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Genome-wide association study (GWAS) has identified thousands of genetic variants
associated with complex traits and diseases. Compared with analyzing a single
phenotype at a time, the joint analysis of multiple phenotypes can improve statistical
power by taking into account the information from phenotypes. However, most
established joint algorithms ignore the different level of correlations between multiple
phenotypes; instead of that, they simultaneously analyze all phenotypes in a genetic
model. Thus, they may fail to capture the genetic structure of phenotypes and
consequently reduce the statistical power. In this study, we develop a novel method
agglomerative nesting clustering algorithm for phenotypic dimension reduction analysis
(AGNEP) to jointly analyze multiple phenotypes for GWAS. First, AGNEP uses an
agglomerative nesting clustering algorithm to group correlated phenotypes and then
applies principal component analysis (PCA) to generate representative phenotypes for
each group. Finally, multivariate analysis is employed to test associations between
genetic variants and the representative phenotypes rather than all phenotypes. We
perform three simulation experiments with various genetic structures and a real dataset
analysis for 19 Arabidopsis phenotypes. Compared to established methods, AGNEP
is more powerful in terms of statistical power, computing time, and the number of
quantitative trait nucleotides (QTNs). The analysis of the Arabidopsis real dataset further
illustrates the efficiency of AGNEP for detecting QTNs, which are confirmed by The
Arabidopsis Information Resource gene bank.

Keywords: genome-wide association study, statistical power, clustering algorithms, principal component
analysis, genetic structure

Abbreviations: GWAS, genome-wide association study; SNP, single nucleotide polymorphism; QTN, quantitative trait
nucleotide; PCA, principal component analysis; AGNES, agglomerative nesting clustering algorithm; AGNEm, AGNES
with mean representative phenotypes; AGNEmed, AGNES with median representative phenotypes; AGNEP, AGNES for
phenotypic dimension reduction analysis; ANOVA, analysis of variance; MANOVA, multivariate analysis of variance; CLC,
cluster linear combination; HCMM, a hierarchical clustering method with mean representative phenotypes.
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INTRODUCTION

Genome-wide association study (GWAS) is a powerful tool for
exploring associations between genetic variants and phenotypes.
To date, GWAS has been successfully applied to human, plant
and animal genetic research, to identify thousands of genetic
variants related to phenotypes or diseases. Common statistical
methods only test the relationships between a single phenotype
and loci, that is, only one phenotype is analyzed at a time.
Compared to univariate analysis, joint analysis of multiple
phenotypes can improve the accuracy and efficiency of the test by
using more information from multiple phenotypes (Allison et al.,
1998; Zhou and Stephens, 2014), which can be very advantageous
for two reasons (Allison et al., 1998; Zhou and Stephens, 2014).
First, it promotes computing efficiency. Most of the multi-
phenotype methods perform the test for association with all traits,
instead of analyzing phenotypes one by one. Joint analysis greatly
reduces calculating time and promotes analytical efficiency.
Second, multivariate analysis increases statistical power by using
genetic structure and potential information among different traits
rather than ignoring them as in univariate analysis (Ferreira
and Purcell, 2009; Huang et al., 2011). Currently, more and
more multivariate analyses have been put forward to analyze the
related phenotypes.

The previous studies illustrated that more than 4.6% of
single nucleotide polymorphism (SNPs) and 16.9% of genes
are reported to be significantly associated with more than
one trait (Solovieff et al., 2013). Due to the fact that the
joint analysis of multiple phenotypes is more consistent with
biological theory (van der Sluis et al., 2013), many multivariate
methods have been proposed (Galesloot et al., 2014). O’Brien’s
method (O’Brien, 1984), one of the earliest methods of jointly
analyzing multiple phenotypes, can be used to integrate the
results of univariate association tests. If the means of individual
statistics are homogeneous, O’Brien’s method is more effective
among linear combination statistics. Multivariate analysis of
variance (MANOVA) (Cole et al., 1994) is a classic method
of analyzing multiple phenotypes that jointly tests whether the
independent variables explain the variance of the dependent
variables statistically significant at the same time. Subsequently,
Multiphen (O’Reilly et al., 2012) and TATES (van der Sluis et al.,
2013) are powerful to test associations between genetic variants
and corresponding multiple traits. Under the framework of linear
mixed models, multi-trait mixed model (Korte et al., 2012) and
multivariate linear mixed model (Zhou and Stephens, 2014) are
proposed, which take into account the variance components of
multiple phenotypes and the population structure in GWAS.

However, established procedures for analyzing multiple
phenotypes face several challenges from the following
perspectives. First, computing is infeasible. Hundreds and
thousands of phenotypes are being collected in biological
experiments and surveys. However, most methods become
computationally intractable or hard to implement as the number
of phenotypes increases (Dahl et al., 2016). Second, estimates
are inaccurate. The complexity and the number of parameters
increase sharply in joint analysis of more than 10 phenotypes,
and hence accuracy and statistical stability decrease (Solovieff

et al., 2013). Finally, most multivariate algorithms simultaneously
analyze all phenotypic data and thus might ignore different level
of correlation or homogeneous genetic basis among traits,
resulting in an unsatisfactory power (Liang et al., 2018).

Clustering algorithm is an alternative method of overcoming
these challenges. It aims to maximize homogeneity within a
cluster so that similarity is greater between elements in the same
cluster than those in different clusters. As the dimension of the
data is reduced by clustering, temporal and spatial complexity
decreases. In addition, the intragroup phenotypic correlation
is stronger than the intergroup correlation, which improves
the efficiency and accuracy of the statistical test. Therefore,
clustering is great importance to the study of the joint analysis
of high-dimensional phenotypes. Recently, Sha et al. (2019)
proposed the cluster linear combination (CLC) method, which
groups phenotypes and then analyzes quadratic combination
of individual data. CLC takes full advantage of similar genetic
information in the same group. However, CLC does not work well
with negative or mixed correlations.

In this study, we propose a new method agglomerative
nesting clustering algorithm for phenotypic dimension reduction
analysis (AGNEP), which uses an agglomerative nesting
(AGNES) clustering algorithm to group multiple correlated
phenotypes and then applies principal component analysis
(PCA) to generate representative phenotypes for each group.
Finally, MANOVA is employed to test associations between
genetic variants and the representative phenotypes rather than
all phenotypes. In three simulation experiments, we consider
six scenarios under three kinds of genetic structures to compare
the performance of different methods: MANOVA, analysis of
variance (ANOVA), a hierarchical clustering method with mean
representative phenotypes (HCMM), AGNEP, AGNES with
mean representative phenotypes (AGNEm), and AGNES with
median representative phenotypes (AGNEmed). All of these
methods are applied to analyze 19 traits of Arabidopsis real
dataset. AGNEP is validated by the analysis of real dataset and
the series of simulation experiments.

MATERIALS AND METHODS

Genetic Model
Consider the multivariate linear model:

Y(d × n) = αW(d × n) + B(d × 1)X(1 × n) + E(d × n) (1)

where Yd × n = (Y1, ...,Yd)
T is a d × n matrix of phenotypes, n

is the number of individuals and d is the number of phenotypes;
Yi = (yi1, ..., yin)T is the ith phenotype of n individuals. α is the
intercept and Wd × n is a d × n matrix with elements of 1. B is a
d-vector of effect sizes for the d phenotypes, which are considered
as fixed effects. X1 × n = (x1, ..., xn) is an n-vector of genotypes
for a particular marker, and xj is denoted as the number
of minor alleles that the jth individual carries at the variant.
E(d × n) ∼ MN(d × n) (0,V, In) is a d× n matrix of residual error.
MNd × n (0,V, In) denotes the d × n matrix normal distribution
with mean 0, row covariance matrix V (a d× d symmetric matrix
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of environmental variance component) and column covariance
matrix In (an n× n identity matrix).

Clustering Algorithms
Generally, hundreds or even thousands of phenotypes are
cataloged from biological experiments and surveys. However,
either these phenotypic data are analyzed separately by univariate
analysis, or all phenotypes are analyzed without distinction. This
creates some challenges for the statistical analysis, such as a
reduction in statistical power, inflexibility in the computational
analysis, a high computing time, and so on. From the
perspective of multi-phenotype joint analysis, grouping high-
dimensional phenotypic data by clustering algorithms is an
alternative to overcome above challenges (Fung, 2001). Here
we integrate clustering algorithms, AGNES into analysis of
multiple phenotypes.

Hierarchical clustering algorithm creates a tree-like cluster
structure based on the similarity between samples. In general,
two partitioning strategies are possible according to the direction
of hierarchical decomposition, that is, agglomerative (bottom up)
and divisive (top down). The agglomerative method starts with all
samples in their own clusters and then groups two clusters with
the greatest similarity until only one cluster remains. The divisive
method adopts an inverse procedure with agglomerative method
(Liang et al., 2018).

AGNES is a typical hierarchical clustering algorithm, which
implements bottom-up strategy until a preset criterion is satisfied
(Deng et al., 2018). The similarity between Yi and Yj is evaluated
by formula (2). The minimum distance is calculated by formula
(3) to measure the similarity of clusters ci and cj (Murtagh and
Legendre, 2014).

dist
(
Yi,Yj

)
= ||Yi − Yj||2 =

√∑n

t=1
|y(it) − y(jt)|2 (2)

distmin
(
ci, cj

)
= min

p∈ci,q∈cj
dist(p, q) (3)

where Yi is the ith phenotype; ci = (ci1, ..., cin)T is the ith cluster;
p is a sample belonging to cluster ci, and q is a sample belonging
to cluster cj.

The Optimal Number of Clusters K
In this study, the optimal number of clusters K is calculated
according to the maximum silhouette coefficient s, which is
an index used to evaluate the clustering algorithm (Rousseeuw,
1987). The silhouette coefficient combines two factors, cohesion
and resolution. Assuming all phenotypes are divided into K
clusters by using AGNES, for each sample, we assume that Yi
belongs to the cluster ck, we can calculate the silhouette coefficient
s as formula (4):

s (i) =
b(i)− a(i)

max
(
b(i), a(i)

) (4)

a(i) =

{
1
|ck|−1

∑
p∈ck,p 6=Yi dist(Yi, p), |ck| > 1
0, |ck| = 1

b(i) = min
cd 6=ck

dist(Yi, cd) =
1
|cd|

∑
q∈cd

, (Yi, q)

where s (i) is the silhouette coefficient of the sample Yi, s (i)
ranges from −1 to 1, and |ck| is the number of phenotypes
in cluster ck.

Obviously, s (i) close to 1 indicates that the distance
within a cluster is small and the distance between clusters is
large, that is, relatively better clustering results. The silhouette
coefficient s is the average of silhouette coefficient of all samples,
s = d−1 ∑d

i = 1 s (i). The optimal classification, say K clusters,
is determined according to the maximum characteristics of the
silhouette coefficient. In this study, the number of clusters K
ranges from 2 to d−1, which means two situations are not
considered, each phenotype is a cluster, and all phenotypes are
clustered into one cluster.

Representative Phenotypes of Clusters
In the following multivariate analysis, representative
phenotype(s) are analyzed instead of all phenotypes by three
ways: (i) the mean of each group (AGNEm), (ii) the median of
each group (AGNEmed), and (iii) the top principal components
of each group (AGNEP).

We scale each phenotype for each cluster and define the
representative phenotype for the kth cluster as the average or
median phenotypic value within the group using formula (5) and
(6):

Yk
mean =

1
|ck|

∑
Yi∈ck

Yi (5)

Yk
median = median

Yi∈ck
Yi (6)

In addition, top m principal components
Yk
PCA =

(
Yk1
PCA, ...,Y

km
PCA

)
with a cumulative contribution

rate over 85% (Xue, 2007) are regarded as the representative
phenotypes for the kth cluster.

Experimental Materials
Three simulation experiments are conducted to evaluate the
performances of AGNEP and other methods. We generate
genotypes according to the minor allele frequency in the interval
[0.1, 0.5] under Hardy–Weinberg equilibrium. The simulation
datasets contain n = 5000 individuals with m = 10,000 genetic
variants, which are generated by using the factor model (Sha et al.,
2019). We consider two scenarios for each simulation, including
10 quantitative trait nucleotides (QTNs) for scenario 1 and 50
QTNs for scenario 2.

In simulation experiment I, 20 phenotypes are divided
into five independent clusters (Table 1). Each cluster
consists of four phenotypes based on genetic correlation
(Figure 1A). In simulation experiment II, we consider
a pervasive genetic structure. The adjacent clusters have
overlapping phenotypes, and the overlapped phenotypes
share the same or similar genetic basis. Twenty phenotypes
are divided into five correlated clusters (Table 1). Group 1
and group 2 share two phenotypes, group 3 is independent
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TABLE 1 | Different genetic structures for three simulation experiments, including five independent clusters (simulation I), five dependent clusters (simulation II), and eight
dependent clusters of high-dimensional phenotypes (simulation III).

Simulation experiments Simulation setting

Clustering 1 2 3 4 5 6 7 8

I No. of phenotypes 1–4 5–8 9–12 13–16 17–20

II No. of phenotypes 1–5 4–8 9–12 13–18 16–20

III No. of phenotypes 1–15 10–30 31–40 41–60 61–75 70–90 85–95 90–100

FIGURE 1 | Genetic correlations for three simulation experiments. (A) Five independent clusters (simulation I). (B) Five dependent clusters (simulation II). (C) Eight
dependent clusters of high-dimensional phenotypes (simulation III).

with the other groups, and group 4 shares three phenotypes
with group 5 (Figure 1B). In simulation experiment III, we
focus on high-dimensional phenotypes with more complex
correlations. All 100 phenotypes are divided into eight
phenotypic groups. The genetic correlations are exhibited
in Figure 1C. The high-dimensional correlations are more
complicated than the correlations in the previous two
simulation experiments.

Arabidopsis Real Dataset
We reanalyze the Arabidopsis thaliana (Atwell et al., 2010)
dataset, including 199 diverse inbred lines, each of which has
216,130 SNPs and 107 phenotypes. To evaluate the performance
of different methods, we focus on 19 quantitative phenotypes:
days to flowering under long days (LD), days to flowering
under LD with vernalization (LDV), days to flowering under
short days (SD), days to flowering under SD with vernalization
(SDV), days to flowering at 10, 16, and 22◦C (FT10, FT16,
and FT22), days to flowering with 8 weeks vernalization in
greenhouse (8WGHFT), leaf number at flowering with 8 weeks
vernalization in greenhouse (8WGHLN), days to flowering in
field (FTF), diameter of plants at flowering in field (FTD), leaf
number at 10, 16, and 22◦C (LN10, LN16, and LN22), plant
diameter at 10, 16, and 22◦C (Width10, Width16, and Width22),
and presence of leaf serration at 16 and 22◦C (Leafserr16 and
Leafserr22). We filter out SNPs with minor allele frequency
less than 5% and each individual with missing phenotypic data.
After quality control, the data consist of 206,603 SNPs and 137
individuals. The genetic structure of the phenotypic data is shown
in Figure 2.

RESULTS

Simulation Results
To evaluate the performance of the following multivariate
methods (MANOVA, HCMM, AGNEP, AGNEm, and
AGNEmed) and univariate method (ANOVA), we conduct
three simulations: independent phenotypic groups in simulation
I (Figure 1A), correlated groups in simulation II (Figure 1B),
and high-dimensional phenotypes divided into eight groups in
simulation III (Figure 1C).

Statistical Power for Detection
In the three simulations, 10 (scenario 1) and 50 (scenario 2) QTNs
are simulated in each dataset. For simulation I (independent
groups), Figures 3A,B show the significant advantages of all
multivariate analysis over the univariate analysis (ANOVA).
According to the optimal silhouette coefficient of clustering
algorithm (Supplementary Figure 1), the power under various
FDR is higher for AGNEP than the other methods in simulation
I. MANOVA easily captures the independent genetic structure
of 10 QTNs (Figure 3A) and has slightly higher power than
HCMM, AGNEm, and AGNEmed. In scenario 2, the multivariate
analysis based on clustering algorithm obviously outperforms
than MANOVA (Figure 3B). The clustering results for AGNEm
and HCMM are completely consistent with the optimal silhouette
coefficient, thus, these two methods have the same power,
and their curves are overlapping in Figures 3A,B. From the
results of simulation I, we conclude that AGNEP seems slightly
more robust and multivariate algorithms easily capture genetic
information for independent groups.
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FIGURE 2 | Genetic correlations between 19 phenotypes in the Arabidopsis dataset.

For simulations II (related groups) and III (high-dimensional
related groups), the powers of almost all multivariate algorithms
are significantly higher than that of the univariate analysis
(ANOVA; Figures 3C–F). AGNEP has higher power and more
significant detection in simulations II and III, which is followed
by HCMM, MANOVA, AGNEm, AGNEmed, and ANOVA. In
addition, the results of simulations II and III show that the power
of AGNEm and AGNEmed are even worse than MANOVA and
similar to ANOVA. It is evident that different representative
phenotypes achieve significantly different results under the same
clustering algorithm, and PCA appears to be a powerful tool for
flexibly taking full advantage of potential information. Moreover,
this difference becomes more and more obvious with the increase
in the number of phenotypes, the complexity of the genetic
structure, and the number of QTNs. The results of the three
simulations demonstrate the superior power of AGNEP over all
the other methods under various genetic structures.

Computing Time
The computing times of the different methods in the three
simulations are shown in Figure 4. For analyses of multiple
phenotypes based on different clustering algorithms, the
computing times are in the same magnitude, which are less
than MANOVA and ANOVA. However, as the number of
phenotypes increases, the differences among the methods are
more and more obvious. The results of the three simulations

illustrate that AGNEP effectively captures potential information
and reduces the computing complexity. In particular, AGNEP
is recommended for high-dimensional phenotypes and complex
related structures.

Real Data Analysis
To further evaluate the performance of the different methods,
we analyze an Arabidopsis real dataset with 19 quantitative
phenotypes including LD, LDV, SD, SDV, FT10, FT16, FT22,
8WGHFT, 8WGHLN, FTF, FTD, LN10, LN16, LN22, Width10,
Width16, Width22, Leafserr16, and Leafserr22. All phenotypes
are related to flower, leaf, plant growth, and the presence of leaf
serration. After filtering, the dataset consists of 137 samples and
a total of 206,603 SNPs. The genetic correction of the phenotypic
data is shown in Figure 2.

QTNs Detected
The numbers of putative QTNs for the six different methods are
calculated by 10 permutations (Figure 5). Based on the maximum
silhouette coefficient, AGNEP detects more putative QTNs than
the other five methods, and the other multivariate algorithms
and ANOVA have relatively poor detection ability. The results
of the Arabidopsis real dataset show similar trends to simulation
III. This may result from that the genetic structures are relatively
complex, and the other methods cannot effectively capture this
type of information, so their performances are not satisfactory.
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FIGURE 3 | The comparison of the power for AGNEP and established approaches. (A,B) The powers of simulation experiment I are presented. (C,D) The powers of
simulation experiment II are presented. (E,F) The powers of simulation experiment III are presented. Scenario 1 and 2 indicate that 10 and 50 QTNs are simulated in
the three simulations, respectively.
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FIGURE 4 | The average computing time (in minutes) of the six methods in three simulations. Scenario 1 (A) and 2 (B) indicate that 10 and 50 QTNs are simulated,
respectively.

FIGURE 5 | Numbers of QTNs under various FDR detected by six methods
for the Arabidopsis dataset.

Manhattan Plots
Manhattan plots of the Arabidopsis analysis are shown in
Supplementary Figures 2,3. For ANOVA (Supplementary
Figure 2), the QTNs related to phenotypes associated with
flower and plant growth can be detected, whereas the QTNs
related to other phenotypes have relatively low P-value. The
results of statistical tests of AGNEP, AGNEm, AGNEmed,
and HCMM (Supplementary Figure 3) show similar patterns,
and several genomic regions reach the Bonferroni corrected
threshold (−log10(0.001/206603) = 8.3151). According to the
results for confirmed Arabidopsis genes, MANOVA detects
more false associated SNPs. Therefore, compared to the
univariate method, multivariate methods have the ability to
increase statistical power. Moreover, multivariate methods
based on the clustering algorithm further improve detection
ability and accuracy by using information about complex
genetic structure.

TABLE 2 | Average computing time (in minutes) and number of confirmed genes
in analysis of the Arabidopsis dataset by six different methods.

Method Number of confirmed genes Computing time

AGNEP 453 91.33

AGNEm 386 113.49

AGNEmed 373 95.64

HCMM 321 105.05

MANOVA 315 110.72

ANOVA 159 788.15

Genomic Patterns
According to the results of the 19 traits of Arabidopsis,
all significant QTNs are listed in Figure 6 as hot spots,
which illustrate information about the overall genomic
patterns of significant SNPs (QTNs) on multiple traits.
Almost all multivariate methods have the similar pattern.
Compared to univariate method, multivariate methods easily
identify associations between QTNs and phenotypes. This
figure shows the genetic basis of functional relationships
between phenotypes. These hot spots would be the primary
targets for functional analysis and for genetic improvement
by selection.

Confirmed Genes
To further validate the AGNEP method, we compare the number
of candidate genes detected by six methods for the Arabidopsis
dataset. All SNPs under 0 FDR within 20 kB of each putative
QTN are used to mine the candidate genes by The Arabidopsis
Information Resource1. Table 2 shows the quantity of confirmed
genes for all approaches (Hagemann and Gleissberg, 1996;
Wang et al., 2003; Nikovics et al., 2006; Albayrak et al., 2012;
Nakayama et al., 2012). AGNEP detects the largest number
of confirmed genes, 453, followed by HCMM (439), AGNEm
(386), AGNEmed (373), MANOVA (315), and ANOVA (159).

1https://www.arabidopsis.org/
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FIGURE 6 | The plot of top 100 significant SNPs of six methods in the analysis of 19 traits. (Left) The hierarchical cluster diagram of 19 traits. (Right) The bubble
chart of P-value.

FIGURE 7 | The heat map of confirmed genes for the six methods in analysis
of the Arabidopsis real dataset. The darker the square, the greater the number
of confirmed genes detected two methods.

A heat map (Figure 7) illustrates the confirmed candidate
genes simultaneously detected by two methods. It is obvious
that the multivariate methods detect more identical confirmed
genes than the univariate method (ANOVA). Furthermore,
multivariate methods based on a clustering algorithm, say
AGNEP, AGNEm, AGNEmed, and HCMM, detect more than
350 confirmed genes.

Computing Time
The computing time of each approach for the 19 Arabidopsis
traits is listed in Table 2. Apparently, all the multivariate methods
are faster than the univariate method, which consumes about
seven to eight times longer than the multivariate methods. The
multivariate analysis greatly reduce the calculating time and
promotes analytical efficiency. AGNEP and AGNEmed have the
shortest running time, less than 100 minutes; HCMM, AGNEm,

and MANOVA have moderate computing times. All in all,
AGNEP not only performs best in QTNs detection, but also has
the fastest computing speed, which is validated by the analysis of
the real dataset.

DISCUSSION

In this study, we propose a new method called AGNEP, which
applies AGNES clustering algorithms and PCA to detect genetic
associations between SNPs and multiple phenotypes in GWAS.
The results of three simulations and a real data analysis indicate
the merits of AGNEP. There are three main advantages. First,
AGNEP easily captures the correlation of multiple phenotypes by
clustering methods, which increases statistical power in analysis
of simulations and Arabidopsis dataset (Figures 3, 5). Second, the
detection accuracy of AGNEP is significantly improved. From
the Arabidopsis dataset, AGNEP detects the most confirmed
genes, obviously more than the other established methods.
Third, because of the decrease in phenotypic dimension and the
optimization of representative phenotypes, AGNEP enjoys fast
computing speed, even with high-dimensional phenotypes and
complex genetic structures.

To further validate the new method, we incorporate
representative phenotypes into seven different clustering
methods, including K-means, PAM, CLARA, HCDS, HCM,
FCM, and EM algorithms. All of these methods are used
to reanalyze the simulated datasets and Arabidopsis real
data. The PCA-based methods are more robust than the
methods, MANOVA and ANOVA from the perspective
of power (simulation results, Supplementary Figure 4;
Arabidopsis results, Supplementary Figure 5), efficiency
(Supplementary Table 1), and detection of confirmed
genes (Supplementary Table 2). However, all of these
methods perform slightly worse than AGNEP in the
simulations and real data analysis. Furthermore, CLC is
used to comparing, which appears a tremendous increase
in computational burden along with permutation and the

Frontiers in Genetics | www.frontiersin.org 8 April 2021 | Volume 12 | Article 648831

https://www.frontiersin.org/journals/genetics
https://www.frontiersin.org/
https://www.frontiersin.org/journals/genetics#articles


fgene-12-648831 April 20, 2021 Time: 15:58 # 9

Liu et al. AGNEP for Multiple Phenotypes Analysis

number of phenotypes, and thus the simulation I and II
datasets are analyzed. Nevertheless, the performance of CLC is
unsatisfactory in terms of statistical power and efficiency.

Essentially, the representative phenotypes of PCA are linear
combinations of individual phenotypic data in the same cluster.
When the cluster consists of highly positively correlated
phenotypes, all the linear combinations can represent the
cluster reasonably well (Bühlmann et al., 2013; Shah and
Samworth, 2013). To further validate PCA combinations,
the mixed (both positive and negative) correlations are
induced to simulation II. The PCA-based methods are better
than the mean and median, and ANOVA has the lowest
power (Supplementary Figure 7). For mixed and complex
correlated phenotypes, the results demonstrate the good
performance of the PCA combinations as well (Figure 3 and
Supplementary Figure 7). This is because the PCA combinations
consist of the most within-cluster information and reduce the
phenotypic dimensions. It is necessary to further explore other
representative phenotypes forms, such as quadratic and non-
linear combinations.

With the development of life sciences and biotechnology,
genetic data is becoming larger in scale and more complicated.
How to cluster phenotypes efficiently and accurately is very
important. In this study, the silhouette coefficient is a key
index for evaluating the clustering model and determining
the optimal number of clusters. In addition to the silhouette
coefficient, many other criteria can be used to evaluate the
model, such as Calinski-Harabaz, Dunn validity, and Davies-
Bouldin. Silhouette coefficient is recommended according to
empirical analysis.
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