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Abstract

Bacterial cell wall components have been previously used as infection biomarkers detectable by antibodies. However, it is
possible that the surface of the Mycobacterium tuberculosis (M. tb), the causative agent of tuberculosis (TB), also possesses
molecules which might be non-antigenic. This makes the probing of biomarkers on the surface of M. tb cell wall difficult
using antibodies. Here we demonstrate the use of phage display technology to identify peptides that bind to mycobacteria.
We identified these clones using both random clone picking and high throughput sequencing. We demonstrate that
random clone picking does not necessarily identify highly enriched clones. We further showed that the clone displaying the
CPLHARLPC peptide which was identified by Illumina sequencing as the most enriched, binds better to mycobacteria than
three clones selected by random picking. Using surface plasmon resonance, we showed that chemically synthesised
CPLHARLPC peptide binds to a 15 KDa peptide from M.tb H37Rv whole cell lysates. These observations demonstrate that
phage display technology combined with high-throughput sequencing is a powerful tool to identify peptides that can be
used for investigating potential non-antigenic biomarkers for TB and other bacterial infections.

Citation: Ngubane NAC, Gresh L, Ioerger TR, Sacchettini JC, Zhang YJ, et al. (2013) High-Throughput Sequencing Enhanced Phage Display Identifies Peptides
That Bind Mycobacteria. PLoS ONE 8(11): e77844. doi:10.1371/journal.pone.0077844

Editor: Richard C. Willson, University of Houston, United States of America

Received June 3, 2013; Accepted September 4, 2013; Published November 12, 2013

Copyright: � 2013 Ngubane et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by the South African Department of Science and Technology (www.dst.gov.za) and the Technology Innovation Agency (www.
tia.org.za). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: Mkhati@csir.co.za

Introduction

TB remains a significant problem worldwide, despite the

widespread availability of effective antibiotics against drug

sensitive M. tb strains. The World Health Organisation (WHO)

estimates that in 2011, there were between 0.8 and 1.1 million

deaths of HIV negative people globally, that resulted from TB [1].

Lack of rapid and accurate diagnostic tools limits the control of

TB.

The absence of sensitive and specific TB detection reagents and

a poor pipeline in biomarker identification significantly limits

improvements in our ability to diagnose TB. One of the most

desirable characteristics of a TB biomarker is its ability to

differentiate patients with active disease from those with latent TB

infection [2]. This may be best achieved by targeting a pathogen-

associated biomarker as current immunological biomarkers are

limited in their application: they are mainly used to detect latent

infection and their specificity can be as low as 42% in high

epidemic countries [3]. Thus far, the only available pathogen-

associated tests that are used on sputum samples are smear

microscopy [4,5], culture [6], and nucleic acid amplification tests

[7,8]. In the case of extrapulmonary TB, or in paediatric and

immunocompromised patients, where individuals would have

difficulty producing a sputum sample, tests that probe for

biomarkers that can be detected in samples other than sputum

are critical. Currently, these include assays that detects lipoar-

abinomannan (LAM) [9,10] in urine, the volatile organic

compounds breath test [11,12], and whole blood culture [13,14].

However, these tests have varying limitations which include low

sensitivity, low specificity or poor cost-effectiveness. Therefore, it is

critical that new biomarkers are identified to improve diagnosis of

TB.

We hypothesize that numerous cell wall associated components

are shed by the mycobacterium during infection. These might

possibly be detected in patient samples such as sputum, serum and

urine, if their suitable probing reagents were available. Antibodies,

which are the conventional reagents used for biomarker probing

or pull-down are limited, because by definition they can only

identify antigenic components. Thus, we employed phage display

technology to identify peptides that can bind surface components

of mycobacteria, regardless of their antigenicity.

Indeed, panning of phage display libraries has successfully

identified peptides that bind intact bacteria [15] and viruses [16].

The technology involves the display of a random peptide sequence

appended to a recombinant viral protein on the surface of a

bacteriophage [17]. The typical selection, named biopanning,

involves exposure of the unselected library to the target, and

removal of unbound phages. The bound phages are then eluted

PLOS ONE | www.plosone.org 1 November 2013 | Volume 8 | Issue 11 | e77844



and amplified by infection of host bacteria under selective

pressure.

One of the challenging steps in the use of phage display

technology is the identification of the most promising candidates at

the end of the biopanning experiment. The random clone-picking

method is traditionally used to sequence and identify displayed

peptide clones that were enriched during biopanning. Depending

on the sequence diversity at the end of the selection, this method

may not necessarily identify the highly selected clones. However,

high-throughput (HTP) sequencing has made possible the

sequencing of millions of inserts allowing for a higher resolution

of the selected pool of the displayed peptides [18,19].

In this study, we used HTP sequencing to identify enriched

peptide sequences from the biopanning experiment against M. tb.

We employed a library that displays random 7-mer peptides

(CX7C) at the tip of the pIII minor coat protein. The displayed

peptides are flanked by two cysteine residues, which are oxidized

during phage assembly to a disulfide bond, resulting in a loop

constrained peptide. We initially used the traditional clone picking

method to identify the enriched clones. This was followed by

analyzing several rounds of selection through HTP sequencing.

Surprisingly, we found that HTP sequencing not only revealed the

dynamics of the selection but also identified the most abundant

phage clone that was missed by the traditional clone picking

method.

Materials and Methods

Bacterial strains and growth conditions
The bacterial strains used in the study were M. tb H37Rv, M. tb

DleucineD and DpanthothenateCD double auxotroph (Dleu/

Dpan), M. smegmatis mc2, M. bovis BCG and the E. coli ER2738

strain for phage amplification.

Mycobacteria were grown on Middlebrook 7H9 media (Sigma,

St. Louis, MO) supplemented with the Middlebrook oleic albumin

dextrose catalase (OADC) (bovine albumin fraction V 5 g/l,

dextrose 2 g/l, catalase 0.004 g/l, oleic acid 0.05 g/l, sodium

chloride 0.85 g/l) (Sigma, St. Louis, MO). The 7H9 media was

further supplemented with both leucine (50 mg/ml) and pantothe-

nate (24 mg/ml) as previously described [20]. For further use

mycobacteria were centrifuged at 8000 rpm and resuspended in

carbonate buffer (35 mM NaHCO3, 15 mM Na2CO3 [pH 9.8]).

The E. coli ER2738 strain was grown in Luria-Bertani (LB)

medium for amplification of phage. For the plating of the phage

isopropyl b-D-thiogalactopyranoside (IPTG; 1 mM final concen-

tration) and 5-bromo-4-chloro-3-indolyl-b-D-galactopyranoside

(X-Gal; 60 mM final concentration) were added to LB agar plates

before plating. All bacterial cultures were grown at 37uC with

agitation.

Immobilization of the target mycobacteria
Mycobacteria suspensions were prepared in carbonate buffer

(35 mM NaHCO3, 15 mM Na2CO3 [pH 9.8]) and adjusted to an

optical density of 1.0 at 660 nm, corresponding to approximately

108 CFU per ml [15]. Maxisorp surface microtiter plate (Nunc,

Roskilde, Denmark) wells were filled with 200 ml of bacterial

suspension and incubated overnight at 4uC. Wells were blocked

overnight at 4uC with gelatin (0.5%) supplemented supernatant of

an E. coli strain ER2738 infected with the whole phage library

[15].

Selection of phage displayed peptides-biopanning
Selection of peptides from a CX7C library was carried out as

previously described [21]. In the first round of panning, 10 ml of

the library (,261011 phages) was diluted to 100 ml with phosphate

buffered saline supplemented with 0.1% Tween-20 (PBST)

(0.01 M phosphate buffer, 0.0027 M potassium chloride and

0.137 M sodium chloride, pH 7.4, 0.1% tween) and incubated in

bacterial-coated wells for 1 h at room temperature with gentle

agitation. Nonbinding phages were then discarded as described by

[21]. In brief, the wells were washed 25 times with PBST followed

by four washes with the low pH elution buffer (0.2 M glycine-HCl,

pH 2.2). Finally, the elution of the bound phage was carried out

using 100 ml the low-pH elution buffer and sonicated in a

sonicator water bath (50 kHz) for 10 minutes. The eluent was then

neutralised with 15 ml of 1 M Tris-HCl, pH 9. In the following

rounds of biopanning an average of 261011 plaque-forming units

(PFU) was used. Five rounds of biopanning were performed. The

first three rounds were targeted against M. tb (Dleu/Dpan),

followed by a subtraction round against M. smegmatis. The fifth

round of positive selection was against the targeted M. tb (Dleu/

Dpan). After the final round of biopanning, single clones were

picked and the random region sequenced using the 296M13gIII

primer (59-CCC TCA TAG TTA GCG TAA CG-39). The

unselected library, round 3, round 4 and round 5 phage pools;

were also subjected to high throughput (HTP) Illumina sequenc-

ing.

Phage Amplification
Eluates were amplified according to manufacturer’s instructions

(New England Biolabs, Beverly, Massachusetts). The phage eluates

were used to infect E. coli ER2738 host cells. After 4.5 h of growth

at 37uC, bacteria were removed by centrifugation and phages in

the supernatant were precipitated by adding one-sixth volume of

20% polyethylene glycol-8000 and 2.5 M NaCl overnight at 4uC.

The precipitate was resuspended in 100 ml of PBS, and amplified

eluates were titered to determine phage concentration.

Phage ELISA
Microtiter plate wells were coated with 100 ml of mycobacteria

suspension, with an optical density of 1.0 at 660 nm in carbonate

buffer (35 mM NaHCO3, 15 mM Na2CO3 [pH 9.8]), and

incubated overnight at 4uC. Plates were blocked overnight at

4uC with 200 ml of the gelatin (0.5%)-supplemented supernatant of

an E. coli strain ER2738 F9 culture infected with the whole phage

library. A separate set of wells were blocked with blocking buffer

without previous mycobacteria immobilization as negative con-

trols (no target control). One hundred microliters of each selected

amplified phage clone in PBS was transferred to coated wells.

Plates were incubated for 1.5 h at room temperature. Wells were

then washed six times with PBST. Horseradish peroxidise (HRP)-

labelled mouse anti-M13 monoclonal antibody (GE Healthcare

UK Ltd, Buckinghamshire, England) was diluted in PBS (1:5,000).

Two hundred microliters of the antibody was added per well and

incubated for 1 h at room temperature. This was followed by

washing the wells six times with PBST. One hundred and fifty

microliters of substrate solution (2,29-azino-di-[3-ethylbenzthiazo-

line sulfonate diammonium salt) (Thermo Scientific, Waltham,

Massachusetts) was added and incubated for 30 min at 37uC. The

reaction was stopped with 100 ml of 1% SDS. Absorbance was

determined using a microtiter plate reader at the wavelength of

405 nm.

Phage DNA preparation and sequencing
The amplification of the displayed peptides was performed with

PCR using primers spanning the variable region in the gp3 phage

coat protein (Table S1). The primers used for amplification

contained homology required for annealing to the Illumina

Phage Display Peptides That Bind Mycobacteria
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sequencing flowcell with the forward primer containing a five-

nucleotide barcode to enable multiplexing. This enabled ampli-

cons to be directly sequenced on an Illumina Genome Analyzer II

as previously described [22]. The PCR reaction mix consisted of

0.5 mM of each primer, and 5 U of the GoTaqH DNA polymerase

mix (Promega, Fitchburg, Winsconsin) in a 100 ml final volume.

Whole phage PCR (denaturation at 95uC for 1 minute, annealing

at 55uC for 2 minutes and extension at 72uC for 1 minute and

30 seconds) was performed as previously described [23]. Cycles

varied from 10 to 25, and the number of reaction tubes varied

from 2 to 5, according to the amount of amplicon available for

each sample. Resulting amplicons (0.45–0.85 mg) were directly

sequenced using the Illumina Genome Analyzer II. The nucleotide

sequence of the amplified region of the gp3 gene was reconstructed

by aligning and combining the two paired-end reads. The 36 bp

variable region was extracted by trimming off constant bases and

was translated into amino acid sequences of length 12 using the

Illumina GA Pipeline software, which were then clustered for

statistical analysis.

Peptide Synthesis
Both peptides (Biotin-ACPLHARLPCG and its scrambled

derivative Biotin-ACHLRPPLACG) were synthesised by GL

Biochem (Shanghai, China), with the C-C disulphide bridge.

The peptides were supplied as a powder with purity above 85%.

Surface plasmon resonance (biosensor) analysis
A BiacoreTM 3000 instrument (GE Healthcare UK Ltd,

Buckinghamshire, England) was used. Instrument temperature

was set to 25uC and HBS-N (10 mM Hepes and. 150 mM NaCl,

pH 7.4) was used as running buffer. 50 mg/ml of streptavidin in

sodium acetate buffer pH4.5, was immobilised by amine coupling

on the CM5 sensor chip (GE Healthcare UK Ltd, Buckingham-

shire, England). Immobilisation was performed at a flow rate of

10 ml/min for 7 min. The biotinylated peptides were captured

using the previously immobilised streptavidin. A total of 60 ml of

100 mg/ml biotinylated-peptide in PBS (sample flow cell) was

loaded onto the chip at the flow rate of 10 ml/min. No prior

streptavidin or peptide was immobilised on the negative control

flow cell. Binding of M. tb H37Rv whole cell lysate to the

biotinylated peptide was then analysed by diluting the lysate in

HBS-N buffer (10 mM Hepes and 150 mM NaCl, pH 7.4) and

passing it over the chip at 10 ml/min. The M. tb H37Rv whole cell

lysate binding was analysed at 100 and 500 mg/ml of total protein

concentrations. While the unrelated bacteria whole cell lysates

were analysed at 100 mg/ml of total protein concentration.

Protease digestion of M. tuberculosis H37Rv lysate
M. tuberculosis H37Rv whole cell lysate was treated with 1 mg/

ml Pronase E (Sigma, St. Louis, Missouri) for 2 hours. The

protease digestion reaction was inactivated by heating at 90uC for

20 minutes. The negative control reaction was treated in a similar

manner in the absence of Pronase E.

Results

Selection of phage displayed peptides binding to intact
M. tb

In order to identify phage displayed peptides that could bind to

intact M.tb, a constrained 7-mer (CX7C) phage library was used

for panning on immobilised DleucineD and Dpanthothenate CD

double auxotroph (Dleu/Dpan) strain of M. tb. This non-

pathogenic M. tb strain was used as a model target because it is

easy to manipulate, as it can be grown outside a biosafety level 3

laboratory. Three positive rounds of panning were performed

against the targeted M. tb Dleu/Dpan strain (Figure 1). In order to

remove peptides binding to cell wall components common to the

mycobacterium genus, a subtraction round (round 4) was

performed against M. smegmatis, which is a related mycobacterium.

A final positive panning round (round 5) was performed to enrich

for peptides that are specific to M. tb (Figure 1). The binding signal

of the selected phage pool after five rounds of panning was

significantly (p,0.05) higher when compared to that of the

unselected library (Figure 2). This data suggests successful

enrichment of clones that bind to mycobacteria.

Characterisation of the enrichment process
In order to evaluate the trend of enrichment during biopanning,

we performed HTP sequencing on the library before selection and

after three, four and five rounds of biopanning. We obtained

approximately 1.5 million sequencing reads for each phage display

selection round, representing 1.366106 unique peptides from the

unselected library (Figure 3A). While this fell short of the

theoretical complexity of the library, 1.236109 heptapeptides, it

represented sufficient depth to measure the quantitative enrich-

ment of relevant peptides. To confirm successful enrichment

during selection, we characterized the reduction in diversity of the

pool in the consecutive rounds of panning. The overall diversity

decreased (Figure 3A) while the frequency of the highly enriched

peptides increased (Figure 3B). To illustrate, the number of unique

sequences decreased from 1,361,688 in the unselected library to

5665 after the final round of panning (Figure 3A). This suggests

that there was enrichment during the panning experiments.

Concurrently, the frequency of the most abundant peptide

(corresponding to phage 1) increased from 0.48% to 81.15% in

round three (Figure 3B), indicating that this peptide was highly

selected for in as early as the third round of selection.

Identification of highly selected phage clones
Ten plaques were selected using the traditional random cloning

picking from the final round of biopanning, and were sequenced.

Sequencing data of four of these plaques were ambiguous. Three

unique sequences were obtained from the six remaining randomly

selected plaques (Table 1). Two clones, phage 2 and phage 3, were

represented more than once (Table 1). HTP sequencing, however,

described a different quantitative landscape. We calculated the

enrichment of every sequenced peptide by performing a Pearson

Chi-squared test, comparing the selected pools to the input library

(Figure 3C). While the proportion of multiple peptides increased in

the selected libraries, a single phage clone displaying the peptide

CPLHARLPC, dominated the selected libraries and was especially

enriched during selection (p-value,102500). Surprisingly, this

clone was not identified using random clone picking (Table 1).

Nonetheless there is still some degree of correlation between the

peptide sequences that were identified by traditional clone picking

and the top five sequences identified using high-throughput

sequencing. That is, all three unique sequences identified during

random clone picking were in the top five of the most abundant

peptides identified by high-throughput sequencing. Moreover,

since the most abundant peptide had a frequency of more than

80% after the first three rounds of selection, this means that with

the current sequencing depth, further rounds of selection will less

likely have lead to the identification of peptides that could not be

found in the current available sequencing data.

To establish whether the selected peptides were not binding to

non-targeted substrates and other components used during the

biopanning process like BSA, we used the web-based server called

Scanner and Reporter Of Target-Unrelated Peptides (SAR-

Phage Display Peptides That Bind Mycobacteria
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OTUP), which can identify non target specific peptides [24]. None

of the four sequences selected were identified as nonspecific

binders to the commons reagents used during selection. However,

phage 1 has recently been isolated and characterised as binding to

the IV.C102 H1N1 monoclonal antibody and the swine-origin

influenza virus A sera [25] (Table 1).

Binding characterisation of the selected recombinant
phages to M. tb

Binding of the selected phage clones was investigated on

immobilised M. tb (Dleu/Dpan) strain (Figure 4B). We further

evaluated the effectiveness of the subtraction round, by

comparing the binding of the selected phages to M. tb (Dleu/

Dpan) strain to that of M. smegmatis (Figure 4C) which was

targeted during the subtraction round. For each amplified clone,

1011 PFU were used in the phage ELISA. Our results showed

that phage 1 which was identified using HTP sequencing and

one out of the three phages identified by random cloning, phage

4, had significantly (p,0.05) higher binding to M. tb as

compared to the unselected library (Figure 3B). Interestingly,

phage 1 and phage 4, in addition to significantly binding to

intact M. tb, also showed significant (p,0.01) binding to M.

smegmatis (Figure 4C). However, phage 2 and 3 which were

respectively identified using random clone picking showed no

significant binding to both M. tb and M. smegmatis as compared

to the unselected library (Figure 4B–C).

Figure 1. Schematic outline of the bio-panning procedure. Three rounds of biopanning were performed against the DleucineD and
DpanthothenateCD double auxotroph (Dleu/Dpan) strain of M. tb. After the third round of panning, eluted phages were subjected to a subtraction
round against M. smegmatis (round 4). Round 5 was performed against the target (Dleu/Dpan) M. tb. DNA from phages eluted at the end of the fifth
round was sequenced and the corresponding peptide sequences were analysed.
doi:10.1371/journal.pone.0077844.g001

Figure 2. Binding of the phage eluates to mycobacteria
species. Comparison of the binding signal of the unselected phage
library to M. tb (Dleu/Dpan) and M. smegmatis to that of the phage
population from the final round of biopanning (Round 5) to the same
species.
doi:10.1371/journal.pone.0077844.g002

Phage Display Peptides That Bind Mycobacteria
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Figure 3. Sequence enrichment profiles after high-throughput sequencing of the phage displayed libraries using Illumina
technology. (A) Number of unique peptides observed in the different rounds of biopanning (B) Frequency of the selected peptides at each round of
biopanning (C) Manhattan plot showing peptide sequence enrichment (GWAS) results for round 3 and 5 of biopanning.
doi:10.1371/journal.pone.0077844.g003

Table 1. Summary of selected phage clones.

Phage Clone
number Percentage representation in the sequenced population

Phage displayed
peptide sequence

SAROTUP: Target Unrelated
Peptide scanner Results

Random picking Method HTP sequencing reads at round 5

Total number
of sequences

Percentage
representation
of clone

Total number of
sequence reads

Percentage
representation
of clone

n % n %

1a,{ 6 0 1 655 954 82.49 CPLHARLPC Anti-influenza A H1N1
monoclonal antibody IV.C102
and SIV sera from patients
(Zhang et al., 2011)

2a,b 6 16.67 1 655 954 0.81 CHYDGARAC None found

3a,b 6 33.33 1 655 954 0.92 CDHGYLPSC None found

3a,b 6 50.00 1 655 954 5.05 CFDTRSLVC None found

aClones identified in the top ten highly enriched sequenced by HTP sequencing.
bClones identified through random sequencing.
{The highest enriched clone at round 5, as identified by HTP sequencing.
doi:10.1371/journal.pone.0077844.t001
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Binding characterisation of the highly enriched, HTP
sequencing identified Phage 1

The highly enriched recombinant phage 1 was further

investigated on its ability to bind the pathogenic strain of M. tb

H37Rv, using ELISA. To evaluate whether the selected phage

could discriminate between bacteria from the same genus of

mycobacterium, we further characterised its binding specificity

by comparing its binding to M. tb and to other mycobacterium

species namely, M. smegmatis, M. bovis BCG and the M. tb

(Dleu/Dpan) strain. Our results show that phage 1 consistently

bound to all the three mycobacterium species tested, which

included two strains of M. tb, with a binding signal that was at

least twice as high when compared to the phage library which

was used as a control (Figure 5A–D). These results were

consistent when tested using two different phage inputs of

561011 and 161012 PFU. This phage showed no significant

difference in binding the pathogenic strain M. tb H37Rv, M. tb

(Dleu/Dpan) or M. smegmatis. Notably, there was a significantly

(p,0.01) higher binding signal to BCG as compared to M. tb

H37Rv.

Binding of the synthetic peptide displayed by phage 1 to
M. tb H37Rv lysate

In order to test whether the highly enriched displayed peptide

can bind its ligand when it is not displayed by the carrier phage,

the peptide CPLHARLPC (phage1-synpeptide) and its scrambled

derivative CHLRPPLAC (phage1-synpeptide-Sc) were synthesised

with a biotinylation modification. The binding of the synthesised

peptides to the whole cell lysate from M. tb H37Rv was evaluated

using the biacore SPR technology. Biotinylated peptides were

immobilized on a streptavidin sensor chip (Figure 6A) and whole

cell lysates were injected at different concentrations of total

protein. When evaluating the binding of the synthesized peptides

to different concentrations of M. tb whole cell lysate, we found that

there was a 25% increase in binding signal of phage1-synpeptide

when the total protein concentration of the lysate was increased by

Figure 4. Binding of the selected phage clones to mycobacteria species. (A) M. tb (Dleu/Dpan), (B) M. smegmatis. A two-tailed, unpaired t-
test was used to analyse significance (**p,0.01 and *p,0.05). Error bars represent standard deviations of the arithmetic means of the normalised
optical densities at 405 nm performed in triplicates.
doi:10.1371/journal.pone.0077844.g004

Phage Display Peptides That Bind Mycobacteria
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5 fold from 100 mg/ml to 500 mg/ml. In contrast, there was no

notable difference in the binding signal of the scrambled

derivative between the two concentrations (Figure 6B). This

data suggests that, Phage1-synpeptide binds more strongly to

H37Rv whole cell lysate than its scrambled derivative. To

further evaluate specificity of the selected peptides, we measured

their binding signal to whole cell lysates from unrelated bacteria.

All bacteria strains tested which included both Gram negative

and Gram positive bacteria that are potential upper respiratory

pathogens and an E. coli strain used for the amplification of

phage during biopanning, had binding signal similar to that of

the negative control, which had no prior peptide immobilisation

(Figure 6C–F). This data is indicative of the specificity of the

selected peptide to binding mycobacteria.

Characterisation of the mycobacteria cell wall associated
binding partner for Phage1 synthetic peptide (phage1-
synpeptide)

To determine if the mycobacteria target of phage 1 displayed

peptide is a protein, we tested its binding to protease-treated M.

tuberculosis whole cell lysate. Our results showed that the binding of

phage1-synpeptide to M. tuberculosis whole cell lysate is abrogated

after the lysate has been incubated for 2 hrs with Protenase E

(Figure 7). This data suggests that phage1-synpeptide binding

partner is likely to be of a peptide or protein nature.

In order to validate that mycobacteria protein interacts with the

phage 1 displayed peptide, we performed a pull down assay from

M. tuberculosis H37Rv whole cell lysate using phage1-synpeptide as

a capture peptide. The scrambled derivative, phage1-synpeptide-

Sc, and the streptavidin beads without prior immobilisation of the

phage 1 peptide were used as negative controls. A protein of

approximately 15 kDa in size was pulled down from M. tuberculosis

whole cell lysate by phage1-synpeptide and was not detectable on

the PAGE gel using Coomassie staining on both negative control

experiments (Figure 8). The absence of the pulled down peptide

when phage1-synpeptide-Sc (Figure 8) was used as capture

molecule, is indicative of the specific nature of the interaction

between the phage 1 displayed peptide and its mycobacteria

binding partner.

Discussion

In this study, we applied phage display technology with the aim

of searching for peptide ligands that bind to M. tb, and can be later

developed to probe for potential biomarkers in patients’ clinical

samples. We evaluated four phage clones that were identified from

the panning of a loop-constrained heptapeptide (CX7C) library

against M. tb. Both HTP sequencing and random clone picking

revealed multiple peptides that were enriched during selection.

However, only with HTP sequencing were we able to calculate

quantitative measures of enrichment, which allowed us to compare

Figure 5. Characterisation of the Phage 1 clone identified using HTP Illumina sequencing. Phage 1 was amplified and 561011,
161012phages (x-axis) were used for a plate binding assay with (A) M. tb H37Rv, (B) (Dleu/Dpan) M. tb, (C) BCG and (D) M. smegmatis as solid-phase
antigens. The unselected library was used as a control. A two-tailed, unpaired t-test was used to analyse significance (**p,0.01). Error bars represent
standard deviations of the arithmetic means of the normalised optical densities at 405 nm performed in triplicates.
doi:10.1371/journal.pone.0077844.g005
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and to rank our multiple hits. We found that our most enriched

peptide which was identified only by HTP sequencing had the

highest binding signal to Mtb when compared to all of the

randomly selected clones and the unselected library. A single

phage clone, phage 1, displaying the peptide CPLHARLPC, was

significantly enriched during the selection. Interestingly, the

traditional random clone picking method failed to identify this

clone, despite the fact that HTP sequencing showed that this clone

represented over 80% of the sequenced population after the first

three rounds of selection (Figure 3B). This result is in agreement

with earlier findings showing that when comparing HTP

sequencing to the traditional clone picking method, HTP

sequencing accelerates the discovery of specific binders [19]. This

earlier independent study supports our finding by demonstrating

the high correlation between abundances in the first round and

subsequent rounds of selection, clearly showing that HTP

sequencing could identify the highly enriched clones without the

need of additional selection rounds [19]. The higher resolution of

the selection pools enabled by HTP sequencing also allowed us to

characterize the enrichment process. Firstly, by demonstrating the

reduction in the number of unique peptides during biopanning

(Figure 3A), which is indicative of the enrichment of a subset of

phages. Secondly, by revealing that phage 1 was significantly

enriched to 80% of the sequenced population as early as round 3

(Figure 3B). Attaining this kind of quantitative data would not be

possible using random clone picking, since this method is limited

by the number of clones that can be analyzed. This means that it

will be improbable to achieve the sequencing depth similar to that

of HTP sequencing, making it more difficult to evaluate the degree

of enrichment of the selected clones.

Figure 6. Biacore sensograms showing the association of bacteria whole cell lysates with immobilized synthetic peptides. (A) Phage1
synthetic peptide (phage1-synpeptide) and scrambled peptide (phage1-synpeptide-Sc) were captured with the covalently bound streptavidin on the
CM5 chip. (B) Whole cell lysates of M. tb H37Rv with a total protein concentration of 100 mg/ml and 500 mg/ml were injected over the immobilised
peptides. To evaluated specificity whole cell lysates with a total protein concentration of 100 mg/ml from unrelated bacteria, (C) Escherichia coli
ER2738 (D) Corynebacterium xerosis (E) Streptococcus pyogenes (F) Staphylococcus aureus, were injected over the immobilised peptides. Changes in
surface plasmon resonance were monitored in real time and are shown in response units.
doi:10.1371/journal.pone.0077844.g006
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When we further characterized the binding specificity of phage

1 to pathogenic M. tb H37Rv, it was interesting to note that there

was no significant difference in the binding to all mycobacterium

species tested, with the exception of BCG which had a significantly

(p,0.01) higher binding signal. This data suggests that the phage 1

binds to a molecule conserved across the three mycobacterium

species.

A phage displaying the same peptide, CPLHARLPC, has

recently been isolated and characterized as binding to the

IV.C102 H1N1 monoclonal antibody and the swine-origin

influenza virus A sera [25]. This monoclonal antibody has

previously been demonstrated to bind to the type A H1N1

influenza strain epitopic peptide localized in residues 207–225 of

the hemagglutinin HA1 subunit [26]. However, there is no

sequence similarity between the IV.C102 monoclonal antibody

epitope (AIYHTENAYVSVVSSHYNR) on the hemagglutinin

protein and the peptide displayed by phage 1. Luchesse and

colleagues (2009) further characterized that peptide AIYHTENA

is the minimal determinant epitopic region required for IV.C102

binding [27], which only has two amino acids in common,

histidine and alanine, to the phage 1 displayed peptide.

Nevertheless, the phage 1 displayed peptide contains five

hydrophobic amino acids (out of nine), and the minimal epitopic

peptide of the IV.C102 antibody also includes four hydrophobic

amino acids (out of the eight). This may suggest that the

interaction of this peptide with either the IV.C102 H1N1

monoclonal antibody or mycobacteria is most likely via hydro-

phobic interactions.

There are reagent similarities, like the plastic polystyrene

microtiter wells, between the biopanning experiments and an

ELISA. It is possible that these similarities could contribute falsely

to apparent binding as previously discussed by others [28]. This

necessitates the use of a different method that does not include

these materials, to further validate intended target binding.

Indeed, when the peptide displayed by phage 1 was evaluated

on surface plasmon resonance technology, the results showed that

this peptide is able to associate with the M. tb H37Rv whole cell

lysate while its scrambled counterpart exhibited minimal binding

(Figure 6B). The diminished binding of this peptide when it is

scrambled shows that the phage1-synthetic peptide sequence is

important for its specific interaction with mycobacteria. Further-

more, this peptide showed no binding (Figure 6C–F) to unrelated

Figure 7. Biacore sensograms showing the association of protease digested M. tb lysate with immobilized synthetic peptides.
Biotinylated phage1 synthetic peptide (phage1-synpeptide) and biotinylated phage 1 scrambled peptide (phage1-synpeptide-Sc) were captured with
covalently bound streptavidin on a CM5 chip. Protease-digested whole cell lysate of M. tuberculosis H37Rv with a total protein concentration of
100 mg/ml was injected over the immobilised peptides. (B) shows tha control experiment using the undigested M. tuberculosis H37Rv whole cell
lysate. Changes in surface plasmon resonance were monitored in real time and are shown in response units.
doi:10.1371/journal.pone.0077844.g007
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bacteria that were tested which is indicative of specificity to

mycobacteria.

Mycobacteria have multiple possible binding partners for the

phage 1 displayed peptide. These potential ligands vary in their

nature, ranging from cell wall proteins, glycans and free lipids

[29]. In this work, we have demonstrated that the highly enriched

phage 1 peptide binds to a mycobacterial protein of approximately

15 kDa in size. However, the identification of the target protein

requires further validation.

In conclusion, our findings show that phage display combined

with HTP sequencing is a useful tool for the identification of

specific peptides to mycobacteria. Our results also indicate that

peptide CPLHARLPC is a good candidate to probe for a potential

biomarker for TB infection. However, the lack of specific

mycobacterium strain markers remains a limiting factor in TB

biomarker development. Notwithstanding, this is a proof-of-

concept study showing that this approach could be used to

identify additional peptides with better specificity for M. tb.

Supporting Information

Table S1 Primer sequences used in PCR amplification
for generating Illumina sequencing templates.
(DOCX)

Acknowledgments

We thank Dr Stoyan Stochev (Council for Scientific and Industrial

Research, Biosciences Unit) for his help with the protein work and Dr

Hamilton Ganesan (Inqaba Biotechnology, Pretoria, South Africa) for his

help with Illumina sequencing data analysis.

Author Contributions

Conceived and designed the experiments: EJR AP NACN MK. Performed

the experiments: NACN TRI. Analyzed the data: EJR AP NACN TRI LG

YJZ JCS MK . Contributed reagents/materials/analysis tools: EJR AP

MK. Wrote the paper: NACN LG. Reviewed the manuscript: EJR AP

TRI YJZ JCS MK.

References

1. WHO (2012) WHO report 2012: Global Tuberculosis Control. Geneva: World

Health Organization.

2. Wallis RS, Wang C, Doherty TM, Onyebujoh P, Vahedi M, et al. (2010)

Biomarkers for tuberculosis disease activity, cure, and relapse. Lancet Infect Dis

10: 68–69.

3. Ling DI, Pai M, Davids V, Brunet L, Lenders L, et al. (2011) Are interferon-c
release assays useful for diagnosing active tuberculosis in a high-burden setting?

European Respiratory Journal 38: 649–656.

4. Steingart KR, Ng V, Henry M, Hopewell PC, Ramsay A, et al. (2006)

Sputum processing methods to improve the sensitivity of smear microscopy

for tuberculosis: a systematic review. Lancet Infect Dis 6: 664–

674.

5. Van Deun A, Salim AH, Cooreman E, Hossain MA, Rema A, et al. (2002)

Optimal tuberculosis case detection by direct sputum smear microscopy: how

much better is more? Int J Tuberc Lung Dis 6: 222–230.

6. Levy H, Feldman C, Sacho H, van der Meulen H, Kallenbach J, et al. (1989) A

reevaluation of sputum microscopy and culture in the diagnosis of pulmonary

tuberculosis. Chest 95: 1193–1197.

7. Davis JL, Huang L, Worodria W, Masur H, Cattamanchi A, et al. (2011)

Nucleic acid amplification tests for diagnosis of smear-negative TB in a high

HIV-prevalence setting: a prospective cohort study. PLoS One 6: e16321.

8. Ling DI, Flores LL, Riley LW, Pai M (2008) Commercial nucleic-acid

amplification tests for diagnosis of pulmonary tuberculosis in respiratory

specimens: meta-analysis and meta-regression. PLoS One 3: e1536.

9. Chan ED, Reves R, Belisle JT, Brennan PJ, Hahn WE (2000) Diagnosis of

tuberculosis by a visually detectable immunoassay for lipoarabinomannan.

Am J Respir Crit Care Med 161: 1713–1719.

10. Sada E, Aguilar D, Torres M, Herrera T (1992) Detection of lipoarabino-

mannan as a diagnostic test for tuberculosis. J Clin Microbiol 30: 2415–

2418.

Figure 8. SDS–PAGE showing proteins pulled down from M. tb H37Rv whole cell lysate. Coomassie stained 12% SDS–polyacrylamide
electrophoresis gel of proteins obtained from pull down experiments. Lane 1: molecular weight protein ladder. Lane 2: proteins pulled down from M.
tuberculosis H37Rv whole cell lysate by the streptavidin beads in the absence of phage1-synpeptide. Lanes 3: proteins pulled down from M.
tuberculosis H37Rv whole cell lysate by the streptavidin beads that had been pre-incubated with 0.5 mg of biotinylated phage1-synpeptide-Sc. Lane
4: proteins pulled down from M. tuberculosis H37Rv whole cell lysate by the streptavidin beads that had been pre-incubated with 0.5 mg of
biotinylated phage1-synpeptide. The dotted arrow indicates the possible bio-phage1-synpeptide binding protein from M. tuberculosis H37Rv.
doi:10.1371/journal.pone.0077844.g008

Phage Display Peptides That Bind Mycobacteria

PLOS ONE | www.plosone.org 10 November 2013 | Volume 8 | Issue 11 | e77844



11. Fend R, Kolk AH, Bessant C, Buijtels P, Klatser PR, et al. (2006) Prospects for

clinical application of electronic-nose technology to early detection of

Mycobacterium tuberculosis in culture and sputum. J Clin Microbiol 44:

2039–2045.

12. Phillips M, Cataneo RN, Condos R, Ring Erickson GA, Greenberg J, et al.

(2007) Volatile biomarkers of pulmonary tuberculosis in the breath. Tuberculosis

(Edinb) 87: 44–52.

13. Ravn P, Munk ME, Andersen AB, Lundgren B, Lundgren JD, et al. (2005)

Prospective evaluation of a whole-blood test using Mycobacterium tuberculosis-

specific antigens ESAT-6 and CFP-10 for diagnosis of active tuberculosis. Clin

Diagn Lab Immunol 12: 491–496.

14. Wallis RS, Palaci M, Vinhas S, Hise AG, Ribeiro FC, et al. (2001) A whole

blood bactericidal assay for tuberculosis. J Infect Dis 183: 1300–1303.

15. Stratmann J, Strommenger B, Stevenson K, Gerlach GF (2002) Development of

a peptide-mediated capture PCR for detection of Mycobacterium avium subsp.

paratuberculosis in milk. J Clin Microbiol 40: 4244–4250.

16. Chen YC, Delbrook K, Dealwis C, Mimms L, Mushahwar IK, et al. (1996)

Discontinuous epitopes of hepatitis B surface antigen derived from a filamentous

phage peptide library. Proc Natl Acad Sci U S A 93: 1997–2001.

17. Adda CG, Anders RF, Tilley L, Foley M (2002) Random sequence libraries

displayed on phage: identification of biologically important molecules. Comb

Chem High Throughput Screen 5: 1–14.

18. Dias-Neto E, Nunes DN, Giordano RJ, Sun J, Botz GH, et al. (2009) Next-

generation phage display: integrating and comparing available molecular tools to

enable cost-effective high-throughput analysis. PLoS One 4: e8338.

19. ’t Hoen PAC, Jirka SMG, ten Broeke BR, Schultes EA, Aguilera Ba, et al. (2011)

Phage display screening without repetitious selection rounds. Analytical
Biochemistry 421: 622.

20. Sampson SL, Dascher CC, Sambandamurthy VK, Russell RG, Jacobs WR Jr,

et al. (2004) Protection elicited by a double leucine and pantothenate auxotroph
of Mycobacterium tuberculosis in guinea pigs. Infect Immun 72: 3031–3037.

21. Lunder M, Bratkovic T, Urleb U, Kreft S, Strukelj B (2008) Ultrasound in phage
display: a new approach to nonspecific elution. Biotechniques 44: 893–900.

22. Griffin JE, Gawronski JD, Dejesus MA, Ioerger TR, Akerley BJ, et al. (2011)

High-resolution phenotypic profiling defines genes essential for mycobacterial
growth and cholesterol catabolism. PLoS Pathog 7: e1002251.

23. Kingsbury GA, Junghans RP (1995) Screening of phage display immunoglobulin
libraries by anti-M13 ELISA and whole phage PCR. Nucleic Acids Res 23:

2563–2564.
24. Huang J, Ru B, Li S, Lin H, Guo FB (2010) SAROTUP: scanner and reporter of

target-unrelated peptides. J Biomed Biotechnol 2010: 101932.

25. Zhong Y, Cai J, Zhang C, Xing X, Qin E, et al. (2011) Mimotopes selected with
neutralizing antibodies against multiple subtypes of influenza A. Virol J 8: 542.

26. Kiselar JG, Downard KM (1999) Antigenic surveillance of the influenza virus by
mass spectrometry. Biochemistry 38: 14185–14191.

27. Lucchese G, Stufano A, Kanduc D (2009) Proteome-guided search for influenza

A B-cell epitopes. FEMS Immunol Med Microbiol 57: 88–92.
28. Vodnik M, Zager U, Strukelj B, Lunder M (2011) Phage display: selecting straws

instead of a needle from a haystack. Molecules 16: 790–817.
29. Brennan PJ (2003) Structure, function, and biogenesis of the cell wall of

Mycobacterium tuberculosis. Tuberculosis (Edinb) 83: 91–97.

Phage Display Peptides That Bind Mycobacteria

PLOS ONE | www.plosone.org 11 November 2013 | Volume 8 | Issue 11 | e77844


