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Abstract

Eating behaviors may be expressions of genetic risk for obesity and are potential antecedents of 

later eating disorders. However, childhood eating behaviors are heterogeneous and transient. Here 

we show associations between polygenic scores for body mass index (BMI-PGS) and anorexia 

nervosa (AN-PGS) with eating behavior trajectories during the first ten years of life using data 

from the Avon Longitudinal Study of Parents and Children (ALSPAC), N=7,825. Results indicated 
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that one standard deviation (SD) increase in the BMI-PGS was associated with a 30-37% 

increased risk for early- and mid-childhood overeating. In contrast, one SD increase in BMI-PGS 

was associated with a 20% decrease in risk of persistent high levels of undereating and a 15% 

decrease in risk of persistent fussy eating. There was no evidence for a significant association 

between AN-PGS and eating behavior trajectories. Our results support the notion that child eating 

behavior share common genetic variants associated with BMI.

Introduction

The rise of obesity is well documented, with ~23% of children and ~37% of adults classified 

as having overweight or obesity1. Higher weight has been associated with health 

consequences such as increased risk of diabetes and mental health problems found across 

populations1. The importance of genetic risk for obesity has been supported by large-scale 

genome-wide studies, detecting more than 100 associated genetic loci2. Despite this 

evidence, genetic differences cannot account for the rapid rise of obesity over the past 

decades, and changes in the food environment such as increased portion sizes, availability of 

energy dense foods, and sedentary work and leisure activities have been suggested as driving 

this increase3. However, despite this obesogenic environment, considerable variability in 

body size still exists in the population. The behavioral susceptibility theory of obesity 

attributes the joint contribution of genetic and environmental factors by proposing that eating 

behaviors, which regulate our food intake, such as overeating, are the behavioral expressions 

of genetic risk for obesity4. Evidence from previous research indicates that eating behaviors 

in childhood are associated with later higher BMI5, increased food intake6, and are heritable 

in childhood7 and adulthood8. Furthermore, twin analyses revealed a shared genetic etiology 

between eating behaviors and BMI9. In addition, pathway analyses have indicated that 

genetic loci associated with BMI are primarily expressed in the brain, emphasizing the 

behavioral component of obesity10. We have recently derived longitudinal trajectories of 

childhood eating behaviors during the first ten years of life. These trajectories highlight the 

heterogeneity of eating behaviors and emphasize that only a small proportion of children 

show persistent and elevated levels of overeating, undereating and fussy eating11 (for an 

illustration including number of classes, class description, and class size per parent-reported 

eating behavior see Figure 1 and Supplement Table 1).

Readily available polygenic scores (PGS) afford testing of the hypothesis that genetic 

variants associated with BMI are also associated with eating behaviors. PGS are derived 

from aggregating effect sizes of associated common variants across the genome into a single 

variable that measures genetic liability to a disorder or a trait12. In children, one study 

showed that increased genetic risk for obesity was associated with decreased sensitivity to 

internal satiety cues13. This finding that was not replicated in a smaller subsequent study14. 

In adults, genetic variants associated with BMI were also associated with eating behaviors, 

such as uncontrolled eating, emotional eating, and responsiveness to external food cues15–17. 

In addition, fussy eating has been identified as another key eating behavior. Childhood fussy 

eating captures the tendency of children to only eat specific foods, based on flavor, texture, 

or other reasons as well as an aversion to trying new foods18. Fussy eating during childhood 

and in prospective analyses has been associated with childhood underweight19 and lower 
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vegetable and fruit intake20. Fussy eating in childhood has been found to be moderately 

heritable (46%)21, but whether fussy eating and BMI share genetic risk is unknown.

In addition to childhood weight and obesity, eating behaviors are of great interest due to 

their potential role in the development of adolescent eating disorders and their modifiability. 

Eating disorders are debilitating and complex illnesses that commonly emerge in 

adolescence and importantly affect individuals across the entire weight spectrum22. Eating 

disorders are characterized by disordered eating behaviors, such as prolonged caloric 

restriction or binge eating episodes. Hence, the hypothesis has been proposed that childhood 

eating behaviors, as well as premorbid BMI might be antecedents of adolescent eating 

disorders23,24. We have previously found that sustained fussy eating and undereating in 

childhood are associated with increased risk of later anorexia nervosa25. These data are in 

accordance with previous findings from smaller studies26,27. So far, eight genome-wide 

significant common genetic variants for anorexia nervosa have been identified28. The 

authors of this GWAS reported a shared genetic etiology of anorexia nervosa and metabolic 

phenotypes, including glycemic traits, supporting the notion that childhood risk factors 

affecting the former may also affect the latter29. In addition, a polygenic score based on the 

anorexia nervosa GWAS, has been successfully used to predict symptoms of obsessive-

compulsive disorder30.

For all eating behaviors, the majority of previous research relies on single time point 

measures of eating behaviors, failing to capture the considerable heterogeneity across 

developmental stages31. Here, we present an exploration of the association between PGS for 

BMI and anorexia nervosa and longitudinal patterns of eating behaviors in childhood using 

data from a prospective population-based cohort, ALSPAC. We hypothesize that BMI-PGS 

will be positively associated with persistent overeating trajectories and negatively associated 

with trajectories marked by persistent undereating and fussy eating. Conversely, we 

hypothesize that AN-PGS will be positively associated with undereating and fussy eating, 

but negatively associated with overeating.

Results

Overall, BMI-PGS was significantly positively associated with overeating (R2 = 0.014, p 

<0.001) and negatively associated with undereating (R2 = 0.004, p<0.001) and fussy eating 

(R2 = 0.007, p<0.001), when treated as continuous outcomes (see Supplement Table 2a). 

The distribution of the standardized BMI-PGS and AN-PGS in each eating behavior group is 

shown in Figure 2. As hypothesized, higher mean BMI-PGS values were found for children 

characterized by higher rates of overeating, and lower means for trajectories with high levels 

of under and fussy eating. The trajectories are illustrated in Figure 1a-c, and the following 

associations are expressed as relative risk ratios in comparison to a reference trajectory (gray 

lines). These reference categories were chosen as they represent the most normative 

behavior, with children rated never to engage in the target behavior. Specifically, one 

standard deviation increase in BMI-PGS was associated with a 16% (relative risk ratio 

(RRR) = 1.16, 95%CI 1.08-1.24, p<0.001) increase in the probability of belonging to the 

low transient overeating trajectory (light blue-colored line Figure 1a, Supplement Table 3). 

Further, one standard deviation increase in BMI-PGS was associated with a 37% 
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(RRR=1.37, 95%CI; 1.27-1.47, p<0.001) increase in the probability of belonging to the late 

increasing group as well as a 30% (RRR=1.30, 95%CI:1.19-1.43, p<0.001) increase in 

belonging to the early increasing overeating group (green and pink lines in Figure 1a). These 

two trajectories are characterized by progressively increasing rates of overeating during 

childhood. This also fits with previous research suggesting a potential feedback loop 

between child eating behaviors and child weight, whereby children rated to be highly 

susceptible to food cues in early life have higher weight, which in turn may predict higher 

food cue susceptibility later32.

In line with our hypotheses, the BMI-PGS was negatively associated with undereating. A 

one standard deviation change in BMI-PGS was associated with a 16% (RRR=0.84, 95%CI: 

0.78-0.91, p<0.001) decreased risk of belonging to the high transient group (light blue line 

in Figure 1b, Supplement Table 3) relative to the low stable group (gray line). Additionally, a 

higher BMI-PGS was associated with 20% (RRR=0.80, 95%CI: 0.68-0.95, p=0.012) lower 

risk of persistently high levels of undereating (pink line in Figure 1b). The two groups, high 

decreasing and high stable undereating, stand out as they include the highest probabilities of 

undereating overall, especially during the first three years of life. These results are in line 

with our previous findings suggesting that children in these two trajectories had a lower BMI 

at age 11 years11. Furthermore, satiety responsiveness has been shown to be linked to 

smaller meals sizes in childhood6, which is a predictor of childhood weight gain33. In 

contrast to overeating, low appetite and strong satiety sensitivity, might be a protective 

factor, shielding children from the obesogenic environment.

Similarly, BMI-PGS was negatively associated with fussy eating (see Figure 1c). A one 

standard deviation increase in BMI-PGS was associated with a 14% decrease in risk 

(RRR=0.86, 95%CI: 0.80-0.93, p<0.001) of belonging to the high decreasing fussy eating 

trajectory as well as a 15% decrease (RRR=0.85, 95%CI: 0.78-0.93, p<0.001) in risk of 

belonging to the persistently high fussy eating, relative to the low stable class (Figure 1c, 

light blue and pink lines; Supplement Table 3). These two trajectories differ from the others, 

as they are characterized by high levels of fussy eating in early life. In contrast, fussy eating 

behavior later in childhood might be associated with other genetic variants or a response to 

exposures to new flavors and textures as part of an expanding diet. We have previously 

shown that fussy eating during the first 3 years of life is associated with lower BMI at age 11 

years11. However, the association between fussy eating and measures of body size in 

childhood has been debated, as fussy children might have limited variety, but could still 

overconsume their favored foods. A recent review concluded no strong evidence for the 

impact of child fussy eating on growth or body weight in either direction34.

The AN-PGS was not statistically significantly associated with eating behavior trajectories 

(see Supplement Table 2b). However, inspecting Figure 2, the pattern of mean scores of AN-

PGS differed across the eating behavior trajectories, with differences being as expected in 

opposite directions for overeating and fussy eating. A one standard deviation change in AN-

PGS was associated with a 8% decrease in likelihood of being assigned to the low transient 

group of overeating (RRR=0.92, 95% CI: 0.86- 0.98, p=0.011), marked by overeating in 

early life (light blue line, Figure 1a). In contrast, one standard deviation increase in AN-PGS 

was suggestive of an 8% increase (RRR=1.08, 95%CI: 0.99-1.18, p=0.097) in belonging to 
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the persistent high stable fussy eaters (Figure 1c, pink line). These results are in line with 

our previous study highlighting the association between persistent fussy eating in childhood 

and increased risk for AN in adolescence25. We also examined the joint associations of 

BMI-PGS and AN-PGS with the eating behavior trajectories (Supplement Table 4). Results 

did not differ from the primary analyses that treated them separately. The explanatory power 

of PGS is dependent on the sample size of the discovery GWAS35. For BMI, due to its 

straightforward and routine collection, GWAS sample sizes have exceeded 700,000 

individuals2, whereas for AN the most recent GWAS included ~17,000 cases and 55,000 

controls28. This difference in sample size might explain the largely null associations 

between the AN-PGS and the eating behavior trajectories in these analyses. As discovery 

GWAS sample sizes continue to grow, future analyses will have increased power to detect 

the underlying associations between genetic liability for AN and associated eating behaviors.

Discussion

In addition to genetics, environmental factors, such as parental feeding behaviors and 

parental eating behaviors, are proposed to be involved in the etiology of childhood eating 

behaviors. Parents engage in specific feeding strategies to regulate their child’s eating and 

weight, as well as model eating styles. However, the direction of effect between parental 

feeding and child eating is not straightforward. Parental feeding strategies have been posited 

to be a consequence of the child’s eating behavior36, causal to later child eating37, and 

reciprocally related38. An exploration of the origins of parental feeding using genetically 

informative methods, suggested that parental feeding in childhood was moderately heritable, 

and that the child’s BMI-PGS was positively longitudinally associated with parental 

restrictive feeding.39. These results are consistent with an evocative gene-environment 

correlation, whereby the genetic liability for higher BMI in the child elicits parental 

restrictive feeding. In addition, it is important to note that parental feeding strategies have 

been found to vary across cultural backgrounds, potentially contributing to differences in 

obesity risk across cultures40,41. Recent evidence has suggested that children from poorer 

families showed greater increases of emotional eating and food responsiveness between 16 

months and five years42. In context with our findings, it becomes apparent that child eating 

behaviors are influenced by genetic and environmental factors, and future research should 

aim to investigate should aim to investigate the manner in which they act and co-act. 

Additionally, future research is needed to elucidate the specific mechanisms, by which 

genetic liability influences child eating behavior. One potential mediating factor could be 

birthweight, which could lie on the causal pathway from genetic liability and early life 

eating behaviors.

Our study is subject to limitations. First, childhood eating behaviors were parent-reported, 

raising the potential of reporter bias. This bias could be particularly evident in older 

children, who eat a substantial number of meals away from parental oversight. However, 

young children are not able to report their own eating behaviors reliably and behavioral 

observations are not feasible in large-scale data collections, like this study, whose sample 

size exceeds many other investigations using PGS. Therefore, for large population cohorts 

like ALSPAC, parent-reported questionnaires of child eating behaviors remain the most 

efficient and pragmatic solution. Second, it is important to acknowledge that derived 
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trajectories using latent class growth analysis, or any similar method, are descriptive and 

population specific. The latent class growth models used to identify the trajectories only 

included measures of eating behavior. It is possible to fit more complex specifications, 

including other factors and time-varying confounders such as school performance. However, 

this is out of scope for the analyses presented here. In addition, future research should aim to 

replicate this work using independent samples for, respectively, the calculation of the PGS 

and the derivation of the eating behavior trajectories. Apart from BMI and AN-PGS, other 

psychiatric and metabolic traits might be implicated in the development of eating behaviors. 

However, we chose a theoretical and hypothesis driven approach, focusing only on genetic 

liability for BMI and AN for the present study. Future work might broaden the scope by 

including polygenic scores for other phenotypes, likely to be relevant to eating behaviors 

such as anxiety or schizophrenia. Due to limitations of the polygenic scoring software, we 

needed to fit linear models, treating the trajectories as continuous variables in the first 

instance, with values corresponding to the intercept of the trajectories. Of course, this is not 

an ideal solution, as the trajectories cross over time, and just focusing on their starting point 

does not represent severity. However, we respected their unordered nature in the second step, 

treating them as distinct categories in the main analyses. This two-step approach was taken, 

as it was the most pragmatic and feasible solution; however, a potential misspecification of 

the models might have resulted in some bias. Finally, the power of polygenic scores is 

dependent on the sample size of their underlying discovery GWAS. In this case, the sample 

size of the BMI and AN GWAS differed substantially, and the comparatively smaller sample 

size for AN is likely to have led to underpowered AN-PGS. In order to quantify the 

difference in power between the AN-PGS and BMI-PGS we have estimated their statistical 

power using the AVENGEME package43 at different expected levels of genetic covariance 

between the discovery and target sample, see Supplement Table 5 and Supplement Figure 1.

In summary, this study provides evidence that common genetic variants associated with BMI 

are also associated with eating behaviors trajectories in childhood, supporting the behavioral 

susceptibility theory of obesity4. Our study improves on previous work, due to its large 

sample size and its use of longitudinal trajectories, capturing the transitional nature of eating 

behaviors across development in childhood. The findings highlight that individuals 

characterized with a genomic propensity for higher BMI may be more vulnerable to an 

obesogenic environment, as they are more likely to overeat persistently and increasingly 

during the first 10 years of life. This link between genetic risk and overeating in childhood 

might be specifically powerful, given the current obesogenic environment that is defined by 

substantially larger portion sizes and increased availability of low-cost highly palatable food 

creating an environment for children to overeat3. This overconsumption allows a child’s 

underlying genetic propensity for a higher BMI to be fully expressed and contributes to the 

development of an obese phenotype3. The link between genetic liability for AN and eating 

behavior trajectories is less clear, but our results are indicative of a potential shared genetic 

etiology of AN and persistent fussy eating in childhood.
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Methods

Participants

Data were from ALSPAC, a population based, longitudinal cohort of mothers and their 

children born in the southwest of England44. All pregnant women expected to give birth 

between the 1st April 1991 and 31st December 1992 were invited to enroll in the study. 

From all pregnancies (n = 14,676), 14,451 pregnant women decided to take part, and 13,988 

of their children were alive at 1 year. In order to guarantee for independence of data, only 

one child per multiple birth per family were included (N=203 sets). Please note that the 

study website contains details of all the data that is available through a fully searchable data 

dictionary and variable search tool. (www.bristol.ac.uk/alspac/researchers/our-data). Ethical 

approval for the study was obtained from the ALSPAC Ethics and Law Committee and the 

Local Research Ethics Committees. Consent for biological samples has been collected in 

accordance with the Human Tissue Act (2004).

Measures

The following characteristics of the sample are presented in Supplement Table 1, alongside 

the distribution of eating behavior groups, (i) socioeconomic position of the family, 

approximated by maternal education status (A-Levels or higher, lower than A-Levels; A-

Levels are needed to enroll in university in the UK); (ii) maternal age at birth; (iii) size at 

birth (gestational age and birthweight).

Eating behaviors

Parents rated their children’s eating behavior when their children were 1.3 yrs, 2 yrs, 3.2 yrs, 

4.6 yrs, 5.5 yrs, 6.9 yrs, 8.7 yrs and 9.6 yrs old. Parents answered five questions at each wave 

indicating how worried they were about their child’s overeating, undereating, and three 

questions on fussy eating (being choosy, refusing food, and general feeding difficulties). 

Response options for all questions were: “did not happen”, “happened, but not worried”, “a 

bit/greatly worried”. Latent class growth analyses were used to derive longitudinal 

trajectories of child eating behavior11. Briefly, trajectories were derived using latent class 

growth analyses using full information maximum likelihood. Data were parent-reported 

child eating behaviors measured at 8 time points between 1.3 and 9 years. Latent class 

growth analyses included covariates indexing the social class of the families (maternal age at 

birth, maternal education, and manual or non-manual labor of the highest earner of the 

family). Model fit of increasing number of assumed classes were compared against each 

other using following indicators: Akaike’s Information Criterion, Bayesian Information 

Criterion, adjusted for sample size Bayesian Information Criterion. Entropy, class size and 

interpretability were also taken into consideration when selecting the best fitting model. This 

process identified 4 classes of overeating and 6 classes for undereating and fussy eating, 

which were then carried over for the analyses presented here (Figure 1a-c). The trajectories 

were named to reflect their shape, e.g. “low stable” indicating that parents consistently rated 

that the behavior was not present, whereas “high stable” indicated that parents consistently 

rated that they were worried about their children’s’ eating behavior across time. Trajectories 

that were characterized by changes in parental report across time were summarized by 

describing their start point at first measurement followed by their shape, e.g. “high 
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decreasing” describes a trajectory in which parents initially reported the presence of the 

eating behavior, as well as being very worried about their child’s eating behavior but this 

decreased over time. In contrast, “low increasing” describes a trajectory a low starting point 

and an increase over time. This study included participants who had data on eating behavior 

trajectories and were genotyped (N=7,825).

Genotyping

Genotype data were available for 9,915 children out of the 15,247 ALSPAC participants. 

Participants were genotyped on the Illumina HumanHap550 quad chip. Individuals with 

>3% individual missingness, insufficient sample replication (identity by descent < 0.1), 

where sex was mismatched, and non-European ancestry defined by multi-dimensional 

scaling using the HapMap Phase II release 22 reference populations were excluded. SNPs 

with a minor allele frequency (MAF) <1%, call rate < 95%, or a departure from the Hardy–

Weinberg equilibrium (P value < 5 x 10-7) were removed. Imputation was carried out with 

Impute3 using the Haplotpye Reference Consortium 1.0 reference panel with prior phasing 

using ShapeIT (v2.r644). Post-imputation SNPs with MAF <1%, INFO score <0.8, and not 

confirming to Hardy-Weinberg equilibrium (P < 5 × 10-7) were removed. After data 

cleaning, 8,654 individuals (4,225 females and 4,429 males) and 4,054,653 SNPs remained 

for analyses.

Polygenic score (PGS) calculations and multinomial regression models

The BMI-PGS was calculated based on summary statistics from the GIANT consortium 

(https://portals.broadinstitute.org/collaboration/giant/index.php/GIANT_consortium). We 

used the updated Meta-analysis Locke et al + UKBiobank 2018. We used the corrected 

sumstats, which were published on the website after June 25, 2018. The AN-PGS was based 

on the summary statistics of the second PGC-ED GWAS of AN29. The calculation, 

application, and evaluation of the PGS was carried out with PRSice (2.1.3 beta; github.com/

choishingwan/PGSice/)45. PRSice relies on PLINK to carry out necessary cleaning steps 

prior to PGS calculation45,46. Strand-ambiguous SNPs were removed prior to the risk 

scoring. A total of 1,488,001 SNPs were present in both the discovery and in the target 

cohort. Clumping was applied to extract independent SNPs according to linkage 

disequilibrium and P-value: the SNP with the smallest P-value in each 250 kilobase window 

was retained and all those in linkage disequilibrium (r2 > 0.1) with this SNP were removed. 

Furthermore, individuals that are closely related to each other defined as a phi hat > 0.2 

(calculated using PLINK v1.90b3y 64-bit, 4 Nov 2015) were removed; this meant removal 

of any duplicates or monozygotic twins, first-degree relatives (i.e. parent-offspring and full 

siblings), and second-degree relatives (i.e., half-siblings, uncles, aunts, grandparents, and 

double cousins). Only one individual of each pair of related individuals was removed at 

random. This resulted in the removal of 75 individuals. The following analyses were 

conducted in two stages: (1) PGS were calculated using the high-resolution scoring (e.g., 

across a large number of P-value thresholds) option in PRSice, treating the eating behavior 

trajectories as continuous outcomes to identify the p-value threshold at which the PGS is 

optimally associated with the outcome. (2) Then the derived PGS were used as independent 

variables in the multinomial regression models. The models were fitted to estimate the 

association between BMI-PGS, AN-PGS, and membership of eating behavior trajectory. 
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Estimates are reported as relative risk ratios (RRR), which indicate the risk of being 

assigned to one trajectory in comparison to the normative reference trajectory (gray lines in 

Figure 1a-c). Multinomial regression models are the most appropriate, as the trajectories of 

eating behavior are distinct categories, and cannot be assumed to be ordinal or continuous 

variables. Trajectories with no reported overeating, undereating, or fussy eating were used as 

the reference categories for the regression analyses. This way we were able to identify the 

extent to which a change in polygenic score was associated with the relative risk of being 

assigned to one of the other overeating, undereating, and fussy eating trajectories in 

reference to the normative trajectory. Regarding covariates, by definition polygenic scores 

are randomly distributed in the population at birth, and all commonly used covariates 

(birthweight, gestational age etc.) would conceptually lie on the causal pathway between 

exposure (polygenic score) and outcome (eating behavior trajectory), and hence were not 

included in these analyses. One possibility is that polygenic scores are not evenly distributed 

across different strata of socio-economic position, as the discovery GWASs were not 

adjusted for socio-economic status. Therefore, we conducted sensitivity analyses including 

maternal education as a covariate. Maternal education was a binary variable indicating if 

mothers had completed their A-Levels (UK requirement to attend university). Results of 

these sensitivity analyses are listed in Supplement Table 6. In order to, account for multiple 

testing (26 tests), a stringent p-value threshold of 0.002 was set, using Bonferroni correction; 

0.05 / 26 = 0.002. Tests were two-tailed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. a-c Eating behavior trajectories during the first ten years of life, total N=7,825.
(A) Childhood overeating trajectories. Low stable (N=5374), Reference trajectory;

Low transient (N=1091), BMI-PGS relative risk ratio (RRR) = 1.16 (95% CI: 1.08 – 1.23, p 

<0.001) and AN-PGS RRR = 0.92 (95% CI: 0.86 – 0.98, p = 0.011);

Late increasing (N=883), BMI-PGS RRR=1.37 (95%CI: 1.27-1.47, p<0.001) and AN-PGS 

RRR=0.94 (95%CI:0.87-1.01, p=0.072);

Increasing (N=477), BMI-PGS RRR=1.30 (95%CI: 1.19-1.43, p<0.001) and AN-PGS 

RRR=0.96 (95%CI: 0.87-1.05, p=0.353)
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(B) Childhood undereating trajectories. Low stable (N= 1913), Reference trajectory;

Low transient (N=2906), BMI-PGS RRR = 0.91 (95%CI: 0.87- 0.97, p=0.002) and AN-PGS 

RRR = 1.01 (95%CI: 0.96- 1.07, p=0.630);

Low decreasing (N=1613); BMI-PGS RRR = 0.93 (95%CI: 0.87- 0.99, p=0.027) and AN-

PGS RRR = 0.96 (95%CI: 0.90-1.02, p=0.202);

High transient (N=989); BMI-PGS RRR = 0.84 (95%CI: 0.78- 0.91, p<0.001) and AN-PGS 

RRR = 0.95 (95%CI: 0.88- 1.02, p=0.166);

High stable (N=141); BMI-PGS RRR = 0.80 (95%CI: 0.68- 0.95, p=0.012) and AN-PGS 

RRR = 0.93 (95%CI: 0.79- 1.11, p=0.441)

(C) Childhood fussy eating trajectories. Low stable (N=1969), Reference trajectory

Low decreasing (N=1142); BMI-PGS RRR= 1.00 (95%CI: 0.93-1.01, p=0.993) and AN-

PGS RRR = 0.99 (95%CI: 0.91- 1.06, p=0.706);

Low transient (N=2136); BMI-PGS RRR = 0.99 (95%CI: 0.93-1.06, p=0.796) and AN-PGS 

RRR = 0.99 (95%CI: 0.93- 1.06, p=0.826);

High decreasing (N=1112); BMI-PGS RRR = 0.86 (95%CI: 0.80- 0.93, p<0.001) and AN-

PGS RRR = 1.05 (95%CI: 0.97- 1.13, p=0.218);

Low increasing (N=1040); BMI-PGS RRR = 0.93 (95%CI: 0.86- 1.00, p=0.060) and AN-

PGS RRR = 0.97 (95%CI: 0.90-1.05, p=0.486);

High stable (N=699), BMI-PGS RRR = 0.85 (95%CI: 0.78- 0.93, p<0.001) and AN-PGS 

RRR = 1.08 (95%CI: 0.99-1.18, p=0.097)
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Figure 2. 
Mean of standardized BMI-PGS (in blue), AN-PGS (in red), and standard error per child 

eating behavior group (N= 7,825)
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