Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

{4-Bromo-2-[(2-morpholinoethyl)iminomethyl]phenolato}iodido(methanol)zinc(II)

Cheng-Li Han

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006 People's Republic of China Correspondence e-mail: chengli_han@126.com

Received 10 March 2009; accepted 12 March 2009

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.007 Å; R factor = 0.040; wR factor = 0.096; data-to-parameter ratio = 19.3.

The title compound, [Zn(C₁₃H₁₆BrN₂O₂)I(CH₃OH)], is a new mononuclear zinc(II) complex synthesized by the reaction of equimolar quantities of 5-bromosalicylaldehyde, 2morpholinoethylamine and ZnI₂ in methanol. The Zn atom is four-coordinate in a distorted tetrahedral geometry, binding to a phenolate O and an imine N atom of the Schiff base ligand, the O atom of a methanol molecule and one I⁻ anion. In the crystal structure, adjacent molecules are linked through intermolecular O-H···O hydrogen bonds, forming centrosymmetric dimers.

Related literature

For the structures of related zinc(II) complexes, see: Ali et al. (2008); You (2005); Zhu & Yang (2008).

Experimental

Crystal data

 $[Zn(C_{13}H_{16}BrN_2O_2)I(CH_4O)]$ $M_r = 536.50$ Monoclinic, $P2_1/c$ a = 7.747 (2) Åb = 24.977 (3) Å c = 9.598 (2) Å $\beta = 100.497 \ (4)^{\circ}$

V = 1826.1 (6) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 5.24 \text{ mm}^-$ T = 298 K $0.30 \times 0.30 \times 0.28 \ \mathrm{mm}$

Data collection

```
Bruker SMART CCD area-detector
  diffractometer
Absorption correction: multi-scan
  (SADABS; Sheldrick, 1996)
  T_{\min} = 0.217, T_{\max} = 0.231
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of
$wR(F^2) = 0.096$	independent and constrained
S = 1.03	refinement
3928 reflections	$\Delta \rho_{\rm max} = 0.96 \text{ e } \text{\AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$
1 restraint	

12877 measured reflections

 $R_{\rm int} = 0.038$

3928 independent reflections

2994 reflections with $I > 2\sigma(I)$

Table 1

Selected geometric parameters (Å, °).

Zn1-N1	2.014 (3)	Zn1-O1	2.078 (3)
Zn1-O3	2.023 (3)	Zn1-I1	2.5346 (9)
N1-Zn1-O3	114.78 (13)	N1-Zn1-I1	130.76 (10)
N1-Zn1-O1	90.15 (12)	O3-Zn1-I1	113.36 (9)
O3-Zn1-O1	90.42 (13)	O1-Zn1-I1	99.31 (9)

Table 2 Hydrogen-bond geometry (Å, °).

Ľ

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdots A$
$O3-H3A\cdots O1^{i}$	0.84 (5)	1.81 (5)	2.649 (4)	178 (7)

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The author acknowledges a research grant from Qiqihar University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SJ2595)

References

Ali, H. M., Mohamed Mustafa, M. I., Rizal, M. R. & Ng, S. W. (2008). Acta Cryst. E64. m718-m719.

Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

You, Z.-L. (2005). Acta Cryst. E61, m1571-m1573.

Zhu, X.-W. & Yang, X.-Z. (2008). Acta Cryst. E64, m1090-m1091.

supplementary materials

Acta Cryst. (2009). E65, m418 [doi:10.1107/S1600536809009234]

{4-Bromo-2-[(2-morpholinoethyl)iminomethyl]phenolato}iodido(methanol)zinc(II)

C.-L. Han

Comment

Metal complexes of the Schiff base 4-bromo-2-[(2-morpholinoethylimino)methyl]phenol have not been reported previously. In this paper, the author reports the crystal structure of the title compound, a new mononuclear zinc(II) complex, (I), Fig. 1.

In (I), the Zn atom is four-coordinate in a tetrahedral geometry, with one O and one imine N atoms of a Schiff base ligand, one O atom of a methanol molecule, and one I atom. The tetrahedral geometry is severely distorted, as evidenced by the coordinate bond lengths and angles (Table 1). The bond lengths and angles in this complex are comparable with those in the similar zinc(II) complexes (Ali *et al.*, 2008; You, 2005; Zhu & Yang, 2008). In the crystal structure, adjacent molecules are linked through intermolecular O–H···O hydrogen bonds (Table 2), forming centrosymmetric dimers (Fig. 2).

Experimental

Equimolar quantities (1.0 mmol each) of 5-bromosalicyaldehyde, 2-morpholinoethylamine, and ZnI_2 were mixed in methanol. The mixture was stirred at reflux for 30 min and filtered. The filtrate was slowly evaporated for a few days, yielding yellow block-like crystals.

Refinement

H3A was located from a difference Fourier map and refined isotropically, with the O–H distance restrained to 0.85 (1) Å, and with $U_{iso}(H)$ values fixed at 0.08 Å². The other H atoms were placed in idealized positions and constrained to ride on their parent atoms with C–H distances of 0.93–0.97 Å, and with $U_{iso}(H)$ set at 1.2 or $1.5U_{eq}(C)$.

Figures

Fig. 1. The structure of the complex, showing 30% probability displacement ellipsoids and the atom-numbering scheme.

Fig. 2. The crystal packing of (I) showing the formation of centrosymmetric dimers. Hydrogen bonds are shown as dashed lines.

$\label{eq:linear} $$ $$ {4-Bromo-2-[(2-morpholinoethyl)iminomethyl]phenolato} iodido(methanol)zinc(II) $$$

 $F_{000} = 1040$

 $\lambda = 0.71073 \text{ Å}$

 $\theta = 2.6 - 25.8^{\circ}$

 $\mu = 5.24 \text{ mm}^{-1}$

Block, yellow

 $0.30 \times 0.30 \times 0.28 \text{ mm}$

T = 298 K

 $D_{\rm x} = 1.951 \text{ Mg m}^{-3}$ Mo *K* α radiation

Cell parameters from 3128 reflections

Crystal data [Zn(C₁₃H₁₆BrN₂O₂)I(CH₄O)] $M_r = 536.50$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 7.747 (2) Å b = 24.977 (3) Å c = 9.598 (2) Å $\beta = 100.497$ (4)° V = 1826.1 (6) Å³ Z = 4

Data collection

3928 independent reflections
2994 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.038$
$\theta_{\text{max}} = 27.0^{\circ}$
$\theta_{\min} = 1.6^{\circ}$
$h = -9 \rightarrow 9$
$k = -30 \rightarrow 31$
$l = -12 \rightarrow 12$

Refinement

Refinement on F^2

Secondary atom site location: difference Fourier map

Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.040$	H atoms treated by a mixture of independent and constrained refinement
$wR(F^2) = 0.096$	$w = 1/[\sigma^2(F_o^2) + (0.0385P)^2 + 2.0556P]$ where $P = (F_o^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} < 0.001$
3928 reflections	$\Delta \rho_{max} = 0.96 \text{ e } \text{\AA}^{-3}$
203 parameters	$\Delta \rho_{\rm min} = -0.71 \ e \ {\rm \AA}^{-3}$
1 restraint	Extinction correction: none
Primary atom site location: structure-invariant direct	

methods

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Zn1	0.50584 (7)	0.55343 (2)	0.28004 (5)	0.03432 (14)
I1	0.17781 (4)	0.568293 (16)	0.25354 (4)	0.05466 (14)
Br1	1.05025 (10)	0.31501 (2)	0.17245 (8)	0.0752 (2)
01	0.5139 (4)	0.47117 (12)	0.3133 (3)	0.0403 (8)
O2	0.6023 (12)	0.73465 (19)	0.4160 (5)	0.119 (3)
O3	0.6375 (4)	0.56560 (12)	0.4796 (3)	0.0370 (7)
N1	0.6591 (4)	0.54528 (13)	0.1329 (4)	0.0276 (7)
N2	0.5630 (5)	0.65133 (14)	0.2055 (4)	0.0381 (9)
C1	0.7471 (6)	0.45205 (16)	0.1873 (4)	0.0298 (9)
C2	0.6310 (6)	0.43807 (17)	0.2793 (5)	0.0340 (10)
C3	0.6426 (7)	0.38546 (18)	0.3320 (5)	0.0464 (13)
Н3	0.5649	0.3747	0.3899	0.056*
C4	0.7640 (8)	0.34916 (19)	0.3017 (5)	0.0502 (13)
H4	0.7691	0.3148	0.3396	0.060*
C5	0.8782 (7)	0.36454 (18)	0.2139 (5)	0.0409 (11)
C6	0.8706 (6)	0.41432 (18)	0.1569 (5)	0.0364 (10)
Н6	0.9477	0.4237	0.0972	0.044*
C7	0.7474 (6)	0.50294 (17)	0.1163 (4)	0.0310 (9)
H7	0.8209	0.5054	0.0501	0.037*
C8	0.6873 (6)	0.59135 (17)	0.0431 (5)	0.0366 (10)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

supplementary materials

H8A	0.6722	0.5799	-0.0549	0.044*
H8B	0.8066	0.6044	0.0713	0.044*
C9	0.5603 (6)	0.63595 (17)	0.0561 (4)	0.0346 (10)
H9A	0.5897	0.6669	0.0041	0.042*
H9B	0.4426	0.6247	0.0137	0.042*
C10	0.4279 (9)	0.6926 (2)	0.2083 (6)	0.0645 (18)
H10A	0.3126	0.6775	0.1741	0.077*
H10B	0.4458	0.7219	0.1464	0.077*
C11	0.4376 (14)	0.7133 (3)	0.3593 (8)	0.099 (3)
H11A	0.3489	0.7407	0.3593	0.118*
H11B	0.4118	0.6842	0.4192	0.118*
C12	0.7298 (13)	0.6951 (3)	0.4179 (7)	0.100 (3)
H12A	0.7050	0.6656	0.4769	0.119*
H12B	0.8438	0.7097	0.4592	0.119*
C13	0.7348 (9)	0.6746 (2)	0.2692 (6)	0.0619 (16)
H13A	0.7629	0.7038	0.2106	0.074*
H13B	0.8256	0.6476	0.2735	0.074*
C14	0.8215 (7)	0.5553 (2)	0.5089 (6)	0.0561 (14)
H14A	0.8423	0.5183	0.4908	0.084*
H14B	0.8673	0.5633	0.6064	0.084*
H14C	0.8788	0.5773	0.4492	0.084*
H3A	0.592 (8)	0.554 (2)	0.547 (4)	0.080*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
Zn1	0.0288 (3)	0.0448 (3)	0.0309 (3)	0.0064 (2)	0.0093 (2)	-0.0008 (2)
I1	0.02973 (19)	0.0787 (3)	0.0568 (2)	0.00815 (16)	0.01119 (16)	0.01217 (18)
Br1	0.0901 (5)	0.0545 (4)	0.0895 (5)	0.0392 (3)	0.0386 (4)	0.0100 (3)
01	0.046 (2)	0.0353 (17)	0.0463 (19)	0.0053 (14)	0.0257 (17)	0.0043 (14)
O2	0.253 (9)	0.041 (3)	0.068 (3)	-0.004 (4)	0.044 (4)	-0.013 (2)
O3	0.0370 (18)	0.0466 (19)	0.0286 (16)	-0.0013 (14)	0.0093 (14)	0.0038 (14)
N1	0.0282 (19)	0.0265 (18)	0.0288 (18)	0.0003 (14)	0.0067 (15)	0.0010 (14)
N2	0.053 (3)	0.0282 (19)	0.037 (2)	0.0047 (17)	0.0179 (19)	0.0044 (15)
C1	0.032 (2)	0.030 (2)	0.027 (2)	0.0010 (18)	0.0060 (19)	-0.0024 (17)
C2	0.038 (3)	0.035 (2)	0.030 (2)	-0.0023 (19)	0.008 (2)	-0.0002 (18)
C3	0.066 (4)	0.036 (3)	0.044 (3)	0.004 (2)	0.027 (3)	0.007 (2)
C4	0.075 (4)	0.029 (2)	0.048 (3)	0.005 (2)	0.014 (3)	0.005 (2)
C5	0.046 (3)	0.038 (3)	0.040 (3)	0.012 (2)	0.010 (2)	-0.005 (2)
C6	0.037 (3)	0.037 (2)	0.037 (2)	0.004 (2)	0.013 (2)	-0.0018 (19)
C7	0.029 (2)	0.038 (2)	0.027 (2)	-0.0031 (19)	0.0084 (18)	-0.0034 (18)
C8	0.042 (3)	0.034 (2)	0.036 (2)	0.000 (2)	0.015 (2)	0.0049 (19)
C9	0.038 (3)	0.033 (2)	0.033 (2)	0.0041 (19)	0.009 (2)	0.0095 (18)
C10	0.107 (5)	0.039 (3)	0.057 (3)	0.030 (3)	0.041 (4)	0.017 (2)
C11	0.174 (10)	0.065 (5)	0.073 (5)	0.055 (5)	0.064 (6)	0.022 (4)
C12	0.196 (10)	0.046 (4)	0.051 (4)	-0.041 (5)	0.007 (5)	-0.009 (3)
C13	0.087 (5)	0.046 (3)	0.053 (3)	-0.026 (3)	0.013 (3)	-0.005 (2)
C14	0.040 (3)	0.075 (4)	0.050 (3)	-0.008 (3)	0.001 (3)	0.017 (3)

Geometric parameters (Å, °)

Zn1—N1	2.014 (3)	C4—H4	0.9300
Zn1—O3	2.023 (3)	C5—C6	1.355 (6)
Zn1—O1	2.078 (3)	С6—Н6	0.9300
Zn1—I1	2.5346 (9)	С7—Н7	0.9300
Br1—C5	1.913 (4)	C8—C9	1.507 (6)
O1—C2	1.311 (5)	C8—H8A	0.9700
O2—C12	1.394 (10)	C8—H8B	0.9700
O2—C11	1.398 (11)	С9—Н9А	0.9700
O3—C14	1.425 (6)	С9—Н9В	0.9700
ОЗ—НЗА	0.84 (5)	C10-C11	1.528 (9)
N1—C7	1.285 (5)	C10—H10A	0.9700
N1—C8	1.478 (5)	C10—H10B	0.9700
N2—C10	1.472 (6)	C11—H11A	0.9700
N2—C13	1.478 (7)	C11—H11B	0.9700
N2—C9	1.481 (5)	C12—C13	1.525 (8)
C1—C6	1.411 (6)	C12—H12A	0.9700
C1—C2	1.414 (6)	C12—H12B	0.9700
C1—C7	1.442 (6)	С13—Н13А	0.9700
C2—C3	1.405 (6)	C13—H13B	0.9700
C3—C4	1.375 (7)	C14—H14A	0.9600
С3—Н3	0.9300	C14—H14B	0.9600
C4—C5	1.383 (7)	C14—H14C	0.9600
N1—Zn1—O3	114.78 (13)	С9—С8—Н8А	109.4
N1—Zn1—O1	90.15 (12)	N1—C8—H8B	109.4
O3—Zn1—O1	90.42 (13)	С9—С8—Н8В	109.4
N1—Zn1—I1	130.76 (10)	Н8А—С8—Н8В	108.0
O3—Zn1—I1	113.36 (9)	N2—C9—C8	112.2 (4)
O1—Zn1—I1	99.31 (9)	N2—C9—H9A	109.2
C2—O1—Zn1	126.0 (3)	С8—С9—Н9А	109.2
C12—O2—C11	109.3 (5)	N2—C9—H9B	109.2
C14—O3—Zn1	118.2 (3)	С8—С9—Н9В	109.2
C14—O3—H3A	109 (4)	Н9А—С9—Н9В	107.9
Zn1—O3—H3A	118 (4)	N2-C10-C11	110.1 (5)
C7—N1—C8	115.5 (3)	N2—C10—H10A	109.6
C7—N1—Zn1	124.4 (3)	C11—C10—H10A	109.6
C8—N1—Zn1	119.9 (3)	N2—C10—H10B	109.6
C10—N2—C13	107.9 (4)	C11—C10—H10B	109.6
C10—N2—C9	108.4 (4)	H10A—C10—H10B	108.2
C13—N2—C9	110.8 (4)	O2—C11—C10	112.5 (6)
C6—C1—C2	119.8 (4)	O2—C11—H11A	109.1
C6—C1—C7	115.6 (4)	C10-C11-H11A	109.1
C2—C1—C7	124.6 (4)	O2—C11—H11B	109.1
O1—C2—C3	120.1 (4)	C10-C11-H11B	109.1
O1—C2—C1	123.2 (4)	H11A—C11—H11B	107.8
C3—C2—C1	116.7 (4)	O2—C12—C13	111.4 (6)
C4—C3—C2	122.8 (4)	O2—C12—H12A	109.4

supplementary materials

С4—С3—Н3	118.6	C13—C12—H12A	109.4
С2—С3—Н3	118.6	O2—C12—H12B	109.4
C3—C4—C5	118.9 (4)	C13—C12—H12B	109.4
С3—С4—Н4	120.5	H12A—C12—H12B	108.0
С5—С4—Н4	120.5	N2-C13-C12	110.2 (6)
C6—C5—C4	121.0 (4)	N2-C13-H13A	109.6
C6—C5—Br1	119.3 (4)	C12-C13-H13A	109.6
C4—C5—Br1	119.6 (4)	N2-C13-H13B	109.6
C5—C6—C1	120.7 (4)	C12—C13—H13B	109.6
С5—С6—Н6	119.7	H13A—C13—H13B	108.1
C1-C6-H6	119.7	O3—C14—H14A	109.5
N1—C7—C1	128.3 (4)	O3—C14—H14B	109.5
N1—C7—H7	115.8	H14A—C14—H14B	109.5
С1—С7—Н7	115.8	O3—C14—H14C	109.5
N1—C8—C9	111.1 (3)	H14A—C14—H14C	109.5
N1—C8—H8A	109.4	H14B—C14—H14C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
O3—H3A···O1 ⁱ	0.84 (5)	1.81 (5)	2.649 (4)	178 (7)
Symmetry codes: (i) $-x+1, -y+1, -z+1$.				

Fig. 1

Fig. 2

