal4) minimally contacts the GFI along the axonal bend (arrow).
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detect only one axon traveling through the CC by light
microscopy. The remaining GFI always extends a com-
pensating axon to the contralateral side (10 of 10 animals;
100%) and forms a normal terminal axon bend (Fig. 6C,
arrow).

Targeted UAS-hid expression is restricted to GFC1 and
PS1, with no evidence of either GFI or GCI expression. A
full summary of the experimental results is compared
between UAS-hid/� controls (n � 21) and the spGal4
10B11-AD � 14A06-DBD�UAS-hid targeted ablation (n
� 20; Fig. 6D,E). Interestingly, in an animal with a fully
intact GFC1 and only PSI ablation, both GFIs are present.
In an animal with neither PSI nor GFC1 ablated, both GFIs
are present (Fig. 6D,E). PSI ablation alone does not ap-
pear to be responsible for GFI loss, as GFI loss occurs
when GFC1 alone is missing, but not when PSI alone is
missing. We therefore conclude that GFC1 helps to main-
tain GFI during GF circuit development. Another interest-
ing ablation result is the loss of GFI dye coupling to GCI in
5 of 10 animals (50%) where a GFI is lost (Fig. 6C).
Surprisingly, this loss of GCI also occurs in two animals
where both GFIs are present; one with only GFC1 ablated,
and the other with only PSI ablated. These results suggest
the GFC neurons, alongside the classic GF circuit neu-
rons, play an important role in neural circuit development.

Discussion
We describe here newly discovered neurons in the

classic Drosophila GF neural circuit (Power, 1948; Sun

and Wyman, 1997; Jacobs et al., 2000; Allen et al., 2006)
by characterizing four GFC neuron clusters. We identify
specific transgenic drivers to both label and manipulate
GFC1–4, and map neuronal architecture and polarity. We
show that these neurons couple to the GFI via ShakB N �
16 innexin (Phelan et al., 2008) primarily at the central IB
(Allen et al., 1998), but also at the downstream axonal
bend. Alongside the already well established benefits of
this circuit, including the large cell size, genetic malleabil-
ity, and accessible functional/behavioral readouts (Power,
1948; Tanouye and Wyman, 1980; Phelan et al., 1996;
Trimarchi et al., 1999), this expanded set of coupled
neurons can aid future experiments in neurodevelopment,
such as the study of axonal selection between multiple
dendritic partners. This circuit map could be further re-
fined using advanced tools, such as MultiColor FlpOut
(Nern et al., 2015), as was recently accomplished for
Drosophila brain descending neurons (Namiki et al.,
2018).

This detailed circuit map is most useful for genetic
analyses of electrical synapse partner connectivity be-
tween individually defined neurons. The GFCs identified in
this study are composed of two to seven bilaterally sym-
metrical neurons clustered on each side of the TG seg-
ments. Similar clusters of repeated neurons with apparent
connectivity redundancy have been recently identified in
Drosophila brain descending neurons, where it is also
unclear why neurons have such tightly overlapping pro-

Movie 5. 3D animation of ShakB electrical synapses between
GFC1 and GFI at IB. Animated 3D reconstruction of mCD8::GFP-
labeled GFC1 (green), TRITC-injected GFI (magenta), and anti-
ShakB electrical synapse labeling (cyan). The simple passing
dendrite of GFC1 interacts with the GFI at multiple locations within
the IB. Multiple sites of ShakB electrical synapses indicate direct
GFC1–GFI coupling. Scale bar, 5 �m. [View online]

Movie 6. 3D animation of ShakB synapses between GFC3 and
GFI at the axonal bend. Animated 3D reconstruction of
mCD8::GFP-labeled GFC3 (green), TRITC-injected GFI (ma-
genta), and anti-ShakB electrical synapse labeling (cyan).
GFC3 extensively contacts the GFI along the GFI axonal
bends in TG2. Despite this extensive contact, there are min-
imal ShakB punctae (cyan) shared between the neurons. Scale
bar, 5 �m. [View online]
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jection patterns (Namiki et al., 2018). We have insufficient
resolution to determine whether the GFC neurons truly are
duplicates, or whether they have distinct, proximally ad-
jacent synaptic targets, like the closely overlapping Ke-
nyon cells of the adult brain mushroom body (Crittenden
et al., 1998). It has been proposed that neuron duplication
may allow for a sliding scale of response within a circuit,
whereby more neurons are activated to increase the
strength of the response (Namiki et al., 2018). Alterna-
tively, if the neurons contact similar proximal synaptic
targets, their role may be to provide ultrafine control of
muscle movement in the GF circuit escape response
(Namiki et al., 2018).

Complex leg and wing movements are thought to be
controlled by extensive TG neural circuits, which are ac-
tivated by a small number of descending neurons, includ-
ing the GFI dedicated to rapid escape behavior (Cardona
et al., 2009; Hsu and Bhandawat, 2016; Cande et al.,
2018; Namiki et al., 2018). The roles of GFC neurons
uncovered here have yet to be elucidated, although their
electrical coupling to the GFI strongly suggests a close
relationship to behaviors promoting or otherwise facilitat-
ing the rapid escape jump-and-flight response. Our pre-
liminary attempts to optogenetically activate the GFC
neurons through blue-light stimulation of Gal4-targeted
ChR2-H134R (Nagel et al., 2005) or ChOP-XXL (Dawydow
et al., 2014) channels did not produce behaviors. We
suspect the stimulation paradigm was not strong enough,
that appropriate sensory costimulation conditions may

not have been provided (von Reyn et al., 2014), that
behavioral scoring methods were not sensitive enough to
detect subtle motor output changes (Cande et al., 2018),
or that these neurons modulate internal processes not
directly manifest in rapid escape behavior (Joseph et al.,
2017).

Based on the very recently proposed ventral nerve cord
regional map (Namiki et al., 2018), the most likely targets
of the four GFCs identified here are the TG1–3 leg neuro-
pils. GFC2 also appears to target the TG2 wing neuropil.
Both leg and wing outputs are integral to the GF circuit
escape response (von Reyn et al., 2014). GFC1 targets all
three TG leg neuropil segments; GFC2 targets TG2; and
GFC3 and GFC4 target TG3 and TG1, respectively. This
extensive leg neuropil connectivity may regulate tension
in the front and hind legs, allowing the central legs to
execute a more effective escape jump (Trimarchi and
Schneiderman, 1993; von Reyn et al., 2014; Namiki et al.,
2018). In support of this hypothesis, our work indicates
that GFCs 1–3 are all directly gap junction coupled to the
descending GFI, receiving input primarily at the IB, and
thus share in the rapid conduction speed of the GF circuit
(Phelan et al., 2008). Further, GFC3 neurons extend post-
synaptic processes that parallel the PSI processes, indi-
cating GFC3 may collect input from multiple neurons in
the GF circuit.

Like the PSI, all four GFCs appear to synapse on their
downstream targets via only chemical synapses, based
on Syt::GFP synaptic vesicle marker and lack of ShakB

Movie 7. 3D animation of ShakB synapses between GFC2 and
GFI at IB. Animated 3D reconstruction of mCD8::GFP-labeled
GFC2 (green), TRITC-injected GFI (magenta), and anti-ShakB
electrical synapse labeling (cyan). The GFC2 field interacts in
multiple locations with the GFI, including several side projections
from the IB. Several sites of ShakB electrical synapses indicate
GFC2–GFI coupling. Scale bar, 5 �m. [View online]

Movie 8. 3D animation of ShakB synapses between GFC2 and
GFI at axonal bend. Animated 3D reconstruction of mCD8::GFP-
labeled GFC2 (green), TRITC-injected GFI (magenta), and anti-
ShakB electrical synapse labeling (cyan). GFC2 contacts the GFI
along the TG2 axonal bends, mostly at the tips. Along these
contact sites, there are few to no ShakB contacts (cyan) shared
between the neurons. Scale bar, 5 �m. [View online]
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electrical synapse labeling at GFC termini (Allen et al.,
2006). It might appear possible that another innexin could
mediate these GFC connections (Stebbings et al., 2002;
Phelan, 2005); however, the complete absence of dye
coupling to neurons downstream of GFCs indicates elec-
trical synapses are absent. In contrast to the other GFCs,
GFC2 appears both presynaptic and postsynaptic at the
IB connectivity hub, suggesting that it may share post-
synaptic partners with GFI, potentially including GFC1, 3,
and 4 and/or PSI. Given this circuit connectivity, GFC2
may trigger the rapid escape jump reflex independently of
the GFI, in a parallel circuit output long speculated to
exist, but not previously identified (Trimarchi and Sch-
neiderman, 1995; Fotowat et al., 2009). Indeed, GFC2
extends presynaptic processes into the tergotrochanteral
motoneuron dendritic field, thus mimicking GFI connec-
tivity (King and Wyman, 1980).

DenMark and Syt::GFP reporters are extremely useful in
defining neuron polarity (Zhang et al., 2002; Nicolai et al.,
2010; Bidaye et al., 2014; Frank et al., 2015), but they
have limitations that can make interpretation difficult.
Both reporters preferentially mark appropriate synaptic
regions, but can mislocalize due to transgenic overex-
pression (Chen et al., 2014; Kanca et al., 2017). A likely
example here is dim DenMark signal near bright Syt::GFP
punctae (Fig. 5C). The DenMark signal-to-noise ratio is
much worse than the IB labeling, while the Syt::GFP
signal-to-noise ratio is much stronger; hence, our conclu-
sion that this region is presynaptic. A more problematic

example may be the DenMark/Syt::GFP overlap in GFC2
(Fig. 5B). This labeling likely shows adjacent presynaptic
and postsynaptic processes, which we cannot distin-
guish; although shared compartments have been re-
ported in mushroom body Kenyon cells (Christiansen
et al., 2011; Zheng et al., 2018). It is also worth noting that
the 73C07-Gal4 line for GFC2 is the strongest driver used
and may cause DenMark or Syt::GFP mislocalization via
transgenic overexpression (Chen et al., 2014; Kanca et al.,
2017). The 42A06-Gal4 driver for GFC3/4 is lethal with
UAS-DenMark, syt::GFP, showing that these markers can
also have detrimental effects.

Our targeted ablation studies indicate a role for GFCs in
GF circuit development, and demonstrate the ability of the
circuit to compensate for the loss of a GFI, much like
ocular dominance columns in the classic work by Hubel
and Wiesel (1970) and Hubel et al. (1977). PSI ablation
does not appear to be responsible for the GFI loss, based
on the fact that GFIs are present when PSI alone is
ablated, and GFIs are lost only when GFC1 is ablated.
Another impact of ablation is lost GCI coupling when a
GFI, GFC1, or PSI is removed. As GCI coupling loss
occurs both when GFC1 alone is lost and when PSI alone
is lost, it appears that complete GF circuit formation
depends on feedback from multiple circuit members
(Kandler and Katz, 1995; Hanganu et al., 2009; Maher
et al., 2009; Belousov and Fontes, 2013). This finding
suggests neurons not directly coupled can feedback
through an intermediary circuit neuron; an intriguing but
poorly studied hypothesis (Kandler and Katz, 1995;
Belousov and Fontes, 2013). We note that the TTMn only
occasionally dye couples with GFI, suggesting gap junc-
tion transitions between open and closed states could
also contribute.

Previous studies have shown ablation of the GFI using
neurotoxins, such as ricin (Smith et al., 1996), and have
even found that single GFIs are lost at very low frequency
in wild-type animals (Allen et al., 1998). In the latter case,
the authors also found midline crossing of a compensa-
tory contralateral process from the enduring GFI, as in our
work. We hypothesize that the GFI loss reported here
results from lost GFI stabilization by GFC1 due to the loss
of trophic/synaptic signaling or physical contact (Gorin
and Johnson, 1979; Pearson and Stoffler, 1992; Antonini
and Stryker, 1993; Crowley et al., 1994; Uesaka, 2005;
Gibson and Ma, 2011). Other GFI postsynaptic targets
(PSI, TTMn, GFC2–4) presumably also participate in GFI
stabilization, although Gal4 drivers tested thus far for
these neurons have proved lethal in combination with
UAS-hid (Zhou et al., 1997; Muthukumar et al., 2014).
These animals die early in development, showing the
need for spGal4 lines capable of avoiding off-target cells.
Pursuing this phenotype with more specific drivers and
screening approaches could elucidate molecular mecha-
nisms that these neurons use to stabilize synaptic part-
ners (Cohen-Cory, 2002).

Other methods shown to cause GFI axonal retraction
and neuronal loss include blocking membrane endocyto-
sis (e.g., using dominant-negative shibire/Dynamin) and
the overexpression of select transmembrane receptors,

Movie 9. 3D animation of ShakB synapses between GFC3 and
GFI at IB. Animated 3D reconstruction of mCD8::GFP-labeled
GFC3 (green), TRITC-injected GFI (magenta), and anti-ShakB
electrical synapse labeling (cyan). GFC3 extends the largest
dendritic field at the IB, with extensive GFC3–GFI contact. Sev-
eral of these contact points are positive for ShakB electrical
synapses. Scale bar, 5 �m. [View online]
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such as semaphorin-1A (Godenschwege et al., 2002;
Murphey, 2003; Godenschwege and Murphey, 2009).
However, in these cases, GFI axon retraction is typically
only to the IB, rather than beyond the CC, or causing
complete cell loss. The molecular pathways responsible
for these phenotypes may be shared with the axon retrac-
tion caused by the loss of synaptic partners, with High-
wire/MYCBP2, Wallenda/DLK, and Basket/JNK as prime
candidates (Ghosh et al., 2011; Borgen et al., 2017). While
gap junctions play extensive roles in neuronal develop-
ment (Elias and Kriegstein, 2008; Belousov and Fontes,
2013; Baker and Macagno, 2017), it is unlikely that GFI
loss results from the loss of electrical coupling only, as the
total removal of gap junctions from the GFI does not

cause axon retraction or neuronal cell death (Blagburn
et al., 1999).

The GFI axon split across the midline in response to the
absence of its partner is reminiscent of sensory neuron
plasticity following input deprivation (Poirier et al., 2006;
Collignon et al., 2009; Rabinowitch et al., 2016) and motor
circuit development changes in response to lost motor
neurons (Modney and Muller, 1994; Büschges et al.,
2000). This corrective rewiring could stem from either
normal pathfinding and synaptogenesis or new repair
pathways activated in response to unpartnered neurons.
The axon split duplication with a GFI loss is different from
the recent report on failed GFI pruning (Borgen et al.,
2017), as the new GFI axon path is always a perfect mirror

Figure 5. Presynaptic and postsynaptic polarity of the newly identified GFC neurons. GFC neuronal polarity is shown using the
dendrite/soma label DenMark (magenta) and the presynaptic label synaptotagmin::GFP (Syt::GFP, green). Substacks of the regions
of interest for each GFC are shown for DenMark (column 1) and Syt::GFP (column 2), with above and below paired comparisons
(image column 3). Arrows indicate the position of the IB. GFC schematic representations are shown (center column), with regions of
interest outlined in black boxes. A, GFC1 (78A06-Gal4) processes are labeled by presynaptic Syt::GFP in both TG1 (top) and TG2
(bottom) segments, while the IB is labeled by postsynaptic DenMark. B, GFC2 (73C07-Gal4) processes in TG2 (column 1) are
colabeled by both DenMark (column 1) and the Syt::GFP marker (column 2). The IB is labeled by presynaptic Syt::GFP, but also has
the DenMark signal (column 4). C, GFC3 (24H07-Gal4) has punctate Syt::GFP within the finger-like processes in TG3 (column 2). The
IB is labeled by DenMark, with no Syt::GFP marker (column 4). GFC3 processes along the GFI axonal bend also express the DenMark
label (arrowheads).

New Research 14 of 18

November/December 2018, 5(6) e0346-18.2018 eNeuro.org



image of the normal axon bend, rather than an untrimmed
posteriorly branched axon outgrowth. This new circuit
rewiring model could be used in Drosophila genetic
screens of GF circuit development (Mohr, 2014; Bassett
et al., 2015; Heigwer et al., 2018) to help answer a number

of important questions. Such work will be greatly aided by
single-cell transgenic manipulation of presynaptic and
postsynaptic neurons in the GF circuit.

In conclusion, we hope that the increase in manipulat-
able GFI-coupled neurons reported here will further en-

Figure 6. GFC neurons support GF circuit architectural development. A, The GFI labeled by iontophoretically injected TRITC
(magenta) reveals the soma (arrow) and dendritic branches (arrowheads) in the brain (top), and descending axon in thoracic ganglion
(bottom). Split Gal4 (spGal4) 10B11-AD � 14A06-DBD drives UAS-mCD8::GFP (green) in GFC1 (bottom, arrow) and PSI (bottom,
arrowhead). B, Iontophoretic NB injection into the GFI (yellow) in the UAS-hid/� control reveals the GFI (arrows) interconnected by
the GCI (arrowheads) in the brain (top) and normal dye coupling in the thoracic ganglion (bottom). C, Driving UAS-hid with spGal4
10B11-AD � 14A06-DBD results in the loss of GFC1 with occasional PSI survival (arrowhead). When GFC1 is ablated, the GCI labeling
is often lost (top), one of the GFI axons is typically absent, and the remaining GFI axon always extends a compensatory contralateral
axon projection (arrow). All NB injections were performed on males. D, Schematic representations of GF circuit outcomes with
UAS-hid/� controls and spGal4 10B11-AD � 14A06-DBD-driven UAS-hid cell ablation. Not pictured are instances where neither
GFC1 nor PSI are ablated, and instances where both GFIs are absent. E, Frequency of each GF circuit outcome with the targeted
spGal4 10B11-AD � 14A06-DBD-driven UAS-hid cell ablation. The pie chart color is coded to dots at the bottom of schematics in
D. The sample size for UAS-hid/� genetic controls is 21 animals, and for the spGal4 cell ablation it is 20 animals.
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hance this genetic model circuit. The GF circuit is ideally
suited to query a wide range of important neurodevelop-
mental questions, including mechanisms of pathfinding,
target recognition, synaptogenesis, and stabilization dur-
ing neural circuit assembly and maintenance. Although
the GF circuit is rightly considered one of the most
straightforward and accessible Drosophila circuits, the
higher degree of connectivity revealed in this study indi-
cates a greater complexity, which is amenable to answer-
ing more in-depth questions. The large number of inputs
onto, and outputs from, this model circuit provides further
evidence that even the most basic circuits are deeply
interconnected with the rest of the brain circuitry. As the
benefits of single-cell resolution studies cannot be over-
stated, we hope that this enlarged GF circuit model, and
the transgenic tools characterized here, will help to form
part of the underpinning for future work on neural circuit
dynamics.
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