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Feature extraction from physiological signals of EEG (electroencephalogram) is an essential part for sleep staging. In this study,
multidomain feature extractionwas investigated based on time domain analysis, nonlinear analysis, and frequency domain analysis.
Unlike the traditional feature calculation in time domain, a sequencemergingmethod was developed as a preprocessing procedure.
The objective is to eliminate the clutter waveform and highlight the characteristic waveform for further analysis. The numbers of
the characteristic activities were extracted as the features from time domain. The contributions of features from different domains
to the sleep stages were compared.The effectiveness was further analyzed by automatic sleep stage classification and compared with
the visual inspection. The overnight clinical sleep EEG recordings of 3 patients after the treatment of Continuous Positive Airway
Pressure (CPAP)were tested.The obtained results showed that the developedmethod can highlight the characteristic activity which
is useful for both automatic sleep staging and visual inspection. Furthermore, it can be a training tool for better understanding the
appearance of characteristic waveforms from raw sleep EEG which is mixed and complex in time domain.

1. Introduction

Sleep is a natural process of humans for recovering energy
and body health. It is considered as a necessity of life for
humans and animals and is essential to their physical and
emotional wellbeing. Physiologically, evaluating the quality
of sleep depends onmany aspects, including the duration and
composition of sleep [1–4].

Rechtschaffen and Kales (R&K) defined sleep scoring
criteria according to the change in the physiological signals
[5]. Although there are several modifications and many
amendments have been made, R&K criteria are still regarded
as golden criteria for sleep staging in clinical application.
According to R&K criteria, sleep is categorized by wake-
fulness (awake), rapid eye movement (REM), and nonrapid
eye movement (NREM). NREM is further divided into sleep

stages 1, 2, 3, and 4. Additionally, stages 3 and 4 are often
combined together and refer to deep sleep or slow wave sleep
(SWS) [6]. Clinicians can figure out whether one subject has
a full rest by analyzing his/her overnight sleep measurement
of PSG (polysomnogram) and provide a treatment plan based
on the sleep stage inspection.

However, manual EEG interpretation by clinicians is
time-consuming and the results were mainly dependent on
human subjective judgments to some extent. Automatic sleep
staging methods have been developed as an assisting tool for
visual inspection [7]. Generally, the automatic sleep staging
process can be described by four procedures: data acqui-
sition, preprocessing, feature extraction, and classification.
Obviously, feature extraction is an important procedure in
sleep staging since the appropriate feature parameters can
dramatically improve the classification results.
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Feature extraction can reduce the dimensionality of EEG
data and processing time. Till now, many feature analy-
sis methods have been investigated, which cover several
domains. Originally, time domain features include average
of amplitude, variance, maximum, minimum, zero-crossing
numbers, skewness, and kurtosis [8]. For further study, the
detrended fluctuation analysis (DFA) and visibility graph
(VG) based on sequence connectivity were utilized to analyze
EEG signals and achieved good results [9, 10]. After that,
some improved methods displayed more powerful capabili-
ties such as multifractal detrended fluctuation analysis (MF-
DFA) and horizontal visibility graph (HVG) [11, 12]. Apart
from the time domain, transformed domain parameters were
also proven to be useful in EEG researches. Ronzhina et al.
put forward a single channel EEGbased schemeby employing
power spectral density (PSD) of EEG signals [13]. Huang et al.
employed short-time Fourier transform on two channels of
forehead EEG signals [14]. Furthermore, application of chaos
theory and nonlinear time-seriesmethods gave a deep insight
into the brain dynamics reflected by EEG signals [15]. The
nonlinear analysis methods based on the data complexity,
including correlation dimension, fractal dimension, largest
Lyapunov entropy, approximate entropy, sample entropy, and
permutation entropy, were utilized [16–21]. Based on previ-
ous studies including time domain and frequency domain
methods, the wavelet transform theory was frequently used
to investigate EEG signals. Inoue et al. utilized a modified
wavelet transform to extract peak frequency in time series to
analyze all-night EEG data [22]. Ahmed et al. detected sleep
spindle in EEG data by combining the wavelet transform
theory and Teager energy [23]. Nowadays, the theory of
wavelet transform is still in the process of perfecting and
improving. Hassan and Bhuiyan proposed a tunable Q factor
wavelet transform theory based on discretewavelet transform
which can adaptively divide EEG signal into several subbands
and calculate the feature parameters [24].

In recent years, researches on feature extraction have
mainly focused on frequency domain and nonlinear algo-
rithms.However, there have been few academic achievements
related to time domain feature extraction except for DFA
and VG recently. In fact, clinicians generally interpret EEG
by observing the waveforms in the signal. Theoretically, time
domain analysis truly has a strong basis. Some of the authors
proposed a time domain EEG analysismethodwhich is based
on the merger of the increasing and decreasing sequences
to detect interictal epileptiform discharges [25]. EEG signal
can be considered as the summation of several characteristic
rhythms. After sequence merging, the feature rhythms in
EEG signals can be detected more easily.

In this study, a comparison study on multidomain
EEG features was presented. The ultimate purpose was
to investigate the effective feature extraction method for
automatic sleep staging. The powers of certain frequency
components were calculated as the characteristic features in
frequency domain. Approximate entropy was selected as the
parameter of nonlinear dynamics. Instead of traditional time
domain features, the merger of the increasing and decreasing
sequences in EEG time series was developed according to
the characteristics of sleep EEG for feature extraction in

time domain. After feature calculation and extraction, the
linear discriminate analysis (LDA) was adopted for sleep
stage classification. The obtained classification results were
compared with the visual inspection by a qualified clinician.
The performance of each feature extraction method was
discussed and the feasibility of the developed time domain
method was analyzed.

2. Methods

2.1. Materials. The sleep data investigated in this study was
recorded at the Department of Clinical Physiology, Tora-
nomonHospital, Tokyo, Japan.Three patients with breathing
disorder during sleep (Sleep Apnea Syndrome) participated.
Their ages ranged from 36 to 60. All of the three patients were
males. Their overnight sleeping data were recorded after the
treatment of Continuous Positive Airway Pressure (CPAP)
based on the polysomnographic (PSG) measurement. The
procedures were explained in detail to all participants, and
informed consent was obtained before recordings weremade.

The PSG measurement in Toranomon Hospital included
4 EEG channels (C3/A2, C4/A1, O1/A2, and O2/A1), 2
electrooculogram (EOG) channels (LOC/A1 and ROC/A1),
and 1 electromyogram (EMG) channel (chin-EMG). The
sampling frequency of EEG and EOG is 100Hz and the
sampling frequency of EMG is 200Hz. Overnight PSG
recordings were divided into consecutive 30-second epochs.
The PSG recordings were inspected by a qualified clinician.
Visual inspection was utilized to evaluate the effectiveness of
automatic sleep stage classification.

2.2. Frequency Domain. The main characteristic activities
related to sleep states in EEG are 𝛿 rhythm, 𝜃 rhythm,𝛼 rhythm, and 𝛽 rhythm. Meanwhile, the waveforms of
different sleep periods are significantly different according
to the amount of these four activities. The amount of 𝛼
rhythm is dominant in awake stage before sleep, while 𝜃
rhythmappears instead of𝛼 rhythm fromawake to light sleep.
The large amount of 𝛿 rhythm is the characteristic for deep
sleep. Hence, calculating the power of a certain frequency
component is helpful to distinguish sleep stages.

According to the sampling rate of EEG, one 30-second
epoch contains 3000 points of data. The epoch is further
divided into six 5-second segments. For each segment, the
EEG data is converted from time domain to frequency
domain by 512-point Fast Fourier Transform (FFT).The ratio
of the power of certain frequency activity is calculated for
each segment.The obtained values of 6 segments are averaged
as the feature in frequency domain for a 30-second epoch.

In Table 1, there are four features referring to the ratio
of the power of 𝛿, 𝜃, 𝛼, and 𝛽 activity. The subscripts of
FR indicate the frequency band of 𝛿: 0.5–2Hz; 𝜃: 2–7Hz; 𝛼:
8–13Hz;𝛽: 13–30Hz, while𝑇 is the total EEG frequency band
of 0.5–30Hz. The power of each frequency band is obtained
after FFT and the ratio to the total EEG frequency band is
calculated. FR𝛿, FR𝜃, and FR𝛽 are the averaged values of C3-
A2 andC4-A2 channels, while FR𝛼 is that ofO1-A2 andO2-A1
channels.
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Table 1: Features definitions in frequency domain.

Symbols Notation Equations

FR𝛿 Ratio of the power of 𝛿 activity in total EEG frequency band (%) ave{ 𝑆𝛿 (𝐶3)
𝑆𝑇 (𝐶3) ∗ 100, 𝑆𝛿 (𝐶4)

𝑆𝑇 (𝐶4) ∗ 100}
FR𝜃 Ratio of the power of 𝜃 activity in total EEG frequency band (%) ave{ 𝑆𝜃 (𝐶3)

𝑆𝑇 (𝐶3) ∗ 100, 𝑆𝜃 (𝐶4)
𝑆𝑇 (𝐶4) ∗ 100}

FR𝛼 Ratio of the power of 𝛼 activity in total EEG frequency band (%) ave{𝑆𝛼 (𝑂1)
𝑆𝑇 (𝑂1) ∗ 100, 𝑆𝛼 (𝑂2)

𝑆𝑇 (𝑂2) ∗ 100}
FR𝛽 Ratio of the power of 𝛽 activity in total EEG frequency band (%) ave{𝑆𝛽 (𝐶3)

𝑆𝑇 (𝐶3) ∗ 100, 𝑆𝛽 (𝐶4)
𝑆𝑇 (𝐶4) ∗ 100}

𝛿: 0.5–2Hz; 𝜃: 2–7Hz; 𝛼: 8–13Hz; 𝛽: 13–30Hz; 𝑇: 0.5–30Hz.

2.3. Nonlinear Dynamics. Approximate entropy calculation
is an algorithm based on the complexity of sequences. It is
a developed statistic quantifying regularity and complexity,
which appears to have potential application in a wide variety
of relatively short (greater than 100 points) and noisy time-
series data [26]. The greater the probability of producing
a new pattern, the higher the complexity of the sequence
and the larger the corresponding approximate entropy. The
calculation of approximate entropy is as follows.

(1) Set a one-dimensional time series 𝑢(𝑖) (𝑖 =1, 2, 3, . . . , 𝑁) with the length of 𝑁 and reconstruct an𝑚-dimensional vector𝑋𝑖, 𝑖 = 1, 2, . . . , 𝑁 − 𝑚 + 1, as
𝑋𝑖 = {𝑢 (𝑖) , 𝑢 (𝑖 + 1) , . . . , 𝑢 (𝑖 + 𝑚 − 1)} . (1)

(2) Calculate the distance between vectors𝑋𝑖 and𝑋𝑗 by
𝑑𝑖𝑗 = max 󵄨󵄨󵄨󵄨𝑢 (𝑖 + 𝑗) − 𝑢 (𝑗 + 𝑘)󵄨󵄨󵄨󵄨 ,

𝑘 = 0, 1, 2, . . . , 𝑚 − 1, (2)

where the maximum value of the difference between two
corresponding elements is the distance.

(3) Set one threshold 𝑟which is generally between 0.1 and
0.3. For each vector 𝑋𝑖, add up the number of 𝑑𝑖𝑗 ≤ 𝑟 × SD
(SD is the standard value of the sequence) and calculate the
ratio 𝐶𝑚𝑖 (𝑟) of the number to total distance (𝑛 − 𝑚 + 1).

(4) Calculate ln[𝐶𝑚𝑖 (𝑟)] and obtain the average value𝜙𝑚(𝑟) by

𝜙𝑚 (𝑟) = 1
𝑁 − 𝑚 + 1

𝑁−𝑚+1∑
𝑖=1

ln𝐶𝑚𝑖 (𝑟) . (3)

(5) Increase𝑚 by 1 and repeat the steps from (1) to (4) to
obtain 𝐶𝑚+1𝑖 (𝑟) and 𝜙𝑚+1(𝑟).

(6) Calculate the approximate entropy value by

ApEn = ∑
𝑁→∞

[𝜙𝑚 − 𝜙𝑚+1] . (4)

In this study, 𝑟 represents the filtering level and 𝑚
represents the length of run of data. These two parameters
were set as 0.15 and 2, respectively. The averaged value
of ApEn calculated from four recorded EEG channels was
considered as the extracted feature by nonlinear analysis.

2.4. Time Domain

2.4.1. Preprocessing. As a general rule, a qualified clinician
inspected EEGmainly based on the characteristic waveforms
in sleep recordings. Figure 1(a) gives a 10-second EEG signal
from O1-A2 channel. It was inspected as one part of the
awakening stage due to the large proportion of 𝛼 rhythm.
However, as shown in Figure 1(a), the sequences in boxes
are generally seen as incomplete waveforms. These incom-
plete waveforms can be intelligently merged into the feature
rhythm by experienced clinicians during EEG interpretation.
This is the feature rhythm of 𝛼 activity in the boxed sequences
in Figure 1(a).

In order to intelligently interpret sleep EEG like humans,
three rules were defined to simulate the process of merging
those incomplete sequences as the clinicians. The defined
rules are regarded as the preprocessing procedures before fea-
ture extraction in time domain. The objective is to eliminate
the clutter from the raw EEG and enhance the feature rhythm
for time domain analysis.

Rule 1. Figure 1(b) shows one kind of clutter. One or more
pseudo turning points in the dotted circle can be observed.
These pseudo turning points did not change the overall trend
of the sequence and need to be eliminated. 𝑦ℎ is the ℎth
sampling point in the sequence 𝑦. If 𝑦ℎ > 𝑦ℎ+1 and 𝑦ℎ >𝑦ℎ−1, 𝑦ℎ is recognized as the local maximum in the sequence.
Similarly, if 𝑦ℎ < 𝑦ℎ+1 and 𝑦ℎ < 𝑦ℎ−1 are satisfied, 𝑦ℎ is seen
as the local minimum of the sequence. In this study, all of the
maxima andminima of the signal are extracted to form a new
time sequence. Finally, the turning points in the dotted circles
are removed.

Rule 2. Figure 1(c) illustrates the second kind of clutter. The
sequence contains two peaks. However, the amplitude of one
of them is obviously small. The small peak is often seen as
a pseudo peak during human interpretation. As shown in
Figure 1(c), for two adjacent peaks, ℎ1 and ℎ2 are the two
amplitudes of the two peaks. If ℎ1/ℎ2 ≤ 0.4 or ℎ2/ℎ1 ≥ 2.5,
the peak with small amplitude is seen as a pseudo waveform.
After the trough between the two peaks is removed as shown
in the dotted circle in Figure 1(c), the second kind of clutter
can be eliminated from the raw EEG.

Rule 3. Figure 1(d) shows the third kind of clutter. The
sequence contained two peaks.The amplitudes of both peaks
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(a) 10-second raw EEG recorded from O1-A2 channel

Rule 1 Rule 2 Rule 3

(b) Clutter with one or more 
pseudo turning points

(c) Clutter with two peaks, but one
peak is small (d) Clutter with two small peaks

(e) EEG recorded from O1-A2 channel a�er preprocessing 
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Figure 1: Preprocessing procedures before feature extraction from the time domain based on the sequence merging rules to eliminate the
clutter from raw EEG.

are small, and the point in the circle is often seen as a
pseudo trough during human interpretation. In the research
of detecting interictal epileptiform discharges, a method
which is similar to Rule 2 was used to deal with this kind
of clutter. However, considering that the amplitude of sleep
EEG is different from epileptic EEG, the processing rule is
modified as in Figure 1(d). As shown in Figure 1(d), point
Max1 and point Max2 represent two peaks of sequence, and
Min1means the troughof the sequence. IfMax1−Min1 < 5 𝜇v
and Max2 − Min1 < 5 𝜇v, the point Min1 is seen as a pseudo
trough. Remove the pseudo trough and use Rule 1 to smooth
the sequence.

The final processed EEG is shown in Figure 1(e). The
clutter was removed after using the three rules mentioned
above. Compared with the EEG signals in Figures 1(a) and
1(e), the characteristic waveforms became obvious, which is
easy for both visual inspection and automatic analysis.

2.4.2. Feature Extraction. After eliminating the clutter, the
time domain parameters are calculated for classification. For
example, as shown in Figure 1(e), the processed EEG signal
has 10 real peaks in second 1. According to the definition of

𝛼 rhythm (8–13Hz), one 𝛼 rhythm wave has 8–13 peaks in
one second. Therefore, it is obvious that one 𝛼 rhythm wave
appeared in second 1. Similarly, there are 10 peaks in second
2, 9 peaks in second 3, 9 peaks in second 4, 9 peaks in second
5, and so on. Finally, the processed 10-second EEG signal in
Figure 1(e) contains 10 𝛼 rhythmic waveforms, but no 𝛿, 𝜃,
and 𝛽 rhythmic waveform.

Thenumbers of the four rhythmicwaveforms are counted
as the features in time domain. Table 2 illustrates the feature
definition. The subscripts of TN indicate the frequency band
of 𝛿: 0.5–2Hz; 𝜃: 2–7Hz; 𝛼: 8–13Hz; 𝛽: 13–30Hz. Each 30-
second epoch is analyzed by the presented procedures. The
number of each frequency band is counted after preprocess-
ing. TN𝛿, TN𝜃, and TN𝛽 are the averaged values of C3-A2 and
C4-A2 channels, while TN𝛼 is of O1-A2 and O2-A1.

2.5. Additional Features of EOG and EMG. Apart from the
EEG features, electrooculogram (EOG) and electromyogra-
phy (EMG) signals provide additional essential information
for sleep staging. For example, the EEG pattern in REM stage
is amixed frequency activitywhichmay be similar to adjacent
stages. However, rapid eye movements can be observed in
EOG, and EMG showed the lowest amplitude which is
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Table 2: Features definitions in time domain.

Symbols Notation Equations
TN𝛿 Number of 𝛿 rhythmic waveforms ave {TN𝛿 (𝐶3) ,TN𝛿 (𝐶4)}
TN𝜃 Number of 𝜃 rhythmic waveforms ave {TN𝜃 (𝐶3) ,TN𝜃 (𝐶4)}
TN𝛼 Number of 𝛼 rhythmic waveforms ave {TN𝛼 (𝑂1) ,TN𝛼 (𝑂2)}
TN𝛽 Number of 𝛽 rhythmic waveforms ave {TN𝛽 (𝐶3) ,TN𝛽 (𝐶4)}
𝛿: 0.5–2Hz; 𝜃: 2–7Hz; 𝛼: 8–13Hz; 𝛽: 13–30Hz; 𝑇: 0.5–30Hz.

Table 3: Additional features of EOG and EMG.

Symbols Notation Equations
AM Mean value of EOG signal ave {AM (LOC) ,AM (ROC)}
AV Variance value of EOG signal ave {AV (LOC) ,AV (ROC)}
AS Span value of EOG signal ave {AS (LOC) ,AS (ROC)}
AC Zero crossing of EMG signal AC (chin-EMG)

distinctive compared with the other sleep stages. Table 3
illustrates the additional features of EOG and EMG from
the time domain. The mean, variance, and span values are
calculated from the two recording channels of EOG (LOC-
A1 and ROC-A1).The zero-crossing number is obtained from
chin-EMG. AM, AV, and AS are the averaged values of LOC-
A1 and ROC-A1 channels. AZ is the zero-crossing value for
chin-EMG.

3. Results

3.1. Feature Extraction. The overnight sleep recordings were
analyzed. Mainly, there are 9 features extracted from the EEG
signals, with 4 additional features from the EOG and chin-
EMG. The extracted features were normalized in order to
reduce the individual differences in EEGs. Figure 2 illustrates
the overall tendencies of EEG features of subject 1. The
horizontal axis in Figure 2 represents sleep stages of awake
stage, REM, sleep stage 1, sleep stage 2, and slow wave sleep.
The vertical axis represents the mean value of each feature. In
Figure 2, (a) indicates the features in frequency domain while
(b) shows the features extracted by nonlinear analysismethod
and (c) shows the features from time domain. In Figures 2(a)
and 2(c), the features related to 𝛿, 𝜃, and 𝛽 rhythm were the
average value of C3-A2 and C4-A1 channels, but 𝛼 rhythm
was of O2-A1 and O1-A2 channels. In Figure 2(b), the feature
by nonlinear analysis was the average approximate entropy
value of the four recording EEG channels. Table 4 shows the
statistical analysis results of each EEG feature for the three
subjects, respectively. The numbers indicated the mean and
variance of EEG features among the sleep states.

As shown in Figure 2(a), 𝛿 rhythm had a gradual increase
with the depth of sleep. In addition, 𝜃 rhythm became quite
dominant in REM, S1, and S2. In the awakening state, 𝛼
rhythmand𝛽 rhythmoccupied a large proportion. In general,𝛼 rhythm is dominant while the subject is relaxed and keeps
his/her eyes closed. However, the phenomenon of “𝛼 rhythm
blocking”will appearwhen the subject opens his/her eyes and
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the sleep stages.
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Table 4: Feature extraction results.

Subject State FR𝛿 FR𝜃 FR𝛼 FR𝛽 ApEn TN𝛿 TN𝜃 TN𝛼 TN𝛽

Subject 1

W 0.28 ± 0.12 0.36 ± 0.17 0.35 ± 0.15 0.37 ± 0.12 0.76 ± 0.10 0.10 ± 0.09 0.37 ± 0.16 0.55 ± 0.19 0.33 ± 0.13
REM 0.32 ± 0.08 0.53 ± 0.09 0.28 ± 0.09 0.26 ± 0.06 0.68 ± 0.07 0.46 ± 0.08 0.65 ± 0.13 0.07 ± 0.04 0.01 ± 0.01
S1 0.36 ± 0.11 0.49 ± 0.12 0.32 ± 0.10 0.31 ± 0.08 0.62 ± 0.05 0.38 ± 0.10 0.60 ± 0.12 0.18 ± 0.04 0.01 ± 0.01
S2 0.39 ± 0.14 0.53 ± 0.13 0.13 ± 0.05 0.13 ± 0.06 0.57 ± 0.11 0.50 ± 0.10 0.52 ± 0.11 0.09 ± 0.04 0.01 ± 0.01
SWS 0.80 ± 0.09 0.32 ± 0.09 0.05 ± 0.02 0.03 ± 0.01 0.36 ± 0.14 0.84 ± 0.07 0.28 ± 0.09 0.01 ± 0.01 0

Subject 2

W 0.30 ± 0.11 0.31 ± 0.11 0.52 ± 0.15 0.51 ± 0.18 0.78 ± 0.13 0.08 ± 0.06 0.41 ± 0.11 0.57 ± 0.12 0.22 ± 0.09
REM 0.37 ± 0.13 0.68 ± 0.12 0.28 ± 0.08 0.33 ± 0.11 0.67 ± 0.08 0.49 ± 0.15 0.68 ± 0.14 0.05 ± 0.03 0.01 ± 0.01
S1 0.31 ± 0.11 0.55 ± 0.11 0.43 ± 0.13 0.42 ± 0.11 0.72 ± 0.09 0.24 ± 0.10 0.75 ± 0.11 0.21 ± 0.08 0.03 ± 0.02
S2 0.52 ± 0.15 0.63 ± 0.11 0.21 ± 0.07 0.25 ± 0.12 0.64 ± 0.12 0.45 ± 0.13 0.70 ± 0.14 0.09 ± 0.04 0.01 ± 0.01
SWS 0.83 ± 0.06 0.37 ± 0.09 0.05 ± 0.03 0.02 ± 0.01 0.32 ± 0.11 0.87 ± 0.08 0.23 ± 0.09 0.01 ± 0.01 0

Subject 3

W 0.43 ± 0.18 0.43 ± 0.16 0.36 ± 0.16 0.47 ± 0.17 0.79 ± 0.18 0.11 ± 0.07 0.51 ± 0.11 0.41 ± 0.16 0.17 ± 0.09
REM 0.30 ± 0.14 0.75 ± 0.16 0.29 ± 0.09 0.26 ± 0.11 0.75 ± 0.09 0.51 ± 0.14 0.66 ± 0.12 0.03 ± 0.01 0.01 ± 0.01
S1 0.49 ± 0.14 0.54 ± 0.12 0.31 ± 0.17 0.37 ± 0.18 0.62 ± 0.18 0.38 ± 0.14 0.57 ± 0.12 0.17 ± 0.11 0.09 ± 0.05
S2 0.49 ± 0.16 0.70 ± 0.17 0.19 ± 0.06 0.21 ± 0.08 0.56 ± 0.11 0.47 ± 0.11 0.54 ± 0.11 0.05 ± 0.03 0.02 ± 0.01
SWS 0.82 ± 0.06 0.34 ± 0.09 0.03 ± 0.02 0.02 ± 0.01 0.33 ± 0.05 0.91 ± 0.06 0.20 ± 0.07 0.01 ± 0.01 0

Table 5: Comparison of classification results.

Frequency domain + additional features Nonlinear + additional features Time domain + additional features
Subject 1 86.48% (851/984) 80.59% (793/984) 87.09% (857/984)
Subject 2 82.49% (811/983) 75.18% (739/983) 83.11% (817/983)
Subject 3 74.87% (704/940) 70.85% (666/940) 76.08% (715/940)
Average 81.38% 75.61% 82.18%

𝛽 rhythmbecomes obvious in EEG signals. Similar results can
be observed from another two subjects in Table 4. The mean
values of FR𝛿 of SWSandFR𝛼 ofWwere higher than the other
sleep states. The value of FR𝜃 showed that 𝜃 rhythm is more
active in the light sleep states and rapid eye movement, while
FR𝛽 is in the awake stage. The overall tendency of feature
values was consistent with the physiological knowledge.

Figure 2(b) shows the characteristics of nonlinear features
with the changes of sleep stages. It is obvious that values
of approximate entropy were decreasing with the depth of
sleep. Theoretically, with the depth of sleep, the activity of
the human brain gradually slows down. The data complexity
of EEG signals varied with the changes of sleeping level. In
Table 5, the ApEn values of three subjects were all gradually
decreased from light sleep to deep sleep.

In Figure 2(c), the obtained variation trends of time
domain features of subject 1 showed similar characteristics
among the sleep stages when compared with those of the
frequency domain. Similar results are illustrated in Table 4
for subject 2 and subject 3. Furthermore, the feature in
time domain can highlight the characteristic of a certain
EEG rhythm which can be obvious evidence for sleep stage
classification. In the awake stage, 𝛼 rhythm was apparently
highlighted with the mean value of TN𝛼 of 0.55, 0.57, and
0.41 for each subject in Table 4. This would be helpful for
discriminating the awake stage from others. In the other
cases, 𝛿 rhythm in slow wave stage of deep sleep was much
more distinctive with the mean value of TN𝛿 of 0.84, 0.87,
and 0.91. Comparing Figures 2(a) and 2(c), the extracted time
domain features showed similar tendency among the sleep

stages aswell as the features in frequency domain. In addition,
the features based on the developed sequence merging rules
can highlight the characteristic rhythms in time domain.This
would be easy for sleep stage scoring.

3.2. Classification Results. A linear discriminate analysis
(LDA) classifier was adopted to compare the effectiveness
of EEG features from different domains for automatic sleep
stage scoring. The classification accuracy was calculated
compared with the visual inspection in Table 5. Additionally,
the number of consistent epochs within the total number
of epochs was given under the accuracy value for each
subject. The classification accuracy reached 87.09%, 83.11%,
and 76.08% by using time domain features among the three
subjects, respectively. The averaged accuracy in time domain
was slightly higher than frequency domain and better than
nonlinear method.

Figure 3 showed detail evaluation about the classification
results. The results were the average accuracies of the three
test subjects for each sleep stage. It is apparent that both
the time and the frequency domain features showed fairly
good performance in REM and SWS, while the nonlinear
algorithm performed the best in S2. Additionally, the features
from the time domain also showed superiority in the recog-
nition of awake and S1 stages.

4. Discussion

4.1. Frequency Domain and Nonlinear Analysis. The visual
inspection of sleep recording required qualified ability and
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Figure 3: Comparison of classification accuracy of sleep stages.

clinical experience. According to the recorded data, the four
frequency activities of 𝛿 (0.5–2Hz), 𝜃 (2–7Hz), 𝛼 (8–13Hz),
and 𝛽 (13–30Hz) almost covering the EEG frequency band
were mainly inspected. Therefore, the amount of power
of characteristic activities was commonly utilized as the
feature extracted from the frequency domain for sleep stage
classification. According to the evaluation results in Figure 3,
features extracted from the frequency domain were able to
provide rather good performance in sleep stage recognition.

During the overnight sleep process, the sleep levels were
circled from light sleep to deep sleep about three times.When
the sleep level was changed, the activities in sleep EEG were
gradually changed accordingly. Approximate entropy refers
to the complexity of the sequence. Through the obtained
feature analysis result in Figure 2(b), the approximate entropy
is well shaped to represent the change of the complexity
of EEG signal from light sleep to deep sleep. In Figure 3,
the automatic recognition result by approximate entropy had
good performance to separate awakening and deep sleep.
However, the accuracy of S1 was rather low, which was
misclassified into S2 and REM.

4.2. Features Extracted fromTimeDomain. The features from
frequency domain or by nonlinear analysis had merits for
sleep stage classification. The limitation is also obvious for
real clinical application. The frequency domain indicated the
powers of certain characteristic activities. The differences
between the sleep stages can be described by the change of
power of those activities. However, the variation according
to the time was missed. On the other hand, the traditional
features from time domain can show the variation according
to the time but not the characteristics in frequency domain as
the clinician inspected.

The raw EEG can be regarded as the combination of
characteristic activities including 𝛿, 𝜃, 𝛼, and 𝛽. In addition,
it will inevitably be contaminated with various artifacts.
In clinical practice, the qualified clinician had the skill to
inspect the duration of the amount of characteristic activity
by observing the original EEG time series. In this study,

the feature extraction from time domain was developed in
order to mimic the visual inspection. Before the feature
extraction, a preprocessing procedure is proposed. There are
three rules defined to eliminate the clutter and merge the
EEG sequence to highlight the characteristic activities of 𝛿, 𝜃,𝛼, and 𝛽. After preprocessing, the processed EEG signal can
be used to easily inspect the characteristic waveforms in the
sequences. According to the recognition results inTable 4 and
Figure 3, the developed feature extraction method showed
comparable performance to frequency domain andwas better
than the approximate entropy. It would be helpful to be an
assisting tool for visual inspection. Furthermore, to a new
or an unskilled technician, the presented feature extraction
method can be a training tool for the clinicians to better
understand the amount/duration of characteristic waveforms
in sleep EEG. Itmay also be adopted as a training tool for such
kind of users.

5. Conclusion

In this study,multidomain feature extractionwas investigated
for sleep EEG, including the amount of power of characteris-
tic activity in frequency domain, the approximation entropy
by nonlinear analysis, and the number of characteristic
activities by a developed sequence merging method in time
domain. Several features were extracted from sleep EOG and
chin-EMG as additional parameters. The features of sleep
EEG from different domains were analyzed and compared.
The features from frequency domain showed consistent
characteristics to the definition of sleep stage in criteria. The
approximation entropy indicated a well gradually decreasing
shape from light sleep to deep sleep. The features from
time domain had similar tendency to the frequency domain.
Furthermore, the corresponding characteristic activities can
be highlighted compared with the frequency domain. Based
on the features from different domains, the automatic sleep
stage classification results were obtained and compared with
the visual inspection. The classification accuracy in Table 4
and detailed comparison in Figure 3 indicated that the devel-
oped feature extraction method reached rather satisfying
accuracy for sleep stage scoring than the frequency domain
and nonlinear analysis.

The processed sleep EEG by the developed sequence
merging method can highlight the characteristic rhythm
which is useful for both automatic sleep staging and visual
inspection. Furthermore, it can be a training tool for better
understanding the appearance of characteristic waveforms
from raw sleep EEG which is mixed and complex in time
domain.
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and I. Provaznı́k, “Sleep scoring using artificial neural net-
works,” Sleep Medicine Reviews, vol. 16, no. 3, pp. 251–263, 2012.

[14] C.-S. Huang, C.-L. Lin, L.-W. Ko, S.-Y. Liu, T.-P. Su, and C.-T.
Lin, “Knowledge-based identification of sleep stages based

on two forehead electroencephalogram channels,” Frontiers in
Neuroscience, vol. 8, article no. 263, 2014.

[15] U. R. Acharya, V. K. Sudarshan, H. Adeli et al., “A novel
depression diagnosis index using nonlinear features in EEG
signals,” European Neurology, vol. 74, no. 1-2, pp. 79–83, 2016.

[16] F. Shayegh, S. Sadri, R. Amirfattahi, and K. Ansari-Asl, “A
model-based method for computation of correlation dimen-
sion, Lyapunov exponents and synchronization from depth-
EEG signals,” Computer Methods and Programs in Biomedicine,
vol. 113, no. 1, pp. 323–337, 2014.

[17] L. A. Manilo and S. S. Volkova, “Recognition of the deep anes-
thesia stage from parameters of the approximated entropy of
EEG signal,” Pattern Recognition and Image Analysis, vol. 23, no.
1, pp. 92–97, 2013.

[18] D. Easwaramoorthy and R. Uthayakumar, “Improved general-
ized fractal dimensions in the discrimination between Healthy
and Epileptic EEG Signals,” Journal of Computational Science,
vol. 2, no. 1, pp. 31–38, 2011.

[19] Y. R. Yi, “Approximate entropy analysis of electroencephalo-
gram,” Chinese Journal of Biomedical Engineering, vol. 20, no.
1, pp. 19–22, 2011.

[20] Q.Wei, Q. Liu, S.-Z. Fan et al., “Analysis of EEG via multivariate
empiricalmode decomposition for depth of anesthesia based on
sample entropy,” Entropy, vol. 15, no. 9, pp. 3458–3470, 2013.

[21] E. Ferlazzo, N. Mammone, V. Cianci et al., “Permutation
entropy of scalp EEG: A tool to investigate epilepsies. Sugges-
tions from absence epilepsies.,” Clinical Neurophysiology, vol.
125, no. 1, pp. 13–20, 2014.

[22] K. Inoue, T. Tsujihata, K. Kumamaru, and S.Matsuoka, “Feature
extraction of human sleep EEG based on a peak frequency
analysis,” IFAC Proceedings Volumes, vol. 38, pp. 1059–1064,
2005.

[23] B. Ahmed, A. Redissi, and R. Tafreshi, “An automatic sleep
spindle detector based on wavelets and the teager energy
operator,” in Proceedings of the Annual International Conference
of the IEEE Engineering in Medicine and Biology Society, pp.
2596–2599, IEEE, Minneapolis, Minn, USA, September 2009.

[24] A. R. Hassan and M. I. H. Bhuiyan, “A decision support system
for automatic sleep staging from EEG signals using tunable
Q-factor wavelet transform and spectral features,” Journal of
Neuroscience Methods, vol. 271, pp. 107–118, 2016.

[25] J. Zhang, J. Zou, M. Wang, L. Chen, C. Wang, and G. Wang,
“Automatic detection of interictal epileptiformdischarges based
on time-series sequence merging method,” Neurocomputing,
vol. 110, pp. 35–43, 2013.

[26] U. R. Acharya, O. Faust, N. Kannathal, T. Chua, and S. Laxmi-
narayan, “Non-linear analysis of EEG signals at various sleep
stages,” Computer Methods and Programs in Biomedicine, vol.
80, no. 1, pp. 37–45, 2005.


