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Background: Osteoarthritis (OA) is a common cause of disability and pain

around the world. Epidemiologic studies of family history have revealed

evidence of genetic influence on OA. Although many efforts have been

devoted to exploring genetic biomarkers, the mechanism behind this

complex disease remains unclear. The identified genetic risk variants only

explain a small proportion of the disease phenotype. Traditional genome-

wide association study (GWAS) focuses on radiographic evidence of OA and

excludes sex chromosome information in the analysis. However, gender

differences in OA are multifactorial, with a higher frequency in women,

indicating that the chromosome X plays an essential role in OA pathology.

Furthermore, the prevalence of comorbidities among patients with OA is high,

indicating multiple diseases share a similar genetic susceptibility to OA.

Methods: In this study, we performed GWAS of OA and OA-associated key

comorbidities on 3366 OA patient data obtained from the Osteoarthritis

Initiative (OAI). We performed Mendelian randomization to identify the

possible causal relationship between OA and OA-related clinical features.

Results:One significant OA-associated locus rs2305570 was identified through

sex-specific genome-wide association. By calculating the LD score, we found

OA is positively correlated with heart disease and stroke. A strong genetic

correlation was observed between knee OA and inflammatory disease,

including eczema, multiple sclerosis, and Crohn’s disease. Our study also

found that knee alignment is one of the major risk factors in OA

development, and we surprisingly found knee pain is not a causative factor

of OA, although it was the most common symptom of OA.

Conclusion: We investigated several significant positive/negative genetic

correlations between OA and common chronic diseases, suggesting

substantial genetic overlaps between OA and these traits. The sex-specific

association analysis supports the critical role of chromosome X in OA

development in females.
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Introduction

As one of the top reasons for morbidity and disability,

osteoarthritis (OA) has affected over 32.5 million adults in the

United States (Barbour et al., 2017). In 2004, the cost of OA

management was $336 billion, or 3% of the United States’ GDP.

As the most common form of arthritis, the economic burden of

OA is quickly growing due to obesity prevalence and aging. By

2030, an estimated 20 percent of Americans (about 70 million

people) will be at risk of developing this disease (Chu et al., 2012;

Yelin et al., 2016). OA is a disease of the whole joint based on the

characterized degenerative changes in bone, cartilages, menisci,

and ligaments (Zhang et al., 2016; Chen et al., 2017; Zhang et al.,

2019). The subsequent pain and stiffness usually cause

inconveniences in patients’ daily lives. Unfortunately, OA is

still an irreversible degenerative disease without effective

disease-specific drugs (Sharma et al., 2001a; Boer et al., 2021),

and current treatment focuses on ameliorating symptoms such as

pain relief. The pathology of OA disease is still unclear. Thus,

there is an urgent need to understand disease etiopathology and

identify new drug targets.

Twin studies and family-based epidemiologic studies have

revealed the heritability of OA susceptibility (Palotie et al.,

1989; Spector et al., 1996; Felson et al., 1998). One sibling

study estimated the heritability for knee OA at 0.62 (Neame

et al., 2004), suggesting a substantial involvement of genetic

factors in the development of the OA. Many efforts have been

devoted to identifying the genetic biomarkers for the diagnosis

of OA, where they used Kellgren-Lawrence (KL) grade (KL ≥
2) to define OA occurrence. Several candidate genes have been

identified to be associated with the diagnosis of knee OA such

as GDF5, NCOA3, CHST11, FTO, and ALDH1A2 (Valdes

et al., 2011; Loughlin, 2015; Yau et al., 2017; Takuwa et al.,

2018). Zengini et al. reported nine genetic loci over the

genome-wide significance threshold in GWAS (Zengini

et al., 2018). Rs3815148 on chromosome 7 is found to

influence susceptibility for the prevalence of OA (Kerkhof

et al., 2010; Evangelou et al., 2011).

Most OA-related studies have focused on the influence of

genetic factors on OA, and few studies have explored the

genetic links between OA and other chronic diseases. Like

other aging diseases, the prevalence of comorbidities among

patients with OA is high. A recent epidemiological study

found that patients with OA have twice as many comorbid

conditions as those without OA. (Marshall et al., 2019). A

meta-analysis of 42 studies reports that thirty-five percent of

OA patients have cardiovascular disease, sixteen percent have

ulcers and 14 percent have diabetes (Louati et al., 2015; Swain

et al., 2020). Although the dominant approach of GWAS is to

identify the association between one single-nucleotide

polymorphism (SNP) and a binary disease indicator,

multiple studies have revealed some diseases may be

genetically correlated (Piva et al., 2015; Courties and

Sellam, 2016; Barowsky et al., 2021; Zhang et al., 2022). In

another word, these diseases may share the same genetic

variants. Therefore, we conducted a phenotype-genotype

comorbidity analysis of patients with a high risk of OA

using the Osteoarthritis Initiative (OAI) data. We also

performed multi-genotype tests to detect OA genetic

variations related to OA clinical phenotypes. Despite the

higher prevalence of OA in women, traditional GWAS

often excludes sex chromosomes, leading to the unknown

role of the chromosome X in OA (Laitner et al., 2021).

Therefore, we performed sex-specific GWAS to fill this gap.

Materials and methods

Study design and analysis plan

To identify the potential genetic biomarkers associated

with OA in Caucasians, genome-wide associations were

performed on the OAI dataset using logistic regression in

PLINK (Chang et al., 2015). In this cohort, participants aging

between 45 and 79 years old were recruited from five different

clinical sites, including the University of Maryland School of

Medicine, the Ohio State University, the University of

Pittsburgh, Memorial Hospital of Rhode Island, and the

University of California (https://nda.nih.gov/oai).

Longitudinal MRI/CT images, genotyping data, and clinical

information was analyzed to evaluate potential biomarkers

and characterize OA incidents and progression (Peterfy et al.,

2008; Eckstein et al., 2012; Eckstein et al., 2014). The assessed

GWAS results were adjusted for age, gender, and BMI. The

results with a p-value p≤ 10−5 and linkage disequilibrium

value r2 < 0.6 were selected for the subsequent analysis.

(Marchini et al., 2007). The summary statistics were then

used in the further genetic correction analysis and Mendelian

randomization (MR) analysis. We also used metaCCA

(Cichonska et al., 2016) for data reduction for genotype

and phenotype separately with multiple univariate GWAS

results and then calculated the correlation between

genotype-phenotype association using canonical correlation

analysis. The workflow for sample selection and study design

was described in Supplementary Figure S1.

Phenotype definition and study
populations

Population stratification is a primary confounder in GWAS,

causing false-positive signals. Therefore, we performed principal

component analysis (PCA) on two major races, Caucasian and

African American, to identify the population structure with

common variants. The structure of genetic variants of the two

populations is significantly different in Figure 1A. A total number
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of 3366 OA Caucasian patients were selected from the OAI

database. 1,498 patients are males and 1868 are females. To

identify the genetic variants associated with OA, we conducted a

GWAS based on this dataset. The OA disease was defined as KL

score ≥ 2 (Kellgren and Lawrence, 1957). KL ranges from 0 to 4,

with 0 indicating no sign of OA and 4 representing severe OA.

After filtering and quality control, 1872 cases and 1,316 controls

were retained for further analysis. The control group was defined

as patients without any sign of OA and the experimental group

was defined as OA patients whose KL score was ≥2. In addition to
OA, comorbidity disease survey data, including asthma, heart

disease, stroke, diabetes, and cancer, were also extracted. 281 out

of 3297 OA patients also had asthma (ICD-9 code 493.92). 99 out

of 3316 OA patients reported prior incidence of stroke (ICD-

9 code 434.91). 62 out of 3,300 OA patients reported heart

problems (ICD-9 code 429.9). 189 out of 3,307 OA patients

reported having Type I or Type II diabetes (ICD-9 code 250.00).

130 out of 3,316 OA patients reported having cancer (ICD-9 code

199.1).

In addition to these binary disease indicators, continuous

OA-related phenotypes such as The Western Ontario and

McMaster Universities Osteoarthritis (WOMAC) pain score,

WOMAC stiffness, knee alignment, the total area of

subchondral bone, and medial bone mineral density

(BMD) were included. These participants were the same

group of available KL score population. The most common

symptoms of OA are pain and stiffness. WOMAC pain score,

ranging from 0 to 20, uses five questionnaires to self-assess

pain levels with activities of daily living. WOMAC stiffness,

similar to WOMAC pain score, ranges from 0 to 8. Knee

alignment (hip-knee-ankle alignment) and BMI are known as

risk factors for the incidence and progression of OA with

different joint loading measurements (Messier et al., 2014).

The pathology of OA is characterized by modeling

subchondral bone (Donell, 2019). The total area of

subchondral bone and medial BMD are both indicators for

the formation of osteophytes (Xiao et al., 2010; Donell, 2019).

Genotyping and imputation

OAI participants were genotyped with Illumina Omni-Quad

2.5 M arrays, including genotype information for

2,440,283 SNPs. SNPs with low minor allele frequency

(MAF <1%) were excluded. Genotype imputation was

conducted using IMPUTE2 (Browning and Browning, 2016)

FIGURE 1
Population Stratification of twomain races andManhattan plots of GWAS for OA. Panel A is the result of the first two principal components. The
red dots represent the population structure of Caucasians on the whole genotype matrix. The green dots represent the population structure of
African Americans on the whole genotype matrix. Panel B is the Manhattan plot of the results from the GWAS of Caucasian OA. The y axis represents
–log (p values) for the association of variants with OA. The horizontal red line represents the threshold for genome-wide significance.
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with 1000 Genomes Project Phase 3 as the reference and

8,248,570 SNPs in OAI were obtained.

Genetic correlation analysis

For phenotype-genotype comorbidity analysis, the complex

trait analysis (GCTA) tool (Yang et al., 2011) was used to assess

the variance explained by all the SNPs on the whole genome. To

identify common diseases that share genetic architecture with

OA, linkage disequilibrium (LD) score regression from LD Hub

was used (Zheng et al., 2017). The additive genetic covariance

between two traits was scaled by the square root of the product of

each trait’s genetic variance to determine the genetic correlation

(Ni et al., 2018). Instead of using individual-level genotype data,

the genetic correlation rg is estimated from GWAS summary

statistics by calculating the LD score for each SNP. When an SNP

is able to tag more of its neighbors, the LD score for this SNP is

higher, which is more likely to affect the phenotypes (Lee et al.,

2018). The slope of LD Score regression estimates the heritability

(h2) of this trail. We downloaded 856 published GWAS clinical

trials on LD Hub (Zheng et al., 2017) and the trials whose genetic

correlation with p values <0.05 were considered significant with

Bonferroni correction for multiple testing.

Mendelian randomization

To identify the role of exposure (knee alignment/pain) in the

susceptibility of OA, two-sample Mendelian randomization

(MR) analysis was performed on the MR-Base platform

(Walker et al., 2019). MR uses significantly associated SNPs as

instrumental variables to quantify causal relationships between

risk factors and OA. By including genetic variants, MR reduced

the impact of confounding, even “reverse causality” based on

Mendel’s second law (Bennett and Holmes, 2017). Specifically,

the causal relationship is estimated by computing the association

between identified significant SNPs for the risk factor and OA.

Figure 5A illustrates the estimation of MR. The causal

associations were estimated by three different methods,

namely, inverse variance weighted (IVW), MR–Egger

(Bowden et al., 2015), and weighted median (WM). The IVW

method uses the Wald ratios to estimate the causal effects of each

SNP and is easily biased by inverse variance or pleiotropic effects.

MR–Egger is a weighted linear regression under the assumption

that pleiotropic associations are independent. The WM is useful

when at least 50% of effects came from inverse variances. In

general, we performed GWAS on pain, and knee alignment using

the OAI dataset respectively and obtained SNPs that were

strongly associated (p≤ 10−5) and independent inheritance

(r2 < 0.6). Finally, we extracted the instrumental SNPs from

the KL GWAS. For linkage disequilibrium, we used clumping to

prune SNPs.

Gene-set and tissue expression analysis by
FUMA

FUMA (Watanabe et al., 2017) uses GTEx (Ardlie et al.,

2015) data for tissue-specific expression patterns and identifies

tissue specificity of prioritized genes. Based on the GWAS

summary statistics, FUMA identifies significant independent

SNPs and genomic loci based on LD structure. The significant

independent SNPs are then annotated on gene function using

ANNOVAR (Wang et al., 2010) based on Ensembl and their

effects on gene expression using eQTLs of various tissue types.

The enrichment of significant genes and functional categories is

evaluated by a hypergeometric test.

Results

Identification of genetic loci associated
with OA by genome-wide association
study

To eliminate unknown population-associated sub-structures,

this study focused on the Caucasian population. The OA GWAS

result is presented in Figure 1B. We identified 164 significant

variants mapped on 79 genes (p≤ 10−5) with PLINK and used the

online database Enrichr (Chen et al., 2013) to conduct a pathway

analysis and Gene Ontology (GO) terms enrichment. A total of

116 genes were significantly enriched in 13 KEGG pathways and

33 GO terms (Figure 2). In each pathway, the minimum number

of genes was 3. The pathways with a Bonferroni correction test

P< 0.05 are considered significant. Autoimmune thyroid disease

is the most significant pathway with p≤ 10−9. By mapping genes

to GO terms, we found that most GO terms were related to

phosphorylation and immune response. One significant SNP

candidate was found on chromosome 2 with multiple loci

overlapping with EPAS1 (rs6707241, p � 9.33p10−7)
(Supplementary Figure S2A). EPAS1 (also called HIF2α) has

been known as a hypoxia regulator (Saito et al., 2010). Bone-

related study indicates that HIF2α is a regulator of

osteoblastogenesis and bone mass accrual (Merceron et al.,

2019). Hence, HIF-2alpha may represent a therapeutic target

for osteoarthritis. Another interesting SNP was within the

ADAMTS18 gene (rs12443792, p � 9.82p10−7)
(Supplementary Figure S2B). Some members of the ADAMTS

family are expressed in cartilage and have emerging roles in joint

pathophysiology (Yang et al., 2017).

Local genetic correlation between OA and
common comorbidities

As shown in Figure 3, comorbidities are significantly

associated with OA severity. For example, strokes were
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more likely to be found in patients with KL = 1, patients with

KL = 2 are more likely to have diabetes and asthma, and heart

diseases mostly occurred in patients with KL = 3. To identify

the common loci of significance to most comorbidities, we

performed the GWAS on different comorbidity diseases.

Based on these GWAS results, we found significant positive

correlations between OA and heart disease (coefficient = 0.5,

se = 0.66) and stroke (coefficient = 0.2, se = 0.88). Table 1

listed the correlation between each significant SNP and

common OA comorbidities. The first column is the overall

estimated correlation for each single loci in risk factors. The

second column is the p-value, while the significant threshold is

set as 0.05
2440283 � 2.05p10−8. The third and following columns are

the coefficients corresponding to that phenotype. The largest

single-SNP–multi-traits −log10(p − value) are 10.5164 for

KIAA1211 (chr4-57072329), 9.75 for SLC4A4 (chr4-

72371592), and 10.08 for RP11-333A23.4 (chr8-71393927).

Functional assays showed that solute carrier family 4 members

4 (SLC4A4) might serve as a potent Rheumatoid Arthritis-

specific target (Torres et al., 2022). KIAA1211, also known as

Cancer-related Regulator of Actin Dynamics (or CRAD), was

found to regulate cell proliferation and apoptosis in non-small

cell lung cancer (NSCLC) in vitro and in vivo (Liu et al., 2019).

While the gene function of RP11-333A23.4 (lincRNA) and

KIAA1211 are documented in other diseases, their functions

in OA pathways are still unknown.

Global genetic correlation between
osteoarthritis and other complex traits

The correlation matrix between OA and a subset of common

diseases is represented in Figure 4. Our analysis highlights eight

significant genetic correlations for knee OA (Figure 4). The negative

genetic correlation between knee OA and M16 coxarthrosis/

arthrosis of the hip (rg � −0.32, s.e. = 0.22, p = 0.033) are

consistent with previous epidemiological and genetic studies (Ro

et al., 2019; Liu et al., 2020). We also identified some novel genetic

correlation results, which have not been reported in the GWAS

study. First, we found a positive genetic correlation between knee

OA and emphysema/chronic bronchitis (rg � 0.34, s.e. = 0.18, p =

0.0537), which was consistent with epidemiological results (Melville

et al., 2010; Kim and Criner, 2013; Wshah et al., 2018). Second, the

estimate of a negative genetic correlation between knee OA and

forearm bone mineral density (rg � −0.31, s.e. = 0.20, p = 0.0934)

suggested that the same genetic factors influenced normal variation

in bonemineral density (BMD) regardless of OA patients or normal

people. This result agreed with the observation that BMD implicated

FIGURE 2
Enrichment analysis. Figure A is the KEGG pathway analysis for functional enrichment clustering analysis. Figure B is gene ontology (GO)
enrichment analysis.
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epigenetic marks (Stewart and Black, 2000; Hochberg et al., 2004;

Chan et al., 2014; Hardcastle et al., 2015). Third, we found a positive

genetic correlation between attention deficit hyperactivity disorder

(ADHD) and OA (rg � 0.214, s.e. = 0.118, p = 0.057). In a recent

study, ADHD was found to be associated with 14 autoimmune

diseases, including Crohn’s disease, diabetes, multiple sclerosis, and

rheumatoid arthritis (Li et al., 2019). We also estimated a negative

genetic correlation between multiple sclerosis (MS) and OA

(rg � −0.24, s.e. = 0.11, p = 0.129), which was consistent with

epidemiological evidence (Tseng et al., 2016). The comorbidity of

OAhas not been fully studied in autoimmune diseases andmay raise

the possibility of similarity between these autoimmune diseases. Last,

the estimate of a negative genetic correlation between OA and

Crohn’s disease (rg � −0.228, s.e. = 0.19, p = 0.035) is consistent

with arthritis as a presenting symptom of Crohn’s disease (Ergül

et al., 2012). The positive genetic correlation between age at

menarche and OA is consistent with previous epidemiological

reports (Hellevik et al., 2017) although it is not statistically

significant. We also identified two unpublicized associations

which required further analysis. First, we estimated a statistically

significant negative genetic correlation between OA and eczema

(rg � −0.325, s.e. = 0.19, p = 0.0654), suggesting a further

investigation. Second, we estimated a negative genetic correlation

between k43 ventral hernia and OA (rg � −0.427, s.e. = 0.24,

p = 0.54).

Causal relationship between known
clinical indicators and osteoarthritis

Pain and abnormal knee alignment are common

symptoms of OA. Figure 5A shows the estimated causal

FIGURE 3
The distribution of comorbidity in different OA severity.

TABLE 1 The lead SNPs at independent loci reaching p≤ 10−8 at multi-trails.

SNP rg −log10(p) KL Stiffness Pain BMI Alignment

SNP4-57072329 0.129 10.164 −0.226 1.474 −1.851 −0.055 0.072

SNP4-57033235 0.129 10.163 −0.226 1.474 −1.851 −0.054 0.072

SNP8-71393927 0.128 10.077 −0.579 1.688 −0.932 −0.172 −0.270

SNP7-4485777 0.127 9.842 0.020 1.511 −1.123 −0.768 -0.140

SNP4-72371592 0.127 9.749 −0.212 −0.992 1.495 0.571 0.333

SNP7-4482664 0.125 9.505 −0.039 −1.480 1.104 0.792 0.148

rs4500015 0.117 8.127 −0.340 1.873 −1.215 −0.224 −0.146
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associations of clinical indicators (pain, knee alignment) with

OA based on Mendelian randomization (MR). The effects of

SNP on pain and OA are shown in Figure 5B. There is no

causal relationship between pain and risk of knee OA since the

slopes of all MR lines were close to 0. In Figure 5C, 4 MR

methods, including IVW, simple mode, weighted mode, and

weighted median, identified a role for knee alignment in OA

risk. Having alignment of more than 5 degrees (in either

direction) in both knees at baseline was associated with

significantly greater functional deterioration during the

18 months than having alignment of 5 degrees or less in

both knees (Sharma et al., 2001b). Figure 5D listed significant

SNPs linking knee alignment level and OA.

Sex-specific genes at identified loci

We conducted an association analysis to estimate the

contribution of the chromosome X to OA generic variance.

One significant locus rs2305570 was identified to be

significantly associated with OA. The different genotypes of

this SNP also perform differently on the total area of

subchondral bone, and medial bone mineral density (BMD),

indicating this locus may be related to the bone area and medial

BMD (Figure 6). SNP rs2305570 is in the coding region of

KIAA1210 (ENST00000402510.2) and introduces a non-

synonymous mutation. SNPs that occur in protein-coding

regions, especially non-synonymous SNPs (nsSNPs), can

change the amino acid encoding the mutation site and may

result in the amino acid variants in proteins (Yates and Sternberg,

2013), leading to structural and functional changes in protein

structures. An important paralog of KIAA1210 is SPOCK1

(SPARC/Osteonectin). SPOCK1 is a positive downstream

regulator of transforming growth factor-β (TGF-β) (Sun et al.,

2020). The TGF-β signaling pathway is critical for maintaining

homeostasis in OA-affected joints (van der Kraan, 2018). Based

on protein-protein interactions (PPI), TXLNG is highly

associated with KIAA1210. TXLNG is found with the ability

to regulate bone mass accrual in mouse protein from UniProtKB

by inhibiting activating transcription factor 4-mediated

transcription.

Discussion

Studies have shown that women are more likely to have OA

than men (Hame and Alexander, 2013; Tschon et al., 2021;

Srikanth et al., 2005; O’Connor, 2006). In general, among

people over 60 years old, approximately 10% of men and 13%

of women have symptomatic knee OA (Zhang et al., 2010). We

FIGURE 4
Genetic correlation between OA and 23 highly correlated disease traits. The square color corresponds to rg. A positive genetic association is
shown in blue, whereas a negative genetic correlation is represented by red. The p-value is proportional to the size of the colored squares, with larger
squares representing a lower p-value. Asterisks indicate genetic associations that differ from 0 at P < 0.05.
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identified a novel susceptibility locus at rs2305570 located within

the exons of the KIAA1210 gene. KIAA1210 is crucial in

regulating bone mass density through an ATF4-dependent

pathway. Alteration in KIAA1210 is found to be associated

with maintaining homeostasis in joints affected by osteoarthritis.

We also noticed age at menarche was negatively correlated

with OA. In other words, the increasing age at menarche reduced

the risk of OA. This is also in line with previous clinical trials in

which women who started menstruating before age 11 had a

9–15% higher risk of knee replacement surgery as they got older

(Bayliss et al., 2017). This may link androgens to knee OA and

explain why women are more likely to have OA than men.

Therefore, hormone therapy may improve symptoms of

knee OA.

We found heart disease and stroke were the two most

significant comorbidities genetically related to OA. A previous

meta-analysis confirmed a strong (Wang et al., 2016) genetic

correlation between OA and heart disease. Obesity is a major

contributor to OA and heart disease. Obesity puts extra stress on

both the joints and heart, which can cause damage over time.

Aging is the major contributor to both OA and stroke. In

addition, we found several significant positive and negative

genetic correlations between OA and 4 common diseases

(emphysema/chronic bronchitis, Crohn’s disease, eczema, and

arthrosis of hip), showing that these features may play a role in

the genetic etiology of OA. Aside from that, we discovered that

knee OA was genetically positively correlated to a long smoking

history as it was tied to lifestyle and environment.

We tested whether structural changes and clinical indicators

have causal effects on OA. Our results indicate that pain and

sometimes stiffness are not causal factors for OA, but abnormal

knee alignment is a significant risk factor. By considering the

multiple phenotypes together, this method increased statistical

power for some SNPs than the univariate tests separately

(Cichonska et al., 2016). This joint analysis of the genetic and

imaging/clinical features provides an opportunity to uncover the

genetic variants of OA development, including genetic factors

that are related to OA mechanism. As a result, we have identified

seven significant loci significantly associated with OA and its

common symptoms (See Table 1).

FIGURE 5
Mendelian Randomization. (A) illustrates the estimation of MR. In (B), the x-axis represents the effect of SNPs on pain level and the y-axis is the
effect of SNPs on OA. The slope is the estimated causal effect. In (C), the x-axis represents the effect of SNPs on abnormal knee alignment levels and
the y-axis is the effect of SNPs on OA. (D) listed significant SNPs linking knee alignment level and OA. Each dot represents a SNP, and the line
represents the 95% confidence interval.
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Although OA is not considered a traditional inflammatory

disease, both pathway analysis and GO enrichment terms are

shown that immune responses are tightly related to OA. A

significant correlation is detected between OA and Crohn’s

disease (see Figure 4), which is a common disease of

inflammation. These results are generally consistent that OA

does involve inflammation. There are several limitations to our

study.We excluded rare SNPs with allele frequencies below 1%. This

limited our power to detect lower-frequency variants. In addition,

this study focused on the genetic correlation between OA and its

comorbidities in Caucasians and the results may not be applicable

for other sub-populations. Additional samples will be needed for

further meta-analysis. Meanwhile, due to genetic confounding, the

interpretation of genetic correlation and MR were challenging. For

example, in Figure 4, OA was statistically genetically related to

multiple inflammation diseases. This could result from a direct

causal effect of inflammation → OA could also be caused by an

unknown confounder such as inflammation←G→OA, where G is

the set of genetic variants with effects on both inflammation andOA.

In summary, we performed GWAS for radiographic knee OA, its

comorbidities, and common clinical measurements. We also

investigated the genetic correlations and causal effects.

Furthermore, we also extended our association analysis of OA to

the chromosome X.
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