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Abstract: The expression of monocyte chemotactic proteins (MCPs) in colorectal polyps and their
suitability as targets for chemoprevention is unknown, although MCP expression and secretion can
be modulated by non-steroidal inflammatory drugs. This study was designed to determine the
expression patterns of MCP-1/CCL2, MCP-2/CCL8, and MCP-3/CCL7 at the protein (immunohisto-
chemistry; n = 62) and transcriptional levels (RTqPCR; n = 173) in colorectal polyps with reference
to the polyp malignancy potential. All chemokines were significantly upregulated in polyps at the
protein level but downregulated at the transcriptional level by 1.4-(CCL2), 1.7-(CCL7), and 2.3-fold
(CCL8). There was an inverse relation between the immunoreactivity toward chemokine proteins and
the number of corresponding transcripts in polyps (CCL2 and CCL7) or in normal mucosa (CCL8).
The downregulation of chemokine transcripts correlated with the presence of multiple polyps (CCL2
and CCL8), a larger polyp size (CCL2, CCL7, and CCL8), predominant villous growth patterns (CCL2,
CCL7 and CCL8), and high-grade dysplasia (CCL2 and CCL8). In conclusion, MCP-1/CCL2, MCP-
2/CCL8, and MCP-3/CCL7 chemokines are counter-regulated at the protein and transcriptional levels.
Chemokine-directed chemopreventive strategies should therefore directly neutralize MCP proteins
or target molecular pathways contributing to their enhanced translation or reduced degradation,
rather than aiming at CCL2, CCL7 or CCL8 expression.

Keywords: colorectal cancer; chemoprevention; macrophage-associated chemokines; CCL2; CCL7;
CCL8; colorectal adenoma

1. Introduction

Colorectal cancer (CRC) is one of the most common malignancies worldwide, the
incidence of which has recently been reduced, owing to improved screening. Chemopre-
vention, which is using chemicals to prevent, delay, or reverse the carcinogenesis, is another
intensively studied strategy for reducing CRC risk in high-risk people as well as the general
population [1]. Patients with inflammatory bowel disease (IBD), encompassing Crohn’s
disease and ulcerative colitis, are more likely to develop cancer, and the risk increases
with increasing disease duration, extension, and severity, as well as the occurrence of
primary sclerosing cholangitis or inflammatory pseudopolyps [2]. Most sporadic CRCs,

J. Clin. Med. 2021, 10, 5559. https://doi.org/10.3390/jcm10235559 https://www.mdpi.com/journal/jcm

https://www.mdpi.com/journal/jcm
https://www.mdpi.com
https://orcid.org/0000-0002-7624-631X
https://orcid.org/0000-0002-2753-8092
https://doi.org/10.3390/jcm10235559
https://doi.org/10.3390/jcm10235559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/jcm10235559
https://www.mdpi.com/journal/jcm
https://www.mdpi.com/article/10.3390/jcm10235559?type=check_update&version=1


J. Clin. Med. 2021, 10, 5559 2 of 20

however, develop from polyps via the classic adenoma-carcinoma sequence or, less com-
monly, the serrated polyp pathway [3]. This well-known and relatively slow progression
makes CRC particularly open to chemoprevention. Therefore, a better understanding of
the molecular profile of polyps as premalignant lesions and recognition of the features
distinguishing those with high potential for malignancy is considered a prerequisite for
developing effective surveillance and chemopreventive strategies [3].

Inflammation plays a well-established role in cancer development as a facilitator of
tumor cell proliferation, survival, and migration and an enabler of cancer angiogenesis and
metastasis [4]. While chronic inflammation is also a main trigger of neoplastic transforma-
tion in IBD patients [2], the contribution of inflammatory mediators to adenoma-carcinoma
transition is less evident and poorly understood. Nonetheless, it has been increasingly
recognized [5]. Pre-cancerous lesions have been shown to be infiltrated by immune cells
in proportion to the dysplasia grade and adenoma size [6], implicating the involvement
of chemokines. Consistently, chemokine decoy receptors—ACKR2 and 4—have been
downregulated in colorectal adenomas, and their expression was inversely related with
the malignancy potential [7]. Recent studies have shown a link between systemic in-
flammatory mediators, including macrophage-associated chemokines [8] and colorectal
adenomas [9,10]. Moreover, non-steroidal anti-inflammatory drugs (NSAIDs) have been
repeatedly shown to reduce the incidence and size of colorectal neoplasms [1,11–14] via
cyclooxygenase/prostaglandin E2 pathway-dependent and independent mechanisms [15],
further stressing the relevance of inflammation in colorectal carcinogenesis.

Macrophage-associated chemokines are gaining attention as potential targets for
anti-neoplastic therapies [16]. Monocyte and macrophage chemotactic proteins (MCPs)
belong to the C-C subfamily of chemokines and are expressed by epithelial, endothelial,
stromal, and immune cells. They display activities that may support tumor growth both
indirectly and directly, acting either in an autocrine or paracrine manner [17–20]. The
expression of CCL2/MCP-1, an MCP protagonist, has been shown to increase along with
an advancing CRC stage [21,22], and a close link between the chemokine and the invasion
and metastasis [23] has been confirmed in functional studies [24]. However, depending on
the chemokine, context, and type of recruited cells, MCP chemokines may also strengthen
anti-tumor responses [17–20]. Accordingly, transfection with CCL7/MCP-3 hampered
tumor growth and prevented metastasis in animal models of cancer [25,26].

The MCP chemokine status in colorectal adenomas is largely unknown but indicative
of counter-regulation during normal mucosa-adenoma and adenoma-carcinoma transi-
tions [27]. Our group has recently demonstrated that the expression of MCP chemokines
can be modulated by novel NSAIDs belonging to the oxicam class (manuscript submit-
ted). Therefore, this study was conducted to assess the suitability of MCP chemokines
as targets for chemoprevention by determining the expression patterns of MCP-1/CCL2,
MCP-2/CCL8, and MCP-3/CCL7 in colorectal polyps and the chemokine association with
polyp potential for malignancy.

2. Materials and Methods
2.1. Immunohistochemistry (IHC)
2.1.1. Patients

Tissue samples of the large intestine lesions were routinely collected during endoscopic
examination from 66 patients admitted into the Department of Minimally Invasive Surgery
and Proctology of Wroclaw Medical University and evaluated by the Department of Clinical
Pathology of Wroclaw Medical University. Following histopathological examination, based
on hematoxylin-eosin staining (HE), two patients were diagnosed with celiac disease,
one with adenocarcinoma, and one with inflammatory polyps, and they were therefore
excluded from further examination. Detailed characteristics of the remaining patients are
given in Table 1 (IHC cohort).
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Table 1. Characteristics of patients with colorectal polyps.

Parameter IHC Cohort RTqPCR Cohort

n 62 173
Sex distribution (F/M), n 27/35 78/95

Age (years), mean (95%CI) 62.9 (60.2–65.7) 65.3 (63.6–67.0)
Polyp histology, n

hyperplastic polyps 4 11
tubular adenoma 23 37

tubulo-villous adenoma 29 107
villous adenoma 6 13

adenocarcinoma in the polyp (1) 5
Grade of dysplasia, n

low 55 128
high 3 29

Polyp size, n
<10 mm 19 39

10–19 mm 24 75
≥20 mm 19 58

Polyp location, n
right colon 12 90
left colon 35 38
rectum 15 45

Number of polyps, n
single 60 129

multiple (≥2) 2 36
carpet-like lesions 0 7

n: number of observations; F/M: female-to-male ratio; yrs.: years; CI: confidence interval; IHC: immunohistochemistry;
RTqPCR: reverse-transcribed quantitative (real-time) polymerase chain reaction (transcriptomic analysis).

Patient-matched samples of macroscopically normal mucosa were collected 10–15 cm
from the lesions and served as controls. Sample collection was approved by the medical
ethics committees of Wroclaw Medical University (#KB-247/2018 from 24 April 2018).

2.1.2. Sample Handling

Th collected tissue samples were preserved in 4% buffered formalin solution for
24–72 h and subsequently subjected to a dewatering process in a Tissue-Tek Xpress® x120
microwave tissue processor (Sakura Finetek, Alphen aan den Rijn, The Netherlands) using
the Xpress Reagent set (Sakura Finetek; cat. No 7730). After being embedded in paraffin to
create blocks, the tissue samples were sliced into 3-µm thick fragments.

2.1.3. IHC Procedure

The 3-µm thick tissue fragments were placed on a microscope slide with an addi-
tional adhesive surface. Cusabio Technology LLC (Houston, TX, USA) rabbit monoclonal
anti-human antibodies directed against the corresponding chemokine were used for the
immunohistochemical reactions, consisting of CCL2 Antibody (cat. No CSB-PA05865A0Rb),
CCL7 Antibody (cat. No CSB-PA082817), and CCL8 Antibody (cat. No CSB-PA07629A0Rb).

The first stage was the dewaxing of tissue fragments using the PT Link system (Agilent
Technologies Inc., Carpinteria, CA, USA) by boiling in a high-pH buffer at 97 ◦C. The next
stage (i.e., antibody application) took place automatically using the Autostainer Plus
Link platform (Agilent Technologies Inc.) according to the protocol provided by the
antibodies’ manufacturer. The effects of all reactions were visualized with the EnVision
FLEX set (Agilent Technologies Inc.; cat. No K800221-2) using a 3, 39-diaminobenzidine
tetrahydrochloride (DAB) chromogen, which turned brown in the case of a positive reaction.
Hematoxylin was used for counterstaining.

Photos were taken under an Olympus System BX51 microscope with a U0TV.63XC
digital camera (Olympus Corporation, Tokyo, Japan).
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2.1.4. IHC Scoring

In accordance with the characteristics of the antibodies used, a granular cytoplasmic
reaction occurred in all cases. The basis for the assessment was a reaction in the cytoplasm
of glandular epithelial cells, which forms the mucous membrane of the large intestine, as
well as adenomas, regardless of their histological type.

The reaction results were classified as follows:

• Score 0, a negative result: either no reaction occurred in the glandular epithelial cells,
or it only occurred in the stromal area of the lesion or control tissue fragment;

• Score 1, a weak positive result (+): such cases exhibited a weak cytoplasmic reaction
(a low-intensity one), or the reaction did not encompass the entire lesion or control
tissue fragment;

• Score 2, a positive result (++): a strong cytoplasmic reaction encompassing the entire
lesion or the entire control tissue epithelium.

2.2. Transcriptional Analysis (Reverse-Transcribed Quantitative Polymerase Chain
Reaction (RTqPCR))
2.2.1. Patients

Paired samples of polyp and normal mucosa from 176 patients admitted to the Depart-
ment of Minimally Invasive Surgery and Proctology or to the Department of Gastroenterol-
ogy and Hepatology of Wroclaw Medical University were included in the current study
(Medical Ethics Committees of Wroclaw Medical University approval #KB-247/2018 from
24 April 2018). Of those, 66 patients were common with the IHC cohort, and 3 of them
were excluded from further analysis for the reasons stated previously (2 cases of celiac
disease and 1 inflammatory polyp). The characteristics of the RTqPCR cohort are presented
in Table 1.

2.2.2. Sample Handling

The tissue samples were rinsed with PBS, soaked in RNAlater (Ambion Inc., Austin
TX, USA), and kept frozen at −80 ◦C until RNA extraction.

2.2.3. RNA Isolation, cDNA Synthesis, and Quantitative PCR (qPCR)

After thawing, the samples (up to 40 mg) were homogenized in Fastprep 24 Homoge-
nizer (MP Biomedical, OH, USA) using ceramic spheres and a lysis buffer (PureLink™ RNA
Mini Kit from Invitrogen, Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with β-mercaptoethanol (Sigma Aldrich, St. Luis, MO, USA) at 1:10 (v/v).

The total RNA was isolated using phenol-chloroform extraction and purified with
a PureLink™ RNA Mini Kit (Invitrogen). On-column digestion with DNase (PureLink™
DNase Set (Invitrogen) was applied to avoid contamination with the genomic DNA. The
RNA was quantified in the extract, and its purity as well as integrity were assessed with a
NanoDrop 2000 spectrophotometer (Thermo-Fisher Scientific, Waltham, MA, USA) and
LabChip microfluidic technology using the Experion platform and Experion RNA StdSens
analysis kits (BioRad, Herkules CA, USA).

An iScript™ cDNA Synthesis Kit (BioRad, Herkules CA, USA) and C1000 thermocycler
(BioRad) were used to reverse transcribe the obtained RNA (1000 ng per reaction).

The relative number of transcripts was determined by quantitative polymerase chain
reactions (qPCRs) using the CFX96 Real-Time PCR system (BioRad, Herkules CA, USA)
under the following cycling conditions: 30 s activation at 95 ◦C, 5 s denaturation at 95 ◦C,
and annealing and extension for 5 s at 61 ◦C for 40 cycles. Product specificity was ensured
by melting curve analysis (60–95 ◦C with fluorescent readings every 0.5 ◦C) and an elec-
trophoresis in agarose with SYBR Green detection. The reaction mixture consisted of 10 nM
forward and reverse target-specific primers (1 µL of each; Genomed, Warsaw, Poland),
2 × SsoFast EvaGreen® Supermix (10 µL; BioRad, Herkules CA, USA), a cDNA template
(2 µL, diluted 1:5), and water up to 20 µL. The intron-spanning starter sequences were
as follows: 5′-tctgtgcctgctgctcatag-3′ and 5′-acttgctgctggtgattcttc-3′ (CCL2 forward and re-
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verse; product size: 155 bp); 5′-acagaaggaccaccagtagcca-3′ and 5′-ggtgcttcataaagtcctggacc-3′

(CCL7 forward and reverse; product size: 117 bp); 5′-tatccagaggctggagagctac-3′ and 5′-
tggaatccctgacccatctctc-3′ (CCL8 forward and reverse; product size: 128 bp); 5′-ggcaaatgctgg
acccaacaca-3′ and 5′-tgctggtcttgccattcctgga-3′ (PPIA forward and reverse; product size:
161 bp); 5′-tcacaacaagcataccaagaagc-3′ and 5′-gtatccgatgtccacaatgtcaag-3′ (RPLP0 forward
and reverse; product size: 263 bp); and 5′-tagattattctctgatttggtcgtattgg-3′ and 5′-gctcctggaa
gatggtgatgg-3′ (GAPDH forward and reverse; product size: 223 bp). Except for CCL2 and
GAPDH, being designed using Beacon Designer Probe/Primer Design Software (BioRad)
and validated in silico (Blast analysis), the starters’ sequences were proposed by OriGene
(www.origene.com (accessed on 1 March 2021)).

The Cq values of the technical replicates were averaged prior to expression analysis.
For each analyzed gene, the geometric mean of all Cq values was subtracted from the
sample Cq, yielding ∆Cq. The ∆Cq values were then linearized by 2∆Cq conversion and
normalized to the internal control: the geometric mean of PPIA and RPLP0 expression [28]
or GAPDH expression. The resulting normalized relative quantity values were denoted
NRQ [29] and subjected to statistical analysis.

2.3. Data Analysis

All statistical analyses were conducted using MedCalc® Statistical Software version
20.011 (MedCalc Software Ltd., Ostend, Belgium). The level of statistical significance was
set at ≤0.05, and all calculated p values were two-sided.

The distribution of data and homogeneity of variances were tested prior to the analyses
using the Kolmogorov–Smirnov test and Levene test, respectively. The expression data,
following log transformation, were analyzed using a t-test for the paired samples and a
t-test for the independent samples with Welch correction in case of unequal variances or one-
way ANOVA (multigroup comparisons) with Student–Newman–Keuls post hoc analysis.
The IHC data were analyzed with the Wilcoxon test. Frequency analysis was conducted
with a chi-squared test and correlation analysis with Pearson moment (r) or Spearman rank
(ρ) correlation. The contingency coefficient (C) was calculated to express association for
the categorical data. The stepwise method of linear multivariate regression was applied to
identify the independent predictors of the dependent variable, with variables entered into
the regression model if p < 0.05 and removed if p > 0.1.

3. Results
3.1. Expression of MCP Chemokines at the Protein Level
3.1.1. MCP Proteins in Colorectal Adenomas

Protein expression between the normal and polyp tissue was compared in 62 patients.
Regarding MCP-1/CCL2, 8.1% of patients had lower protein expression in the polyps than
the corresponding normal tissue, 40.3% had comparable expression levels, and 51.6% had
higher MCP-1/CCL2 expression in the polyps than the matching normal tissue. Pairwise
comparison showed significant MCP-1/CCL2 overexpression in the polyps (p = 0.0002).
Photos representing various immunoreactivities of the polyps toward MCP-1/CCL2 are
presented in Figure 1.

www.origene.com
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Figure 1. Immunohistochemical analysis of MCP-1/CCL2 protein expression in colorectal adenomas: (a) negative reaction,
with no reaction in the glandular epithelial cells or it only occurring in the stromal area of the lesion; (b) a weak cytoplasmic
reaction, or the reaction did not encompass the entire lesion (score 1; +); and (c) a strong cytoplasmic reaction encompassing
the entire lesion (score 2; ++). The tissue slides were incubated with rabbit anti-human MCP-1/CCL2 antibodies with a DAB
chromogen, stained brown in the case of a positive reaction and counterstained with hematoxylin. All the photos were
taken at 200×.

Regarding MCP-3/CCL7, 8.1% of patients had lower protein expression in the polyps
than the corresponding normal tissue, 58.1% had comparable expression levels, and
33.9% had higher MCP-3/CCL7 expression in the polyps than the matching normal tissue.
Still, pairwise comparison showed significant MCP-3/CCL7 overexpression in the polyps
(p = 0.003). There were no polyp samples negative for MCP-3/CCL7 in the tested cohort.
Photos representing immunoreactivity scores of one and two toward MCP-3/CCL7 are
presented in Figure 2.

Figure 2. Immunohistochemical analysis of MCP-3/CCL7 protein expression in colorectal adenomas:
(a) a weak cytoplasmic reaction, or the reaction did not encompass the entire lesion (score 1; +) and
(b) a strong cytoplasmic reaction encompassing the entire lesion (score 2; ++). There were no polyp
samples negative for MCP-3/CCL7 in the tested cohort. The tissue slides were incubated with rabbit
anti-human MCP-3/CCL7 antibodies with a DAB chromogen, stained brown in the case of a positive
reaction and counterstained with hematoxylin. All the photos were taken at 200×.

Regarding MCP-2/CCL8, 6.5% of patients had lower protein expression in the polyps
than the corresponding normal tissue, 40.3% had comparable expression levels, and
53.2% had higher MCP-2/CCL8 expression in the polyps than the matching normal tissue.
The pairwise comparison showed significant MCP-2/CCL8 overexpression in the polyps
(p < 0.0001). Photos representing various immunoreactivities of the polyps toward MCP-
2/CCL8 are presented in Figure 3.
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Figure 3. Immunohistochemical analysis of MCP-2/CCL8 protein expression in colorectal adenomas: (a) negative reaction,
showing either no reaction in the glandular epithelial cells or it only occurring in the stromal area of the lesion; (b) a
weak cytoplasmic reaction, or the reaction did not encompass the entire lesion (score 1; +); and (c) a strong cytoplasmic
reaction encompassing the entire lesion (score 2; ++). The tissue slides were incubated with rabbit anti-human MCP-2/CCL8
antibodies with a DAB chromogen, stained brown in the case of a positive reaction and counterstained with hematoxylin.
All the photos were taken at 200×.

3.1.2. MCP Association with the Anatomical Site and Pathological Findings

MCP-1/CCL2, MCP-3/CCL7, and MCP-2/CCL8 protein expression in the polyps was
not associated with the polyp histology or grade of dysplasia. The exception was MCP-
1/CCL2, for which low immunoreactivity was significantly associated with low-grade
dysplasia and higher immunoreactivity with high-grade dysplasia (Table 2). The polyp size
and its anatomical location had no effect on MCP-1/CCL2, MCP-3/CCL7, or MCP-2/CCL8
protein expression in the neoplasm (Table 2).

Table 2. Association of polyp CCL2, CCL7, and CCL8 expression with polyp characteristics.

Pathology
CCL2

Immunoreactivity
Score 0/1/2, n

CCL7
Immunoreactivity

Score 0/1/2, n

CCL8
Immunoreactivity

Score 0/1/2, n

Histology: p = 0.956 1 p = 0.212 1 p = 0.600 1

hyperplastic 0/4/0 0/0/4 0/3/1
tubular 8/10/5 0/7/16 4/8/11
tubulo-villous 10/15/4 0/5/24 7/14/8
villous 2/3/1 0/0/6 2/2/2

Dysplasia: p = 0.033 p = 0.368 p = 0.547
low grade 20/27/8 0/12/43 13/22/20
high grade 0/1/2 0/0/3 0/2/1

Size: p = 0.429 p = 0.260 p = 0.267
<10 mm 8/7/4 0/6/13 6/5/8
10–19 mm 8/12/4 0/3/21 5/13/6
≥20 mm 4/13/2 0/3/16 2/9/8

Anatomical site: p = 0.769 p = 0.837 p = 0.842
right colon 3/7/2 0/3/9 3/4/5
left colon 11/17/7 0/6/29 6/16/13
rectum 6/8/1 0/3/12 4/7/4

n: number of observations. 1 Analyzed for adenomas (without hyperplastic polyps). Data analyzed using a
chi-squared test.

The change in expression between the normal and neoplastic mucosa (decreased,
unaffected, or increased) with reference to the histological type, dysplasia grade, size, and
anatomical location did not show significant associations, except for MCP-3/CCL7 and the
anatomical site. Higher MCP-3/CCL7 immunoreactivity in the polyps than the adjacent
mucosa was more likely to accompany left-sided polyps, and no change in immunore-
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activity was more likely for the right-sided polyps (contingency coefficient (C) = 0.372,
p = 0.041).

The immunoreactivity for MCP-1/CCL2 in the polyps positively correlated with that
for MCP-2/CCL8 (ρ = 0.46, p = 0.0001), while MCP-1/CCL2′s correlation with MCP-3/CCL7
was weak and borderline significant (ρ = 0.25, p = 0.047), and that between MCP-3/CCL7
and MCP-2/CCL8 was non-significant (ρ = 0.25, p = 0.053).

3.2. Expression of MCP Chemokines at the Transcriptional Level
3.2.1. MCP Transcripts in Colorectal Adenomas

CCL2, CCL7, and CCL8 mRNA expression was analyzed against GAPDH or the
geometric mean of a pair of normalizers: PPIA and RPLP0. Regardless the normalization
strategy, the average CCL2, CCL7, and CCL8 expression was lower in the polyps than the
normal mucosa and significantly lower in the case of CCL7 and CCL8 (Table 3).

As these results contradicted those obtained for the MCP proteins, an additional 110
patient-matched pairs of polyp and normal mucosa samples were analyzed by RTqPCR.
Like for the IHC cohort alone, CCL2, CCL7, and CCL8 were downregulated in the polyps
compared with the normal mucosa, and the degree of downregulation was similar between
the smaller and larger cohorts and between the normalizers (Table 3).

Further analyses were conducted on the enlarged cohort (n = 173) using PPIA/RPLP0
as normalizers.

Table 3. CCL2, CCL7, and CCL8 expression in colorectal adenomas.

Patients from IHC Cohort, n = 62 Patients from Whole RTqPCR Cohort, n = 173

PPIA/RPLP0 GAPDH PPIA/RPLP0 GAPDH

CCL2 ↓1.2, p = 0.209 ↓1.2, p = 0.245 ↓1.4, p = 0.037 ↓1.5, p = 0.066
CCL7 ↓1.5, p = 0.012 ↓1.5, p = 0.032 ↓1.7, p = 0.0001 ↓1.9, p = 0.005
CCL8 ↓2.0, p < 0.001 ↓2.0, p = 0.002 ↓2.3, p < 0.0001 ↓2.5, p = 0.0001

Data presented as a fold change in expression in the polyps compared with the patient-matched normal mucosa, with ↓ indicating a
downregulation. Data were analyzed as logarithms using a t-test for paired samples. IHC: immunohistochemistry; RTqPCR: reverse-
transcribed quantitative (real-time) polymerase chain reaction; n: group size.

3.2.2. Effect of the Polyp Size on the Expression of MCP Chemokines (mRNA)

The fold change in CCL2, CCL7, and CCL8 expression was significantly affected by the
polyp size. CCL2 expression was downregulated solely in the largest polyps (by 2.7-fold).
In the case of CCL7 (3.1-fold) and CCL8 (4-fold), the downregulation was more marked in
the larger polyps than the smaller polyps. Detailed analysis showed that gene expression
was non-significantly higher in the normal mucosa of the patients with the largest polyps
while being significantly lower in their polyps (by 2.1-fold for CCL2 and CCL7 and 2.7-fold
for CCL8) (Figure 4).

Figure 4. Cont.
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Figure 4. Effect of polyp size on the expression (mRNA) of MCP chemokines in patients with colorectal polyps: (a) fold
change (FC) in CCL2 expression between the polyp and normal mucosa (P/N); (b) CCL2 expression in a polyp; (c) CCL2
expression in normal tissue; (d) fold change (FC) in CCL7 expression between the polyp and normal mucosa (P/N); (e)
CCL7 expression in a polyp; (f) CCL7 expression in normal tissue; (g) fold change (FC) in CCL8 expression between the
polyp and normal mucosa (P/N); (h) CCL8 expression in a polyp; (i) CCL8 expression in normal tissue. Data analyzed
as logarithms using one-way ANOVA with a Student–Newman–Keuls post hoc test and presented as means with 95%
confidence intervals (red squares with whiskers and numbers below the dot plots). Significant (p < 0.05) differences between
groups (identified in post hoc analysis) are indicated by the same symbol type (*, ˆ). NRQ: normalized relative quantity.

3.2.3. Effect of the Polyp Type on the Expression of MCP Chemokines (mRNA)

The polyp type had a significant impact on the fold change in CCL2, CCL7, and CCL8
expression. For CCL2 and CCL8, it was the highest and indicative of gene upregulation
(by 1.8- and 1.5-fold, respectively) in the polyp compared with the corresponding normal
mucosa in hyperplastic polyps and the lowest in adenocarcinoma in the polyp, being
indicative of gene downregulation in the polyp compared with the normal mucosa (by
11.1- and 16.7-fold, respectively). The fold change in CCL2, CCL7, and CCL8 expression
decreased gradually along with an increasing villous component in the adenomas. CCL2
was upregulated in the tubular adenomas by 1.4-fold compared with the normal tissue but
downregulated in the tubulo-villous and villous adenomas by 1.4- and 5.9-fold, respectively.
CCL7 expression in the tubular adenomas was comparable to normal tissue but downregu-
lated in the tubulo-villous and villous adenomas by 2.0- and 5.3-fold, respectively. CCL8
was already downregulated in the tubular adenomas (by 1.5-fold) but more markedly so in
the tubulo-villous and villous adenomas, in which CCL8 was downregulated by 2.4- and
8.3-fold, respectively (Figure 5).

Detailed analysis of the gene expression patterns in the normal mucosa and polyps
showed that the CCL2, CCL7, and CCL8 expression in the normal tissue was comparable
and not affected by the polyp type, contrary to gene expression in the polyps. CCL2, CCL7,
and CCL8 expression was the highest in the hyperplastic polyps and lower in the adenomas,
in which it gradually decreased along with an increasing villous component. The polyp
expression of CCL2 and CCL8 (but not CCL7) was the lowest in the adenocarcinomas
(Figure 5).
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Figure 5. Effect of the polyp type on the expression (mRNA) of MCP chemokines in patients with colorectal polyps: (a) fold
change (FC) in CCL2 expression between the polyp and normal mucosa (P/N); (b) CCL2 expression in a polyp; (c) CCL2
expression in normal tissue; (d) fold change (FC) in CCL7 expression between the polyp and normal mucosa (P/N); (e) CCL7
expression in a polyp; (f) CCL7 expression in normal tissue; (g) fold change (FC) in CCL8 expression between the polyp and
normal mucosa (P/N); (h) CCL8 expression in a polyp; (i) CCL8 expression in normal tissue. Data analyzed as logarithms
using one-way ANOVA with a Student–Newman–Keuls post hoc test and presented as means with 95% confidence intervals
(red squares with whiskers and numbers below dot plots). Significant (p < 0.05) differences between groups (identified in
post hoc analysis) are indicated by the same symbol type (*, ˆ, <, +, #). NRQ: normalized relative quantity; H: hyperplastic
polyps; T: tubular adenomas; T-V: tubulo-villous adenomas; V: villous adenomas; A: adenocarcinoma in a polyp.

3.2.4. Effect of the Dysplasia Grade on the Expression of MCP Chemokines (mRNA)

CCL2, CCL7 and CCL8 expression tended to decrease in the polyps compared with the
normal tissue, though more markedly in the case of adenomas with high-grade dysplasia.
CCL2 expression in the adenomas with high-grade dysplasia was significantly decreased
compared with the adenomas with low-grade dysplasia (by 2.8-fold). Likewise, CCL8
expression was lower by 2.2-fold (Figure 6).
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Figure 6. Effect of the dysplasia grade on the expression (mRNA) of MCP chemokines in patients with colorectal polyps:
(a) fold change (FC) in CCL2 expression between the polyp and normal mucosa (P/N); (b) CCL2 expression in a polyp; (c)
CCL2 expression in normal tissue; (d) fold change (FC) in CCL7 expression between the polyp and normal mucosa (P/N);
(e) CCL7 expression in a polyp; (f) CCL7 expression in normal tissue; (g) fold change (FC) in CCL8 expression between the
polyp and normal mucosa (P/N); (h) CCL8 expression in a polyp; (i) CCL8 expression in normal tissue. Data analyzed as
logarithms using a t-test for independent samples with Welch correction in the case of unequal variances and presented as
means with 95% confidence intervals (red squares with whiskers and numbers below dot plots). NRQ: normalized relative
quantity; LGD: low-grade dysplasia; HGD: high-grade dysplasia.

3.2.5. Effect of the Number of Polyps on the Expression of MCP Chemokines (mRNA)

Based on the number of polyps and their character (protruding or flat lesions), pa-
tients were classified as having single, multiple, or carpet-like polyps. Only polyp CCL2
expression was significantly affected by the number of polyps; it was significantly lower in
patients with multiple lesions than those with single polyps (by 2.3-fold). In turn, CCL8 ex-
pression in normal mucosa tended to be higher in patients with multiple polyps, resulting
in more pronounced downregulation (5-fold in the case of multiple lesions and 1.9-fold in
the case of single polyps) (Figure 7).
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Figure 7. Effect of the number of polyps on the expression (mRNA) of MCP chemokines in patients with colorectal polyps:
(a) fold change (FC) in CCL2 expression between the polyp and normal mucosa (P/N); (b) CCL2 expression in a polyp; (c)
CCL2 expression in normal tissue; (d) fold change (FC) in CCL7 expression between the polyp and normal mucosa (P/N);
(e) CCL7 expression in a polyp; (f) CCL7 expression in normal tissue; (g) fold change (FC) in CCL8 expression between the
polyp and normal mucosa (P/N); (h) CCL8 expression in a polyp; (i) CCL8 expression in normal tissue. Data analyzed
as logarithms using one-way ANOVA with a Student–Newman–Keuls post hoc test and presented as means with 95%
confidence intervals (red squares with whiskers and numbers below dot plots). Significant (p < 0.05) differences between
groups (identified in post hoc analysis) are indicated by an asterisk (*). NRQ: normalized relative quantity.

3.2.6. Association of Cumulative Risk of Adenoma-to-Adenocarcinoma Transformation
with the Expression of MCP Chemokines (mRNA)

As the risk of adenoma transformation to adenocarcinoma is higher in the case of larger
and multiple polyps and those with dominant villous growth patterns and high-grade dyspla-
sia, we summarized those risk factors by calculating a cumulative risk factor. To ensure the
same weight for all risk factors, three categorical variables such as tubular, tubulo-villous, and
villous adenomas or <10 mm, 10–19 mm, and≥20 mm adenomas were assigned scores of 1,
1.5, and 2, respectively, and two categorical variables such as low- and high-grade dysplasia or
single and multiple adenomas were assigned scores of 1 and 2, respectively.

Both the fold change in expression of CCL2, CCL7, and CCL8 and gene expression in
adenoma were inversely correlated with a cumulative risk of transformation. The strongest
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association was noted for adenoma expression of CCL2. In the case of CCL7, its expression
concomitantly decreased in adenoma and increased in macroscopically normal tissue
(Table 4).

Table 4. Effect of cumulative risk of adenoma-to-adenocarcinoma transformation on expression of
MCP chemokines.

Gene FC (P/N) Polyp (p) Normal (n)

CCL2 −0.32, p = 0.0001 −0.46, p < 0.0001 ns
CCL7 −0.36, p < 0.0001 −0.32, p = 0.0001 0.18, p = 0.032
CCL8 −0.25, p = 0.003 −0.30, p < 0.001 ns

Data presented as Spearman correlation coefficients (ρ). FC: fold change; ns: non-significant (p > 0.05).

3.2.7. Effect of the Anatomical Subsite on the Expression of MCP Chemokines (mRNA)

The anatomical subsite significantly affected the fold change in CCL2, CCL7, and CCL8
expression. The rectal polyps downregulated CCL2 and CCL7 by 3.1-fold and CCL8 by
5.3-fold, while gene downregulation in the colonic polyps was absent or less substantial.
Detailed analysis of the gene expression in the polyp and normal mucosa showed that the
polyp expression tended to be lower in the case of the rectal location (significantly so for
CCL8) while being relatively higher in normal mucosa (Figure 8).

A polyp location in the rectum was significantly associated with a high grade of
dysplasia (p = 0.004), prevalence of the villous component (p = 0.001), and the polyp size
(p = 0.0001). Therefore, to verify the effect of the polyp sublocation on chemokine expression
and discern the independent predictors of CCL2, CCL7, and CCL8 expression in colorectal
adenomas, a multivariate analysis was conducted.

3.2.8. Multivariate Analysis

A stepwise method was applied to co-analyze the effect of the dysplasia grade, ade-
noma growth pattern, adenoma size, number of polyps, and subsite and patient’s age and
sex on CCL2, CCL7, and CCL7 expression in colorectal adenomas.

Of those variables, CCL2 expression was independently associated with the grade
of dysplasia, growth pattern, number of adenomas, and patient’s age, which together
explained 22% of the variability in gene expression. All associations were inverse; that is,
CCL2 expression in colorectal adenomas decreased along with the increasing number of
polyps, and the patient’s age and was lower in adenomas with high grades of dysplasia
and dominant villous components. The effect of the dysplasia grade was the strongest, and
that of age was the weakest (Table 5).

Of the examined variables, CCL7 expression in colorectal adenomas was affected
solely by the growth pattern, which explained 8% of the variability in gene expression.
CCL7 decreased along with an increasing villous component (Table 5).

CCL8 was significantly affected by the dysplasia grade and growth pattern, which
explained 10% of the variability in gene expression. CCL8 expression decreased along with
an increasing villous component and was lower in adenomas with high-grade dysplasia
(Table 5).
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Figure 8. Effect of the anatomical subsite on the expression (mRNA) of MCP chemokines in patients with colorectal polyps:
(a) fold change (FC) in CCL2 expression between the polyp and normal mucosa (P/N); (b) CCL2 expression in a polyp; (c)
CCL2 expression in normal tissue; (d) fold change (FC) in CCL7 expression between the polyp and normal mucosa (P/N);
(e) CCL7 expression in a polyp; (f) CCL7 expression in normal tissue; (g) fold change (FC) in CCL8 expression between the
polyp and normal mucosa (P/N); (h) CCL8 expression in a polyp; (i) CCL8 expression in normal tissue. Data analyzed
as logarithms using one-way ANOVA with a Student–Newman–Keuls post hoc test and presented as means with 95%
confidence intervals (red squares with whiskers and numbers below dot plots). Significant (p < 0.05) differences between
groups (identified in post hoc analysis) are indicated by the same symbol type (*, ˆ). NRQ: normalized relative quantity.
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Table 5. Regression models explaining expression of MCP chemokines in colorectal adenomas.

Dependent
Variable

Explanatory
Variables

Regression
Coefficient (β), p rp VIF R2; ANOVA

CCL2 (log)

(constant) 1.88

R2 = 0.22; F = 9.63,
p < 0.0001

dysplasia grade −0.41, p = 0.003 −0.25 1.10
number of polyps −0.16, p = 0.017 −0.20 1.02

growth pattern −0.27, p = 0.004 −0.24 1.10
patient’s age −0.01, p = 0.011 −0.21 1.02

CCL7 (log) (constant) 0.36 R2 = 0.08; F = 12.0,
p < 0.001growth pattern −0.29, p < 0.001 −0.29 1

CCL8 (log)
(constant) 0.65

R2 = 0.10; F = 7.97,
p < 0.001

dysplasia grade −0.33, p = 0.027 −0.19 1.10
growth pattern −0.25, p = 0.013 −0.21 1.10

Data were analyzed using the stepwise method of linear multivariate regression. The adenoma size (as a
continuous variable), number of polyps (as a continuous variable), growth pattern (tubular adenomas coded as
1, tubulo-villous as 2, and villous as 3), grade of dysplasia (low-grade dysplasia coded as 1 and high grade as
2), and anatomical subsite (rectum coded as 1 and colon coded as 0) as well as the patient’s age and sex (male
coded as 1 and female as 0) were entered into the analysis. Results are presented as regression coefficients β
together with a corresponding p value, partial correlation coefficient (rp), and variance inflation factor (VIF;
multicollinearity indicator) for each explanatory variable retained in the regression model and as the model’s
coefficient of determination (R2) together with ANOVA results (F statistics and p value).

3.2.9. Interrelationship between the Expression of MCP Chemokines

There was a positive correlation between CCL2, CCL7, and CCL8 in the normal mucosa
and polyps, with the correlation between CCL2 and CCL8 being equally strong, while those
between CCL2 and CCL7 and between CCL7 and CCL8 were stronger in the polyps than
the normal tissue (Table 6).

Table 6. Interrelationship between CCL2, CCL7, and CCL8 expression.

Gene
FC (P/N) Polyp (p) Normal (n)

CCL7 CCL8 CCL7 CCL8 CCL7 CCL8

CCL2 0.48 1 0.63 1 0.52 1 0.54 1 0.31 1 0.55 1

CCL7 0.63 1 0.66 1 0.48 1

Data analyzed as logarithms and presented as Pearson moment correlation coefficients (r). 1 p≤ 0.0001. FC: fold change.

3.3. Interrelationship between the Expression of MCP Chemokines at the Protein and
Transcriptional Levels

CCL2 and CCL7 mRNA expression was inversely related with the CCL2 and CCL7
immunoreactivity score in the polyps, as indicated by the lower NRQ values accompanying
score 1 compared with score 0 (CCL2) or score 2 compared with score 1 (CCL7). CCL8
mRNA expression decreased along with increasing CCL8 immunoreactivity, which was
non-significant in the polyps but significant in the adjacent normal tissue (Figure 9).
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Figure 9. Correlation between the expression of MCP chemokines at the transcriptional and protein levels: (a) CCL2 in
polyps; (b) CCL7 in polyps; (c) CCL8 in polyps; (d) CCL2 in normal mucosa; (e) CCL7 in normal mucosa; and (f) CCL8 in
normal mucosa. Data analyzed as logarithms using one-way ANOVA with a Student–Newman–Keuls post hoc test and
presented as means with 95% confidence intervals (red squares with whiskers and numbers below dot plots). Significant
(p < 0.05) differences between groups (identified in post hoc analysis) are indicated by the same symbol type (*, ˆ). NRQ:
normalized relative quantity.

4. Discussion

There is growing interest in inflammatory mediators as potential targets for CRC
chemoprevention, evoked by the efficacy of aspirin and non-aspirin NSAIDs at reducing
the incidence, number, and size of neoplasm evidenced in animal models of colorectal
carcinogenesis as well as human studies (reviewed in [1]). Apart from interfering with
the COX/PGE2 pathway, NSAIDs are believed to act by affecting other tumor-promoting
signaling pathways, altering the gut microbiome, and disrupting the inflammatory microen-
vironment (reviewed in [15]). Among other effects, NSAIDs can modulate the expression
of MCP chemokines (manuscript submitted). The key representative, MCP-1/CCL2, has
previously been demonstrated to be upregulated in CRC at the local [21,22] and systemic
levels [30] and induce the proliferation [31] and epithelial-mesenchymal transition of tumor
cells [19]. Moreover, circulating MCP-1 has been indicated as a prognosticator of increased
CRC risk [32] and a component of cytokine panels differentiating CRC patients from those
with high-risk conditions such as IBD and adenomas [33]. However, data on MCP-1/CCL2
expression in colorectal adenomas are limited, not allowing confirmation of the chemokine
potential as a target for chemoprevention. Only recently, comparative RNAseq analysis of
the colorectal transcriptome of patient-matched (n = 5) samples of normal mucosa, adeno-
mas, and adenocarcinomas has shown that CCL2 expression is significantly upregulated in
tumors compared with adenomas but downregulated in adenomas compared with normal
mucosa [27]. The results presented in the current study corroborate observations regarding
adenomas on a larger set of samples, indicating a similar level of downregulation. They
also link a magnitude of downregulation with a polyp’s potential for malignancy. The
risk of transformation into carcinoma is higher in patients with multiple polyps and in the
case of larger lesions. For adenomas, this depends on the dysplasia grade as well as the
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contribution of the villous growth pattern. Large, predominantly villous adenomas with
high-grade dysplasia are referred to as “advanced adenomas” [34]. Hyperplastic polyps,
in turn, are representatives of serrated polyps [3] and have previously been considered
innocuous [34]. However, recent evidence indicates that they may progress to serrated
adenomas and then cancer over time [3]. Here, we showed that CCL2 expression in polyps
and the polyp-to-normal expression ratio were lower in patients with large and multiple
polyps and adenomas with a dominant villous growth pattern and high-grade dysplasia.
Moreover, the dysplasia grade, growth pattern, and number of polyps were, together with
the patient’s age, independent predictors of CCL2 expression. Likewise, CCL7 and CCL8 ex-
pression was downregulated in polyps compared with the patient-matched normal mucosa,
the most pronounced example being in the case of CCL8, both herein and in the RNAseq
analysis of Hong et al. [27]. Their expression in the polyp and expression rate mimicked
the CCL2 patterns; they were lower in the larger polyps and adenomas with a higher grade
of dysplasia and decreased with the increasing contribution of the villous growth pattern.
CCL8 expression was also significantly lower in patients with multiple polyps. A dominant
villous growth pattern for both CCL7 and CCL8 and high-grade dysplasia for CCL8 were
independent predictors of chemokine expression, although their contributions to the ex-
pression variability were rather low and indicative of the presence of other effectors which
were not evaluated in the current study. The CCL2, CCL7, and CCL8 expression seemed to
depend on the polyp location, as the lowest expression ratios were observed for the rectal
polyps. However, as indicated by the results of the multivariate analysis, the neoplasm
location lost significance when co-examined with the histopathological findings.

The role of MCP-2/CCL8 and MCP-3/CCL7 in colorectal carcinogenesis and cancer
progression is less studied and clear. Clinical studies have linked MCP-3/CCL7 overex-
pression with liver metastasis [35], while cell culture studies have demonstrated MCP-3
to promote cancer cell proliferation in addition to enhancing their migratory and inva-
sive properties [36]. MCP-3 also displays immunomodulatory properties and facilitates
tumor growth by attracting monocytes and promoting their phenotypic transformation
to tumor-associated macrophages, but it can also contribute to tumor infiltration with
tumor-suppressing subsets of T lymphocyte and dendritic cells [37]. Accordingly, CCL7
transfection has inhibited the growth of primary tumors and prevented metastasis [25,26].
In osteosarcoma [38] and melanoma [39], high CCL8 expression has been a good prognosti-
cator and correlated with tumor infiltration with CD8+ T cells and M1 macrophages [38],
while in animal models, MCP-2/CCL8 negatively affected the proliferation of melanoma
cells and reduced the number of liver metastases [40]. On the other hand, CCL8 has been
found to facilitate the progression of glioblastoma by promoting invasion and stemness [41],
pancreatic ductal adenocarcinoma by stimulating proliferation and invasiveness [42], and
breast and lung cancer by recruiting Tregs into metastatic sites [16]. Corroborating its
pro-tumorigenic character, overexpression of CCL8 in breast and endometrial cancer has
been predictive of poor prognoses [43]. Regarding CRC, MCP-2/CCL8 derived from cancer-
associated fibroblasts have been shown to stimulate the proliferation of cancer cells [31],
while MCP-2/CCL8 and MCP-3/CCL7 derived from tumor-associated macrophages attract
anti-tumor CD4+ and CD8+ T cells [44].

Intriguingly, all MCP proteins were upregulated in the polyps compared with the
patient-matched normal mucosa, although their corresponding transcripts demonstrated
unanimous downregulation. As the results of transcriptional analysis depend on genes
used as normalizers, we used several internal controls, namely the most popular (GAPDH),
the pair of genes previously found to be stably expressed in colorectal cancer (PPIA and
RPLP0) [28], and RN18S1, which all yielded consistent results. As mentioned earlier,
chemokine downregulation in the paired analysis of adenoma and normal mucosa from
five patients was also noted in the study by Hong et al. [27]. Here, we demonstrated
that gene expression was inversely correlated with immunoreactivity toward chemokine
proteins. There are several possible explanations for the observed counter-regulation
of CCL2, CCL7, and CCL8 transcripts and MCP-1, MCP-3, and MCP-2 proteins. First,
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different fragments of polyps were analyzed in the transcriptomic and protein analysis,
and while IHC semi-quantitatively detected the MCP content solely in the epithelial cells,
the relative transcript number was determined fully quantitatively but in tissue fragments
that were heterogenous and unspecified in terms of cellular composition. Secondly, there
might be an expression gradient formed across the longitudinal section of the polyp
resembling an expression gradient formed by MCP-2/CCL8 in breast cancer, with an
increasing chemokine concentration from the neoplastic epithelium via stroma to the
periphery [45]. The prolonged half-life of MCP proteins and possible feedback inhibition is
yet another plausible explanation for the observed discrepancy supported by our recent
findings regarding polyp expression of heat shock proteins (HSP)-70 and 90 (manuscript
submitted) and atypical chemokine receptors [7]. The HSPs play a role in carcinogenesis as
chaperones of cancer-promoting proteins including MCP, protecting them from degradation
and thus increasing their longevity, leading to accumulation [46,47]. Indeed, we have found
HSPA1 (HSP70) and HSP90AA1 expression in patients with polyps to be upregulated and
positively correlated with the dysplasia grade and villous component. We have also
observed a downregulation of the decoy chemokine receptors ACKR2 and ACKR4 [7],
which are involved in scavenging chemokines and directing them to degradation [48].
Lower expression of ACKRs would therefore translate into reduced chemokine turnover
and further contribute to their accumulation. Like for the analyzed chemokines, ACKR
downregulation has been the greatest in adenomas with the highest malignancy potential.
Moreover, a recent study by Smit et al. [49] indicated that mutations in the APC, TP53,
KRAS, and SMAD4 genes, all characteristics for colorectal adenoma-carcinoma transition,
are associated with enhanced global translational capacity, which may, at least in part,
counterbalance the reduced transcription observed here.

5. Conclusions

Colorectal polyps are characterized by a significantly higher content of MCP-1, MCP-2,
and MCP-3 proteins but a lower number of the respective CCL2, CCL7, and CCL8 transcripts,
the downregulation of which is more pronounced in polyps with greater potential for
malignancy. Considering a discrepancy between mRNA and protein expression, which
an enhanced translational capacity and reduced protein degradation might contribute to,
chemopreventive strategies directed against chemokine proteins or molecules contributing
to their accumulation, such as HSPs and ACKRs, or components of the translational
machinery, rather than targeting chemokine gene expression, should be considered.
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