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ABSTRACT Ribosomal DNA amplicon sequencing of grape musts has demonstrated
that microorganisms occur nonrandomly and are associated with the vineyard of ori-
gin, suggesting a role for the vineyard, grape, and wine microbiome in shaping wine
fermentation outcomes. Here, ribosomal DNA amplicon sequencing from grape
musts and RNA sequencing of eukaryotic transcripts from primary fermentations ino-
culated with the wine yeast Saccharomyces cerevisiae RC212 were used to profile fer-
mentations from 15 vineyards in California and Oregon across two vintages. These
data demonstrate that the relative abundance of fungal organisms detected by ribo-
somal DNA amplicon sequencing correlated with neither transcript abundance from
those same organisms within the RNA sequencing data nor gene expression of the
inoculated RC212 yeast strain. These data suggest that the majority of the fungi
detected in must by ribosomal DNA amplicon sequencing were not active during the
primary stage of these inoculated fermentations and were not a major factor in deter-
mining RC212 gene expression. However, unique genetic signatures were detected
within the ribosomal DNA amplicon and eukaryotic transcriptomic sequencing that were
predictive of vineyard site and region. These signatures included S. cerevisiae gene
expression patterns linked to nitrogen, sulfur, and thiamine metabolism. These genetic
signatures of site offer insight into specific environmental factors to consider with
respect to fermentation outcomes and vineyard site and regional wine characteristics.

IMPORTANCE The wine industry generates billions of dollars of revenue annually, and
economic productivity is in part associated with regional distinctiveness of wine sen-
sory attributes. Microorganisms associated with grapes and wineries are influenced
by region of origin, and given that some microorganisms play a role in fermentation,
it is thought that microbes may contribute to the regional distinctiveness of wine. In
this work, as in previous studies, it is demonstrated that specific bacteria and fungi
are associated with individual wine regions and vineyard sites. However, this work
further shows that their presence is not associated with detectable fungal gene
expression during the primary fermentation or the expression of specific genes by
the inoculate Saccharomyces cerevisiae strain RC212. The detected RC212 gene expres-
sion signatures associated with region and vineyard site also allowed the identification
of flavor-associated metabolic processes and environmental factors that could impact
primary fermentation outcomes. These data offer novel insights into the complexities
and subtleties of vineyard-specific inoculated wine fermentation and starting points for
future investigations into factors that contribute to regional wine distinctiveness.
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During vinification, grape musts are transformed to wine through microbial metab-
olism, including fermentation of grape sugars into alcohols. In both inoculated

and spontaneous fermentations, Saccharomyces cerevisiae often becomes the domi-
nant fermentative organism due to a number of adaptations that support the rapid
consumption of sugars and production of ethanol (1). However, complex microbial
communities consisting of other eukaryotic microorganisms and bacteria are present
and active and make significant contributions to the wine-making process and final
product (2–6). Referred to collectively as non-Saccharomyces organisms, these microbes
often originate from the vineyard or the winery itself (7, 8). In recognition of the important
role these microbes have in wine making, selected non-Saccharomyces yeasts are increas-
ingly being inoculated into commercial fermentations to impart beneficial properties (e.g.,
bioprotection, lower ethanol, or distinct sensory characteristics) (9). Grape must and wine
treatments with sulfur dioxide (SO2) are also commonly used to control microbial popula-
tions, including spoilage organisms, but many microorganisms survive SO2 treatment and
contribute to fermentation and wine chemistry outcomes (6, 10, 11).

The persistence of vineyard- and winery-derived microorganisms throughout the
wine-making process, as well as the potential for these organisms to influence grape
berry development prior to harvest, has led to the idea that certain microorganisms
unique to a region or vineyard may contribute to region-specific wine characteristics
(12–14). In support of a role of microbial biogeography in regional wine characteristics,
microorganisms in vineyards, wineries, and grape musts are known to be associated
with their region of origin (4, 7, 8, 15–22). Moreover, the abundance of some organisms
in grape must correlates with metabolite concentrations in finished wine, further asso-
ciating microbial biogeography with fermentation outcomes and wine quality (16, 23).
Still, relatively little is known about how the majority of non-Saccharomyces microor-
ganisms present in must impact wine fermentation outcomes, but an increasing num-
ber of studies are tackling this complex problem (24, 25). Recent studies have docu-
mented increased glycerol accumulation and aroma profiles using sequential
inoculation or coinoculation of S. cerevisiae with a single non-Saccharomyces yeast spe-
cies under enological conditions (26–35). While outcomes are diverse, which may be
expected given the variety of starting must and culture conditions used across studies,
many report consistent alterations in wine, such as a higher glycerol content from fer-
mentations inoculated with S. cerevisiae and Starmerella bacillaris (30, 31, 35).

How these altered fermentation outcomes occur remains a difficult question to
address, as a given outcome may be the direct result of metabolism by the non-
Saccharomyces organism or the result of the organism altering S. cerevisiae metabolism
via direct or indirect interactions (36–38). In support of the latter, the presence of non-
Saccharomyces organisms has been shown to increase the rate and diversity of
resource uptake by S. cerevisiae in early fermentation (37–39). In controlled steady-
state bioreactor fermentations, the presence of Lachancea thermotolerans was found
to increase the expression of S. cerevisiae genes important for iron and copper acquisi-
tion (40). Such interactions are not limited to fungi, as lactic acid bacteria can induce
epigenetic changes (e.g., [GAR1] prion) in S. cerevisiae that alter glucose metabolism
(41–43). Such abilities of non-Saccharomyces organisms to impact S. cerevisiae metabo-
lism and fermentation outcomes raise the question of whether the microbial biogeog-
raphy of vineyard sites persists in fermentations, thereby influencing wine outcomes in
a site-specific manner. In addition, microbial diversity changes as the primary fermen-
tation progresses and S. cerevisiae becomes dominant (44), suggesting that a changing
microbial community could provide feedback to impact fermentation progression in
multiple distinct ways. Currently, relatively little is known about these interspecies
interactions and how this influences S. cerevisiae, which as a field must be addressed to
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understand how microbial community dynamics impact wine fermentation outcomes,
chemistry, and sensory characteristics.

Past inquiries into the microbial communities of grape must and wine related to re-
gional distinctiveness have focused on assaying the presence of specific microbes
based on ribosomal DNA amplicon sequencing (4, 8, 15–21, 45). DNA sequencing has
the advantages of capturing both metabolically active and inactive organisms, due to
the relative stability of the DNA molecule, offering evidence of a rich history of the mi-
crobial community prior to sampling. Ribosomal DNA amplicon data further provide a
measure of which microbes may be active at the time of sampling or may become
active in the future. While microbiome DNA sequencing of grape musts supports
regionally distinct microbial signatures, the identity of microbes other than S. cerevisiae
that metabolically contribute to the primary alcoholic fermentation remains largely
unknown. This information is critical when considering the possibility that a particu-
lar microbe influences wine fermentation outcomes via metabolism or interspecies
interactions.

One measure of metabolic activity that is relatively accessible and can be applied at
scale to address this issue is the measurement of gene expression in both S. cerevisiae
and non-Saccharomyces organisms. An interrogation of the genes that are “on” at a
given time using RNA sequencing provides important information about the activities
an organism may perform. In addition, the RNA molecule assessed by transcriptomics
is constantly turned over within cells and is relatively unstable compared to DNA,
which makes transcriptomics a good indicator of microbial activity and viability at the
time of sampling. For example, early in fermentation, S. cerevisiae turns on genes
required for glucose metabolism and represses expression of genes needed for the
metabolism of other carbon sources, a pattern that reverses toward the end of fermen-
tation, when glucose is depleted and S. cerevisiae must find alternative energy sources
(46). These patterns of gene expression are readily observed using transcriptomics (46,
47), which is increasingly being applied to understand wine fermentation outcomes
(37–40, 48).

Here, microbial populations present in Pinot noir musts from California and Oregon
were characterized in multiple vintages using ribosomal DNA amplicon data from
grape must samples prior to inoculation. In addition, eukaryotic gene expression data
were generated across subsequent fermentation time points. Within these data,
genetic signatures (i.e., DNA and RNA profiles) of vineyard site and region can be dis-
cerned, with total precipitation during the growing season being one vineyard-associ-
ated factor identified to correlate with site-specific genetic signatures. While DNA pro-
files reliably predict both vineyard site and region, these profiles did not correlate with
the RNA profiles of the primary fermentations, including gene expression of the inocu-
lated S. cerevisiae RC212 strain. These findings suggest that other characteristics of the
must influenced S. cerevisiae RC212 strain gene expression more than the grape must
microbiome, as measured by ribosomal DNA amplicon sequencing. A comparison of
DNA sequencing and gene expression data also indicates that the majority of organ-
isms detected by ribosomal DNA sequencing hours prior to inoculation lack detectable
gene expression following inoculation, thus lowering the likelihood that many of these
organisms significantly impact fermentation outcomes during the primary stage of fer-
mentation. Finally, using S. cerevisiae RC212 gene expression patterns and the associ-
ated functions of the genes identified, it was possible to identify flavor-associated met-
abolic processes and environmental factors that may contribute to vineyard-specific
fermentation outcomes.

RESULTS AND DISCUSSION

To investigate the influence of vineyard site on wine fermentation outcomes across
multiple vintages, standardized fermentations of Pinot noir were performed using
grapes from 15 vineyard sites in California and Oregon (see Fig. S1A in the supplemen-
tal material). As part of a larger study (49–51), in 2016, 2017, and 2019, microbiome
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samples for DNA isolation and ribosomal DNA amplicon sequencing were taken
approximately 2 to 3 h prior to inoculation from four independent fermentations per
vineyard site. In the 2017 and 2019 vintages, two primary fermentations from each site
were also profiled using RNA sequencing approaches to perform eukaryotic gene
expression analyses at multiple fermentation time points after inoculation with the
wine yeast RC212. All grape processing and temperature-controlled fermentations
were performed at the UC Davis Teaching & Research Winery to standardize vinifica-
tion and minimize contributions from other factors (e.g., winery and winemaker) to the
microbiome and transcriptome.

DNA abundance by ribosomal amplicon sequencing is a poor predictor of
detectable gene expression during fermentation. When ribosomal DNA amplicon
sequencing of bacteria and fungi was carried out, 3,254 distinct bacterial sequences
and 2,452 distinct fungal sequences were detected in grape must samples (Fig. 1A and
B), with a greater mean species diversity per vineyard site for bacteria than for fungi
(Fig. S1B). However, the core microbiome—i.e., the species present in 90% of all grape
musts across all vintages with at least 1% abundance—was larger for fungi than bacte-
ria. The core microbiome consisted of 11 bacterial variants classified to nine taxonomic
ranks and 19 fungal variants classified to 10 taxonomic ranks. All bacteria in the core
microbiome belonged to the phylum Proteobacteria and were dominated by the genus
Tatumella (Fig. S2). Tatumella has previously been identified as a dominant genus in
other red wine fermentations, where it correlated with total acid (by titration) in grape
must (52). Three of the most abundant bacterial sequence variants were identified as
belonging to the acetic acid-producing genus Gluconobacter (Fig. S2). Gluconobacter is
one of three genera of acetic acid bacteria associated with wine spoilage and the only
genus identified among dominant organisms (53). Gluconobacter spp. are primarily
active in grape must, as the wine environment restricts growth of organisms in this ge-
nus (53). Fungi in the core microbiome belonged to a single phylum, Ascomycota, with
all fermentations dominated by the genus Hanseniaspora, in particular Hanseniaspora
uvarum. H. uvarum cannot complete alcoholic fermentation alone, but it participates in
and can alter the quality outcomes of wine fermentations (54). The fungal genus
Botrytis was also identified among dominant organisms (Fig. S2), but these analyses
lacked the ability to resolve whether the particular organisms detected belonged to
the spoilage organism Botrytis cinerea or another species in the genus Botrytis.
Through this work, must microbiome sequencing was extended to include the 2019
vintage, with results largely matching findings from previous vintages across these
same vineyard sites (51). The observed microbial community composition was consist-
ent with organisms previously shown to be present at the initial stages of the wine-
making process (4, 16–18, 52).

Ribosomal DNA amplicon sequencing is expected to capture cells that are metabol-
ically active, inactive, or dead due to the stability of the DNA molecule. In contrast,
gene expression profiling via RNA sequencing is expected to be biased toward living
cells. Moreover, the identity of the gene transcripts present at the time of sampling fur-
ther provides information about what metabolic activities the cell may be performing.
While traditional RNA sequencing produces sequencing reads from an entire transcript,
39-tag RNA sequencing (39 Tag-seq) was employed in this work, which produces one
molecule per transcript by sequencing approximately 100 bp upstream of the 39 end
of a sequence (55). This sequencing chemistry requires a poly(A) tail, limiting the
sequenced fraction of the transcriptome almost entirely to polyadenylated eukaryotic
mRNAs. Using 39 Tag-seq, eukaryotic gene expression was profiled during fermentation
using samples taken at multiple time points after inoculation (i.e., 16, 64, and 112 h in
2017 and 2019, plus 2 and 6 h postinoculation in 2019). The selected sampling times
included time points in early fermentation, mid-fermentation, and late fermentation
based on Brix values (Table 1).

From the resulting 39 Tag-seq data, it was observed that relatively few eukaryotic
microbes were detected during these Pinot noir fermentations (Fig. 1C). Considering
all 15 sites together, only 18 eukaryotic species were detected. As expected for an
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FIG 1 Microbial diversity in grape must and fermentation microbiomes from different vineyard sites. (A and
B) Relative abundance of taxonomic ranks in ribosomal DNA amplicon sequencing data capturing bacteria

(Continued on next page)
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inoculated fermentation, S. cerevisiae transcripts accounted for the majority of sequen-
ces across all fermentations at all time points. To assess whether noninoculated S. cere-
visiae strains were responsible for some fraction of sequence reads, the transcriptome
was compared against all annotated S. cerevisiae genomes in GenBank, as well as a ge-
nome assembly of S. cerevisiae RC212. While non-RC212 S. cerevisiae strains were de-
tectable in every fermentation, this fraction accounted for less than 1% of uniquely
identifiable sequences. In all fermentations, Vitis vinifera transcripts were also identified
(Fig. 1C). The detection of non-RC212 S. cerevisiae, Vitis vinifera, and other fungal organ-
isms also indicates that the sequencing depth obtained was sufficient to detect RNA
from organisms other than the inoculated and dominant RC212 yeast.

In comparing organisms detected via DNA sequencing and 39 Tag-seq RNA
sequencing, only four (Aureobasidium pullulans, H. uvarum, Hanseniaspora vineae, and
S. cerevisiae) of 397 distinct fungal species definitively identified by ribosomal DNA
profiling were detected using gene expression data. This was unchanged in the 2019
transcriptome profiling samples taken at 2 and 6 h after inoculation. These data sug-
gest that organisms detected by amplicon sequencing ;2 to 3 h prior to inoculation
were not highly active postinoculation, even well before S. cerevisiae would begin to
produce inhibitory concentrations of ethanol based on Brix values (Table 1). Ribosomal
DNA sequencing data indicated that of the four organisms detected by both sequenc-
ing methods, H. uvarum was highly abundant in all musts from all vineyard sites prior
to inoculation (Fig. 2A). Still, the relative abundance of H. uvarum in grape must from
ribosomal DNA amplicon sequencing was only weakly correlated with relative abun-
dance of RNA from the fermentation samples taken at 2, 4, and 16 h (2 h, R2 = 0.21,
P, 0.05; 6 h, R2 = 0.28, P, 0.01; 16 h, R2 = 0.14, P, 0.01). Moreover, while these values
are weakly correlated, H. uvarum had almost no detectable gene expression in fermen-
tations from many sites where it dominated the DNA profile of the grape must just
prior to inoculation (Fig. 2B). In the case of A. pullulans, DNA in grape must was not cor-
related with gene expression during fermentation (2 h, R2 = 20.03, P=0.60; 6 h, R2 =
20.025, P=0.53; 16 h, R2 = 0.10, P, 0.05). These results indicate that most of the iden-
tified eukaryotic microorganisms in grape must by DNA profiling likely have little meta-
bolic activity in these inoculated fermentations even when the organisms are detected
at high abundance and are detectable via both sequencing methods.

It is important to consider if a lack of detectable gene expression for non-
Saccharomyces fungal species could be reflective of a technical issue or have a biologi-
cal cause. This is considered unlikely, since both DNA and RNA sequencing require sim-
ilar protocols for extraction of nucleic acids from cells that should perform approxi-

TABLE 1 Average Brix values across fermentations at time of RNA-seq sampling in the 2017
and 2019 vintages

Sampling time (h)a

Avg (SD) °Bx in vintage

2017 2019
2 NAb 24.3 (0.71)
6 NA 24.3 (0.74)
16 22.6 (1.86) 23.0 (0.72)
64 6.58 (2.72) 6.26 (2.11)
112 20.32 (1.25) 20.83 (0.56)
aHours after inoculation.
bNA, not available.

FIG 1 Legend (Continued)
(A) and fungi (B). Samples taken from fermentations from the same vineyard site and vintage are combined
and reflect relative abundance of organisms from four fermentation tanks. Only three tanks were fermented
for AV2 in 2019 due to a smaller harvest. (C) Relative abundance of all genes expressed by a detected
organism during fermentation from the 2017 and 2019 vintages. (Top) All organisms; (bottom) organisms
that account for less than 3% of mapped reads in each sample. Only organisms present in more than one
fermentation are plotted.
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mately equally across samples. Moreover, the RNA sequencing performed here relies
on highly conserved biological processes (e.g., mRNA polyadenylation); hence,
while RNA sequencing could have failed for one or a few organisms, it should not
fail across many fermentations for the large majority of organisms seen in this
work. Moreover, of the 16 non-Saccharomyces fungi detected via RNA sequencing,
eight of these organisms were not detected at the genus level by DNA profiling
(Cladosporium sp. SL-16, Lachancea thermotolerans, Metschnikowia fructicola,
Metschnikowia sp. AWRI3582, Pichia kudriavzevii, Preussia sp. BSL10, Rhizopus stolo-
nifer, and Starmerella bacillaris). This suggests that transcriptomic profiling is a sen-
sitive assay able to detect organisms present in a population that are missed by ri-
bosomal DNA amplicon sequencing, which is likely due to an inability to resolve
genus or species using ribosomal DNA sequences.

Notably, some of the organisms detected by RNA sequencing have the ability to
influence fermentation outcomes: in mixed fermentations with S. cerevisiae, S. bacillaris
has been shown to lower the final ethanol concentration and increase the concentra-
tion of glycerol (56), while M. fructicola increased the concentration of esters and ter-
penes (57). Therefore, the detection of these organisms by RNA sequencing provides
valuable information with respect to the potentially active microbial population in
these fermentations. These findings align well with a recent report that showed that an
RNA-based sequencing strategy is a highly sensitive alternative to amplicon sequencing
(58). As such, it may be appropriate to use RNA sequencing as a general method to cap-
ture the metabolically active microbial community during wine fermentation, especially
when one is drawing a connection between the presence of selected organisms within
the must microbiome and primary fermentation outcomes.

Genetic signatures differentiate vineyard site, region, and vintage. The region
and site from which grapes are harvested can have an important influence on the char-
acter of a resulting wine based on a variety of factors (e.g., climate, soil type, vine nutri-
tion, grape-associated microbes, etc.). As such, the data generated using DNA and RNA
sequencing strategies during these Pinot noir fermentations may be reflective of vine-
yard site through the generation of unique genetic signatures. To investigate this con-
cept, DNA and RNA sequencing samples were grouped by vineyard site, region, and
vintage to see if there were detectable differences among these groups. Using analysis
of similarities (ANOSIM) and permutational multivariate analysis of variance (PERMANOVA;

FIG 2 H. uvarum ribosomal DNA amplicon sequencing data does not strongly correlate with relative abundance in
RNA sequencing data. (A) Bar chart of relative abundance of H. uvarum compared to other non-Saccharomyces species
across fermentations from each site based on amplicon sequencing data of ribosomal DNA. (B) Scatterplot of relative
abundance of H. uvarum as determined by amplicon sequencing of ribosomal DNA (x axis) versus RNA sequencing (y
axis). Points are colored by number of hours after inoculation that RNA sequencing samples were sampled from the
fermentations.
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see Materials and Methods), it was determined that all three factors explain differences
among groups of samples, with vineyard site or region explaining the most group similar-
ity (Fig. 3A to D). This supports the idea that fermentations have a detectable genetic sig-
nature within the DNA and RNA sequencing data that is reflective of vineyard site and
region.

To understand which specific organisms and genes contribute to the genetic signa-
tures of both vineyard site and region, machine learning classification models were
built using random forests. These models weight the contribution of each feature to
the predictive accuracy of the model, enabling robust identification of specific genes
or organisms that differentiate vineyard sites or regions among fermentations. When
data from all vintages were used in model training and testing to predict region, the
models achieved 87% to 95% accuracy (Data Set S1; Fig. S3). When data from one vin-
tage were used in model training and testing to predict region, accuracy dropped
across all models but ranged from 57% to 75% (Data Set S1; Fig. S3). This suggests that
models built with fermentations from all vintages better capture cross-vintage similar-
ities, as these models select predictive variables that are consistent across the vintages
studied. However, the accuracy of these models may decrease if the same set of pre-
dictive variables is not consistent in future vintages. Conversely, the accuracy of a
model built from a single vintage and trained on a separate vintage will likely remain
consistent across many vintages. From this, it was assumed that models trained using
data from a single vintage better reflected model accuracy but that models trained
using data from all vintages better reflected cross-vintage similarities. Given the goals
of this study, which focused on the identification of site-specific vintage-independent
factors, cross-vintage models were analyzed further.

At the vineyard level, when the same data were used to generate models, predic-
tive accuracy was on average 21.4% less than that of region-specific models (Data Set
S1). However, it is important to note that this decrease in accuracy was driven by
within-region classification errors for vineyards in the Willamette Valley (31-km separa-
tion), Santa Maria Valley (5-km separation), and Arroyo Seco (1-km separation) American
viticultural areas (AVA) (Fig. S4). The same classification errors persisted across many mod-
els, highlighting potential within-region similarity that contributes to genetic signatures,
which fits well with the concept of AVA and region-associated wine characteristics.

Across these analyses, bacterial based models outperformed, or performed as well
as, fungal models for classification of site and region. This differs from previous studies,
in which bacterial must samples added the least predictive power for region prediction
(15), including for Pinot noir grapes grown in Australia (8). Bacterial must samples have
been shown to be predictive of region in Californian Chardonnay but not Californian
Cabernet Sauvignon (15), suggesting a possible cultivar-specific effect. In previous
inquiries, samples were processed in vineyard-specific wineries, providing another vari-
able that could potentially alter the measured microbiomes and the contributions
attributed to bacteria and fungi.

Given that random forests models estimate the importance of each gene in deter-
mining vineyard or region classification, information from the gene expression models
was used to gain insight into biological differences between vineyard sites and regions.
For this, the percentage of total importance attributable to each gene and eukaryotic
organism detected was calculated (Data Set S1). Vineyard-specific models weighted
non-Saccharomyces yeast genes as a whole as most important for predictive accuracy
(Fig. 3E; Fig. S5). In particular, genes from S. bacillaris, M. fructicola, Metschnikowia sp.
AWRI3582, and L. thermotolerans were important for vineyard site classification. The
ability of non-Saccharomyces gene expression to distinguish site is likely related to the
unique combination of non-Saccharomyces organisms present in each fermentation
and their infrequent detection via RNA sequencing, which results in these organisms
having strong predictive power when detected. In contrast, regional models weighted
S. cerevisiae and V. vinifera genes as having higher importance (Fig. 3E; Fig. S5). These
observations may result from changes in V. vinifera gene expression across more diverse
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FIG 3 Genetic profiles correlate with vineyard, region, and vintage as well as some vineyard site and initial grape
must characteristics. (A to C) Nonmetric multidimensional scaling plots of Aitchison dissimilarity of bacterial
communities (A), fungal communities (B), and transcriptomes (C) across vintages. A shorter distance between two
points on the graph indicates higher similarity between their genetic profiles. (D) Vineyard site, region, and vintage
account for genetic diversity patterns in analysis of similarity (ANOSIM) and permutational multivariate analysis of
variance (PERMANOVA). ANOSIM and PERMANOVA data are R values that represent strength of association, with
higher R values indicating stronger grouping according to the parameter and statistical test. All values are significant
(P, 0.001). (E) Percent of accuracy attributable to different organisms in random forests models. A higher
percentage of variable importance was attributable to S. cerevisiae and V. vinifera in models that predicted region
than in those that predicted vineyard site. (F and G) Correlograms representing similarities between fermentation
metrics. (F) Grape must chemical parameters and vineyard site characteristics were correlated in the 2017 and 2019
vintages. Squares are labeled with correlation values from Pearson’s correlation. Only comparisons with P values of
,0.05 are displayed. (G) Bacterial, fungal, and transcriptome profiles correlated with some vineyard site and grape
must chemical characteristics. Squares are labeled with correlation values from Mantel tests. Only comparisons with
an FDR of ,0.1 are displayed. PPT, precipitation; GDD, growing degree days; MA, malic acid; TA, titratable acidity.
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geographical environments, which leads to differences in the grape must and associated
fermentations as detected by S. cerevisiae gene expression.

To more directly address how environmental factors and grape must chemistry cor-
relate with genetic signatures, initial must chemical parameters (pH, titratable acidity,
malic acid, nitrogen by o-phthaldialdehyde assay [NOPA], and NH3) and vineyard site
characteristics (total precipitation, growing degree days, and geographic distance
between sites) were correlated with DNA and RNA profiles using the Mantel test (see
Materials and Methods). Using these analyses, geographic distance between vineyards
correlated with precipitation and growing degree days, indicating that sites that are
geographically closer experience more similar weather patterns, as would be expected
(Fig. 3F). Among the factors tested, only precipitation correlated with all genetic pro-
files (Fig. 3G). Similar to geographic distance, initial chemical profiles of vineyard sites
were more similar when sites were geographically closer. However, surprisingly few
correlates between genetic profiles and initial grape must conditions were found
(Fig. 3G). While fungal profiles correlated with initial malic acid, NOPA, and NH3 and
bacterial profiles correlated with initial NOPA, gene expression profiles correlated only
with initial malic acid levels. The finding that gene expression profiles do not correlate
with initial nitrogen concentration, even though nitrogen availability is central to yeast
growth and linked to the expression of hundreds of genes (46), may reflect nitrogen
additions at ;24 h after inoculation during winemaking so that all fermentations had
a minimum of 250mg/liter (see methods). Overall, the poor correlation between gene
expression patterns and the factors tested suggest that other unmeasured factors are
responsible for the distinctive gene expression patterns detected in these fermenta-
tions. This raises a clear need for future work that measures many factors within vine-
yards and fermentations to define the organism-environment interactions responsible
for driving unique gene expression and cellular activities of S. cerevisiae and other mi-
crobial organisms.

S. cerevisiae gene expression provides insight into vineyard site and region
features. S. cerevisiae is likely the best-understood eukaryote because of its use as a
model system for biology, which has provided a rich set of genomic resources and
databases (59). As such, S. cerevisiae gene expression can be used as a biosensor to
provide insight into the fermentation environment based on the activities the yeast
performs. The utility of these data is increased by the fact that S. cerevisiae gene func-
tions are well studied in the context of wine production, S. cerevisiae is ubiquitous
across all fermentations, and the transcriptomics data are dominated by reads from S.
cerevisiae (e.g., data completeness). Consequently, S. cerevisiae gene expression data
were queried to assess what genes, and associated functions, were important for pre-
dicting site. These data were then used to infer what aspects of the must environment
may be unique from each vineyard site or region. Notably, random forests models are
nondeterministic, meaning that each time a model is built, the specific genes impor-
tant for predictive accuracy of that model may change, especially for genes with corre-
lated gene expression values (60). Therefore, 100 random forests models were built for
the prediction of region and vineyard site, and only S. cerevisiae genes that were
shared across the majority of models were considered (Data Set S2). As discussed
above, less than 1% of transcripts in any fermentation were expressed by non-RC212 S.
cerevisiae, and thus the genetic signatures identified are likely specific to strain RC212.

From this analysis, important predictors of both site and region included flavor-
associated S. cerevisiae genes involved in the formation of higher alcohols and volatile
fatty acids through the Ehrlich pathway. Each site-specific and region-specific model
included an average of 16 (site standard deviation [SD] = 2.9, region SD= 2.4) genes
associated with flavor development in wine (Data Set S3). These genes were mostly
associated with the Ehrlich pathway (site mean= 8.1 genes, SD= 2; region mean= 9
genes, SD= 1.7) and with volatile sulfur formation (site mean= 6.3 genes, SD= 1.6;
region mean= 5.1 genes, SD= 1.4). Given that genes in these pathways were detecta-
ble as indicators of both region and site, variable expression of these genes could con-
tribute to region- and vineyard-specific wine flavor profiles detected in wines from
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these vineyards in previous vintages (49). At this time, it remains unknown what factors
within the fermentation environment cause these flavor-associated genes to differ
between fermentations.

In addition to flavor-associated genes, many S. cerevisiae genes that were important
for predicting both vineyard site and region are members of the Com2 regulon (Data
Set S3). Expression of genes within the Com2 regulon are protective against SO2 stress
(61). In this work, on day 2 of the cold soak;24 h prior to inoculation, all fermentations
were adjusted to have total SO2 levels of 40 ppm. However, variable application of sul-
fur-containing fungicides in the vineyard may lead to disparate sulfur stress during fer-
mentation and may underlie the genetic signatures of site and region that are
observed. Wine strains of S. cerevisiae are more tolerant of SO2 than many non-
Saccharomyces species, but SO2 exposure can cause inhibition of key metabolic enzymes
like alcohol dehydrogenase, as well as other processes through cleavage of disulfide bonds
(62, 63). Of the 511 genes dependent on Com2 activation during SO2 stress (61), an aver-
age of 105 genes (SD=12.7) were important for differentiating site in our predictive mod-
els, while 101 genes (SD=11.6) were important for predicting vineyard region. Within
these gene lists are genes involved in the efflux of sulfite and bisulfite; sulfate assimilation;
biosynthesis of methionine, cysteine, arginine, and lysine; and biosynthesis of the sulfur-
containing vitamin biotin (Data Set S3). These pathways, and their site-specific signatures,
are potential areas of future study given that sulfur metabolism can have a profound
impact on the sensory attributes of a finished wine (64). In addition, while the molecular
form of SO2 causes S. cerevisiae stress and inactivation of wine spoilage microbes (11, 61),
this form is in equilibrium with the bisulfite form (HSO3

2), and this ratio is dependent on
wine pH (65). The bisulfite form interacts with anthocyanins and can cause color bleaching
(65). This suggests that the SO2 stress response is a factor that would need to be consid-
ered in the context of pH and other aspects of SO2 wine chemistry.

In models important for predicting region only, an average of 22.4 genes per region
(SD= 13.5) were predictive across all models, with an average of 14.4 genes (SD= 8.4)
expressed by S. cerevisiae (Data Set S3). Interestingly, many S. cerevisiae genes that
were important for predicting one region were also important for predicting other
regions (BET2, BET3, BIO4, EXG2, FAS2, HEM12, LOH1, MEP3, MRX21, NPT1, PSA1, SNZ3,
THI11, THI13, THI72, and TUB4), suggesting that expression of these genes differed con-
sistently between regions. These genes encode proteins involved in diverse cellular
processes, including heme biosynthesis, cell wall assembly, and synthesis and transport
of fatty acids and nitrogen-containing compounds. While the underlying biochemical
processes that lead to consistent expression of these S. cerevisiae genes within regions
remains unknown, it was notable that MEP3, a gene that encodes an ammonia perme-
ase (66), was important for predicting the three regions with the lowest average initial
yeast-assimilable nitrogen (Oregon, Anderson Valley, and Russian River Valley) and the
region with the second highest yeast assimilable nitrogen (Santa Maria Valley) across
vintages (Fig. S6). Given that nitrogen availability plays a fundamental role in fermenta-
tion outcomes (67), the ability of MEP3 expression to identify specific regions based on
nitrogen levels may be expected. It was also noted that four genes associated with thi-
amine availability were important for predicting multiple regions. This suggests that
thiamine availability may be a factor to consider with respect to regional differences in
wine fermentation outcomes, a postulate that could be measured in a future vintage.
Given that gene expression is inherently noisy (68), increasing the number of site sam-
ples and the sequencing depth may improve model accuracy in the future.

Together, these results identify S. cerevisiae genes expressed during primary fer-
mentation that are predictive of vineyard site and region in Pinot noir fermentations.
Many of these genes are linked to metabolic processes that could impact wine sensory
and chemistry. Consequently, these findings provide a concrete starting point for
future investigation into factors that contribute to vineyard- and region-specific wine
fermentation outcomes and ultimately wine chemistry and sensory characteristics.
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Conclusion. The microbial biogeography of wine has been documented in globally
distributed appellations (4, 7, 8, 15–22) and has been correlated with wine fermenta-
tion outcomes (16, 23). In inoculated cocultures, non-Saccharomyces microorganisms
both contribute to fermentation and change the behavior of the dominant fermenter,
S. cerevisiae, leading to measurable differences in wine aroma and composition
(37–39). Here, it was found that grape must ribosomal DNA profiles do not correlate
with detected eukaryotic gene expression patterns during primary fermentation. Given
the lack of a strong correlation between fungal profiles in initial grape must and genes
expressed by those organisms or the inoculated RC212 strain during primary fermenta-
tion, the use of must microbiome DNA profiles to infer contributions from these organ-
isms to inoculated fermentation and wine sensory outcomes must be carefully consid-
ered. However, DNA profiles, in particular bacterial profiles, are predictive of vineyard
site and retain signatures of site-specific processes such as total precipitation during
the growing season. These profiles are rich indicators of the patterns that shape the
microbial ecology of grapes and reflect differences among vineyard sites and regions,
even when the same clone (e.g., Vitis vinifera L. cv. Pinot noir clone 667) is grown on
each site.

Similarly, the gene expression profiles of S. cerevisiae and other eukaryotic organisms
also retained signatures of vineyard site and region. Cellular functions of the S. cerevisiae
genes identified as important for differentiating site included nitrogen, sulfur, and thia-
mine metabolism. While these processes were associated with vineyard-specific genetic
signatures, few vineyard site and initial grape must chemical parameters were found to
correlate with the detected fermentation transcriptome. This suggests that there are still
many variables to discover that underlie the complex metabolic activities and gene expres-
sion patterns measured throughout fermentation that are linked to site. In the future,
more comprehensive sequencing approaches (e.g., deeper sequencing with methods that
capture the full transcriptome, more samples per site, and inclusion of bacterial gene
expression) aimed at the factors and organisms identified in this work would allow a better
understanding of these systems. This will need to be accompanied by measurements of
many more vineyard, must, and wine characteristics to provide further predictive power
and insights into the complexities and subtleties of vineyard-specific wine fermentation
outcomes.

MATERIALS ANDMETHODS
Grape preparation and fermentation. The winemaking protocol has been described previously

(49, 50), but the relevant parts are reproduced with some added details below. The grapes used in this
study originated from 15 vineyards in eight American viticultural areas in California and Oregon (USA).
All grapes were Vitis vinifera L. cv. Pinot noir clone 667, with either rootstock 101-14 (AV1, RRV1, SNC1,
SNC2, CRN1, AS1, AS2, SMV1, SMV2, and SRH1), Riparia Gloire (OR1 and OR2), or 3309C (AV2, RRV2, and
RRV3). Grapes were harvested by hand at approximately 24 degrees Brix (24°Bx) and transported to the
University of California, Davis, Teaching & Research Winery for fermentation. Grapes were separated into
half-ton macrobins on harvest day, and Inodose (potassium metabisulfite and potassium bicarbonate)
was added to achieve SO2 levels of 40 ppm. Upon delivery to the winery, bins were stored at 14°C until
the fruit was destemmed and divided into temperature jacket-controlled tanks. N2 sparging of the tank
headspace was performed prior to fermentation, and tanks were sealed with a rubber gasket. Grapes
were cold soaked at 7°C for 3 days with SO2 additions made on day 2 of cold soaking to maintain a level
of 40 ppm total SO2. On the morning of day 3, ;20 h later, microbiome samples were taken and the
musts were warmed for inoculation to 21°C with programmed pump-overs used to hold the tank at a
constant temperature. Approximately 2 to 3 h after the musts reached the desired temperature, they
were inoculated. For inoculation, S. cerevisiae RC212 (Lallemand) was rehydrated with Superstart Rouge
(Laffort) at 0.2 g/liter and inoculated in the must at 0.25 g/liter. Fermentation progress was determined
by measuring Brix values with a density meter (Anton Paar 35 DMA).

At approximately 24 h after inoculation, nitrogen content was adjusted in the fermentations by add-
ing diammonium phosphate (DAP), according to the formula (target level of yeast assimilable nitrogen
[YAN] – 35mg/liter – initial level of YAN)/2, and Nutristart (Laffort) at 0.25 g/liter. Nitrogen was adjusted
only if the target YAN level was below 250mg/liter based on measures of ammonia and free a-amino
nitrogen content (Gallery automated photometric analyzer; Thermo Fisher Scientific). Approximately
48 h after fermentation, fermentation temperatures were permitted to increase to 27°C and DAP was
added as previously described. Fermentations were then continued until,0°Bx was reached. Fermentation
samples were taken for Brix measurements every 12 h relative to inoculation and with RNA samples at 2h,
6h (2019 vintage), 16 h, 64h, and 112h (2017 and 2019 vintages). To ensure uniform sampling, a pump-over

Reiter et al.

March/April 2021 Volume 6 Issue 2 e00033-21 msystems.asm.org 12

https://msystems.asm.org


was performed 10 min prior to sampling of each tank. For RNA samples, 12ml of juice was centrifuged at
4,000 rpm for 5 min, supernatant was discarded, and the cell pellet snap-frozen in liquid nitrogen. Samples
were stored at280°C until RNA extraction.

Amplicon sequencing data processing. DNA was extracted for amplicon sequencing and library
preparation as described in references 51 and 69. The UC Davis DNA Tech Core performed sequencing
using Illumina MiSeq, producing 251-bp paired-end sequences. The data were demultiplexed by bar-
code sequences and adapter trimmed using cutadapt (70). Taxonomically annotated amplicon sequence
variant (ASV) counts were generated using DADA2 with the Silva nonredundant (NR) database (version
138) for 16S sequences and the UNITE general FASTA release (version 8.2) for internal transcribed spacer
(ITS) sequences (71). All ASVs annotated as “Bacteria,Cyanobacteria,Cyanobacteriia,Chloroplast” and “Bacteria,
Proteobacteria,Alphaproteobacteria,Rickettsiales,Mitochondria” were removed, as these represent plant mito-
chondria and chloroplast 16S sequences and not bacterial sequences. See Data Set S4 for the numbers of reads
quantified in each library before and after filtering.

RNA sequencing data processing. Yeast pellets were thawed on ice, resuspended in 5ml Nanopure
water, and centrifuged at 2,000 � g for 5min, and the supernatant was aspirated. RNA was extracted
using the Quick RNA fungal/bacterial miniprep kit, including DNase I column treatment (catalog no.
R2014; Zymo Research). RNA was eluted in 30 ml of molecular-grade water and assessed for concentra-
tion and quality via Nanodrop spectrometry and RNA gel electrophoresis. Sample concentrations were
adjusted to 200 ng/ml and used for sequencing. Single-end 39 Tag-seq sequencing (Lexogen QuantSeq)
was applied in both the 2017 and 2019 vintages, with the addition of UMI (unique molecular identifier)
barcodes in 2019. The University of California, Davis, DNA Technologies Core performed all library prepa-
ration and sequencing.

The first 12 bp from each read were hard trimmed, and Illumina TruSeq adapters and poly(A) tails
were removed. The program sourmash gather was used to determine the organisms present in each
sample using parameters -k 31 and –scaled 2000 (72, 73). The GenBank microbial database (https://
sourmash-databases.s3-us-west-2.amazonaws.com/zip/genbank-k31.sbt.zip) and eukaryotic RNA data-
base (https://osf.io/qk5th/) were used for these queries.

Using results from sourmash, a set of reference genomes was constructed that was representative of
all organisms detected within the samples. When different strains of the same species were detected,
the one species detected in the largest number of samples was used as a representative species to
reduce multimapping conflicts. Species present in more than two samples were included because spe-
cies present in fewer than three samples would have limited predictive power. Species of the genus
Saccharomyces other than S. cerevisiae were removed to reduce multimapping conflicts. Selected
genomes were downloaded from NCBI GenBank; however, if no GTF annotation file was available for the
species, the genome and GFF3 file were taken from JGI Mycocosm (74), and the GFF3 was converted to
GTF using the R package rtracklayer (75). When no annotation file was available on GenBank or JGI
Mycocosm, the genome of the closest species-level strain with a GTF annotation file was used.

To find closely related organisms, NCBI taxonomy was searched, selected assemblies were down-
loaded, and sourmash compare was used with a k size of 31 (72, 73). The organisms with the highest
Jaccard similarity were considered the most similar. When no annotation file was available for similar
organisms, an annotation file was generated using WebAugustus (76). See Data Set S4 for a description of
the best-matched genome, the genome used for count generation, and the source of genome annotations.
Reference genome FASTA files and GTF files were concatenated to generate a single reference. STAR was
then used to align reads against the constructed reference with the parameters –outFilterType BySJout,
–outFilterMultimapNmax 20, –alignSJoverhangMin 8, –alignSJDBoverhangMin 1, –outFilterMismatchNmax
999, –outFilterMismatchNoverLmax 0.6, –alignIntronMin 20, –alignIntronMax 1000000, –alignMatesGapMax
1000000, –outSAMattributes NH HI NM MD, –outSAMtype BAM, and SortedByCoordinate (77). For the 2019
vintage, UMI-tools was used to deduplicate alignments (78). The number of reads mapping to each gene
was quantified using htseq count using the constructed reference GTF file to delineate gene regions (79).
See Data Set S4 for number of reads quantified in each library.

RC212 genome assembly and comparison. The S. cerevisiae RC212 genome was assembled to esti-
mate the fraction of RNA sequencing reads in each fermentation originating from non-RC212 S. cerevi-
siae strains. FASTQ files for accession no. SRR2967888 were downloaded from the European Nucleotide
Archive (80). Reads were k-mer trimmed using the khmer trim-low-abund.py command with the param-
eter -k 20 (81), and the Megahit assembler was used with default parameters to assemble reads (82).

Estimation of noninoculated yeast in RNA-seq samples. The program sourmash gather was used
to estimate the fraction of transcriptome sequencing (RNA-seq) reads (k-mers) originating from nonino-
culated S. cerevisiae. The sourmash gather tool estimates shared sequence similarity by comparing
scaled MinHash signatures derived from k-mer profiles (72, 73). The sourmash eukaryotic RNA database
(https://osf.io/qk5th/) was used, which includes all annotated S. cerevisiae genomes in GenBank (e.g.,
genomes that include *rna_from_genome.fna annotations), as well as our S. cerevisiae RC212 genome
assembly.

Correlation between ribosomal DNA amplicon sequencing data and 39 Tag-seq data for non-
Saccharomyces organisms. Fermentations with fungal ITS amplicon sequencing data and 39 Tag-seq
were compared. First, ribosomal DNA amplicon sequencing read counts from H. uvarum were regressed
against total 39 Tag-seq counts from H. uvarum using counts from 16 h, 64 h, and 112 h of fermentation.
39 Tag-seq counts were derived from STAR and htseq (see “RNA sequencing data processing” above).
Counts were transformed into compositional counts (relative abundance) prior to linear regression (83).
Linear regression was performed using the lm() function in R. This analysis was performed again sepa-
rately for H. uvarum and A. pullulans using counts from the 2 h, 6 h, and 16 h samples taken in the 2019
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vintage. Given that this analysis relied on reads aligned to annotated 39 regions, a separate regression
was performed a using proportion of reads assigned to a given organism derived from sourmash gather
(see RNA sequencing data processing above). Only results from the first analysis were reported, as R2 val-
ues were within 0.01 between both analyses.

ANOSIM, PERMANOVA, and NMDS. Compositional data analysis was used for amplicon and tran-
scriptome counts (83). The transform() function in the microbiome bioconductor package was used to
transform counts by centered log ratio (84, 85). To test for differences among groups, Aitchison distance
(Euclidean distance on centered log ratio [CLR]-transformed counts) was used and tested with the ano-
sim() function (parameters: distance = “euclidean” and permutations = 9999) and the adonis2() function
(parameters: method = “euclidean” and permutations = 9999) in the vegan package (86, 87). A cutoff P
value of 0.05 was used for statistical significance. To construct nonmetric multidimensional scaling
(NMDS) plots, Aitchison distance was taken using the metaMDS() function in the vegan package with
the parameter distance = “euclidean.” Results were plotted using the ggplot2 package (88).

Amplicon sequencing random forests models. Random forests classifiers were built using the R
ranger package (89). Using ASV counts produced by DADA2, counts were normalized by dividing by
total number of aligned reads. The tuneRanger() function was used in the tuneRanger package to opti-
mize each model for the parameters m.try, sample.fraction, and min.node.size (90). The ranger() function
was then used to build each model with parameters from tuneRanger as well as the following: num.
trees = 10000, importance = “permutation,” and local.importance = TRUE. As a supervised technique,
random forests classifiers are trained on a subset of data and tested on a separate subset to calculate
predictive accuracy. For models built with samples from all vintages, the createDataPartition() function
in the R caret package was used to randomly but equally partition training and testing sets with a 70:30
split, ensuring that all class labels were equally represented in both sets (91). For other models, the clas-
sifier was built using all samples from two vintages and validated on the held-out vintage. Accuracy and
kappa statistics were calculated for each model.

RNA sequencing random forests model. Counts were imported into R and normalized by dividing
by total number of aligned reads (e.g., library size). Given that the random forests approach expects in-
dependent samples and that RNA sequencing was conducted in time series over the course of primary
fermentation, each gene from each time series set was summarized into mean count, minimum count,
maximum count, total count, and standard deviation of counts. Variable selection was performed using
the vita method (92), and models were built using the same methods as with amplicon sequencing
models.

To estimate vineyard- and region-specific gene importance, variable selection and model optimiza-
tion were performed with 100 different seeds. For each model, gene local importance was averaged for
each fermentation from a vineyard site or region in the training set and genes with positive average
local permutation importance were retained. The intersection of genes from all models was then taken
to determine which genes were predictive for a particular site or region in all models. Although random
forests were trained on summarized gene attributes, any genes that were predictive across any attribute
were retained, as these attributes were often highly correlated.

Mantel tests.Mantel tests were performed to assess the similarity between samples across measure-
ments of bacterial abundance, fungal abundance, transcriptome abundance, initial grape must chemis-
try, and vineyard site parameters (93, 94). The Mantel test determines the correlation between the same
samples in different matrices, testing whether similarities between samples estimated from one mea-
surement type match similarities of the same samples estimated from a different measurement type (93,
94). These tests were performed using complete cases, with microbiome and transcriptome abundances
from the 2017 and 2019 vintages. The vineyard site parameters total precipitation and growing degree
days were estimated using the PRISM climate models including the dates April 1 to September 30 in
2017 and 2019 (95). Distance matrices were calculated for each matrix using the dist() function in R, with
the parameter method = “euclidean.” with the exception of geographic distance, which was calculated
using the distm() function in the package geosphere with the parameter distHaversine (ftp://sunsite2
.icm.edu.pl/site/cran/web/packages/geosphere/geosphere.pdf). When distances for disparate measure-
ment types were calculated at the same time, values were first scaled and centered using the function
scale() with the parameters center = TRUE and scale = TRUE. Mantel tests were performed with the man-
tel() function in the vegan package with the following parameters: method = “spearman,”
permutations = 9999, and na.rm = TRUE (87, 94). P value adjustments were applied using the function p.
adjust() with the parameter method = “fdr” and a false discovery rate of a P value of 0.1.

Data availability. RNA sequencing data are available in the Sequence Read Archive under accession
number PRJNA680606. Microbiome data are available under accession numbers PRJNA642839 and
PRJNA682452. All analysis code is available at github.com/montpetitlab/Reiter_et_al_2020_SigofSite.
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