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and Adil Mardinoglu1,11,12,*

SUMMARY

Clear cell renal cell carcinoma (ccRCC) is the most common histological type of
kidney cancer and has high heterogeneity. Stratification of ccRCC is important
since distinct subtypes differ in prognosis and treatment. Here, we applied a sys-
tems biology approach to stratify ccRCC into three molecular subtypes with
different mRNA expression patterns and prognosis of patients. Further, we
developed a set of biomarkers that could robustly classify the patients into
each of the three subtypes and predict the prognosis of patients. Then, we recon-
structed subtype-specific metabolic models and performed essential gene anal-
ysis to identify the potential drug targets. We identified four drug targets,
including SOAT1, CRLS1, and ACACB, essential in all the three subtypes and
GPD2, exclusively essential to subtype 1. Finally, we repositioned mitotane, an
FDA-approved SOAT1 inhibitor, to treat ccRCC and showed that it decreased tu-
mor cell viability and inhibited tumor cell growth based on in vitro experiments.

INTRODUCTION

Kidney cancer constitutes more than 3% of all adult malignancies, with 400,000 new cases and 175,000 deaths in

2018 (Bray et al., 2018). Approximately 85% of all kidney tumors are renal cell carcinoma (RCC), and 70% of RCC

cases are of clear cell histology (Motzer et al., 2020). Smoking, obesity, and hypertension are established risk

factors for RCC development (Motzer et al., 2020). Partial/radical nephrectomy is the standard primary treat-

ment for localized tumors. However, 30–35% of patients relapse or distant metastases after nephrectomy,

and these patients need further adjuvant chemotherapy (Porta et al., 2019). The most frequently occurring ge-

netic event in clear cell renal cell carcinoma (ccRCC) is the deletion or inactivatedmutation of the gene von Hip-

pel-Linadau (VHL) tumor suppressor, which is involved in the ubiquitination and degradation of hypoxia-induc-

ible factors (HIF-1a and HIF-2a) (Cancer Genome Atlas Research, 2013; Masson and Ratcliffe, 2014).

Accumulated hypoxia-inducible factors promote tumor cells to develop an adaptive response to hypoxic stress

through transcriptional activation of genes related to glucose metabolism, cell proliferation, migration, and

angiogenesis (Masoud and Li, 2015). Recently, clinically recommended target therapies that modulate the

downstreampathways afterHIF activation include tyrosine kinase inhibitors, such as sunitinib, axitinib, sorafenib,

pazopanib, cabozantiniband lenvatinib, and mTOR inhibitors, such as everolimus and tesirolimus, and anti-

VEGF antibodies such as bevacizumab (Figlin et al., 2018). However, only 16.6–58%of patients with ccRCC could

be attributed to genetic VHL alteration (Cowey and Rathmell, 2009). In addition, these drugs’ response rates are

only 9–40% in different clinical trials (Motzer et al., 2020). Owing to the high inter-tumor or intra-tumor hetero-

geneity, it is well recognized that various tumors could be driven by different oncogenic pathways, which has a

significant effect on the identification of drug targets to guide clinical decision-making in cancer medicine (Bur-

rell et al., 2013). Thus, finding a ‘‘common’’ drug target or drug that works for all patients is challenging. An alter-

native approach is to develop a systematic classification for ccRCC and design effective therapeutic strategies

for different patients’ subtypes. Many studies have previously proposed some classification strategies based on

the different genetic or transcriptomic characteristics and prognostic outcomes of patients (Brannon et al., 2010;

Cancer Genome Atlas Research, 2013; Kosari et al., 2005; Takahashi et al., 2001). However, they failed to

provide a clinically available biomarker for personalized classification/diagnosis and recommend targeted

chemotherapy.
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The problem is that some previously proposed biomarkers for ccRCC are based on a risk score summarized

from the quantitative measurement of one or multiple signature genes (Fujita et al., 2012; Klatte et al.,

2009). The application of risk score-based biomarkers needs a pre-setting threshold sensitive to the exper-

imental batch effect (Guan et al., 2018). This brings the main barrier to translate the risk score-based

biomarker to clinical practice (Winslow et al., 2012). In contrast, the biomarkers based on the within-sample

relative expression orderings (REOs) of genes have been reported to be robust against batch effects (Guan

et al., 2018), monotone data normalization (Eddy et al., 2010; Wang et al., 2013), and poor sample prepa-

ration (Chen et al., 2017; Cheng et al., 2017; Liu et al., 2017). Moreover, the prognostic value and classifi-

cation performance have been widely validated in different cancer types (Ao et al., 2018; Chen et al.,

2020; Guan et al., 2020; Lin et al., 2009; Qi et al., 2016). Thus, it is a promising alternative way to use the

REOs-based methods to develop classification or prognostic biomarkers for ccRCC.

Systems biology-based methods are widely employed to identify drug targets and predict therapeutic

agents based on drug repositioning (Altay et al., 2020; Lam et al., 2020, 2021; Mardinoglu et al., 2018;

Ozcan et al., 2020). Genome-scale metabolic models (GEMs), one of the commonly used systems biology

tools, have been used as a powerful tool to identify the potential drug targets inducing inhibition of tu-

mor cell proliferation, which could be applied in drug repositioning (Mardinoglu and Nielsen, 2012;

Zhang and Hua, 2015). The first step of the application of GEM is to create a subtype-specific model

based on omics data of a subtype of samples, e.g., gene expression, by pruning a generic human

GEM, which includes the comprehensive reactions, metabolites, and enzymes (Nilsson and Nielsen,

2017). Using this model, drug targets can be identified by essential gene analysis (Zhang et al., 2018).

Besides, GEM can also be used to investigate whether it is toxic for a normal tissue cell after a gene

knockout by computational modeling method (Agren et al., 2014; Uhlen et al., 2017). Kidney cancer

has been considered a metabolic disease since it was characterized by various metabolic alterations

associated with glucose metabolism, TCA cycle, fatty acid synthesis, and amino acid transport (Cancer

Genome Atlas Research, 2013; Linehan and Ricketts, 2013; Linehan et al., 2019). Thus, it is suitable for

ccRCC to use GEM analysis to identify drug targets.

We performed a systems biology approach to stratify the patients with ccRCC into three subtypes with

distinct mRNA expression patterns and clinical survival outcomes. Then, we developed a set of REO-based

biomarkers that could precisely predict each subtype. Finally, we identified four potential drug targets us-

ing GEMs, repositioned mitotane for treatment of ccRCC by inhibiting one of the identified drug targets,

SOAT1 and validated its drug effect based on in vitro experiments. Figure 1 showed the whole study

design.

RESULTS

Identification of subtypes based on the different expression of mRNA

To develop a systematic classification, we first identified the top 1500 genes with the highest MAD values

in the 530 and 100 samples of patients with ccRCC in TCGA and Japanese cohorts, respectively. We

found that there were 1264 overlaps between the two cohorts. Based on the expression profiles of these

1264 genes, we employed an NMF clustering algorithm to stratify the samples into different sub-groups

in TCGA and Japanese cohorts, respectively. The result showed an excellent classification when the sam-

ples were stratified into two or three clusters in both cohorts (Figure 2A). The optimal number of clusters

was determined by the cophenetic correlation coefficient, which measured the stability of the identified

clusters (Gaujoux and Seoighe, 2010). As shown in Figure 2B, we observed the highest average cophe-

netic correlation coefficient in the two cohorts when the samples were classified into three clusters. Thus,

we determined an optimal number of three clusters and denoted them as subtypes 1, 2, and 3, respec-

tively. Finally, we classified 156, 235, and 139 samples, and 21, 42, and 37 samples into subtype 1, 2, and 3

in TCGA and Japanese cohorts, respectively. Then we performed PCA analysis to visualize the distribu-

tion of all the samples. PCA plots showed good separation between subtype 2 and 3 in both cohorts,

while subtype 1 was dispersed and mixed with the other two clusters (Figure 2C). In addition, we also

performed PCA analysis for all samples merged from TCGA and Japanese cohorts after removing the

batch effect. PCA plot even showed a more apparent separation between different subtypes, and the

samples classified as the same subtype from the two cohorts were clustered together (Figure S1). These

results suggested three distinct molecular subtypes with distinct mRNA expression in ccRCC, which has

high confidence since the patients recruited in these two cohorts have different races and geographical

differences.
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Clinical and molecular characteristics of subtypes

Survival analysis showed that the three subtypes of patients have significantly different overall survival in

both the TCGA cohort (log rank p = 4.29 3 10�10) and the Japanese cohort (log rank p = 5.17 3 10�4) (Fig-

ure 3A). The patients in subtype 2 were associated with the best survival outcome with a 77.9% and 92.1% 5-

year survival rate in TCGA and Japanese cohorts, respectively. The patients in subtype 3 were associated

with the worst survival outcomes with a 50.3% and 59% 5-year survival rate in TCGA and Japanese cohorts,

respectively. The prognostic outcomes of the patients in subtype 1 differed between cluster 2 and 3 in both

cohorts.

To characterize different subtypes, we identified the DEGs between each subtype and the remaining two

subtypes together in each cohort (Table S1). For example, we identified 6642 and 164 DEGs between the

samples in subtype 1 and the remaining samples in the TCGA and Japanese cohorts, respectively

(FDR<0.01, Figure 3B). The two lists of DEGs have a significant overlap (k = 132), and the concordance score

of these overlapped genes between cohorts is 96.97% (hypergeometric distribution test, p = 2.633 10�14).

Similarly, we found the number of overlapped DEGs identified in subtype 2 and subtype 3 are 4152 and

3689, the concordance score of these overlapped genes between cohorts is 99.23% and 99.3%, respectively

(Figure 3B, hypergeometric distribution test, both p = 1.0 3 10�16). Then we performed GO enrichment

analysis based on these consistently overlapped DEGs associated with each subtype, and we focused

on the top 10 most significantly enriched GO pathways (FDR <0.01, Figures 3C–3E). We observed that

the upregulated genes in subtype 1 were significantly enriched in the aerobic respiration, ATP synthesis

and oxidative phosphorylation pathways, suggesting that the tumor cells of subtype 1 have a high activity

of energy metabolism, which is necessary for cell viability (Figure 3C). However, the downregulated genes

are not significantly enriched in any pathway. The upregulated genes in subtype 2 were significantly en-

riched in cell differentiation, histone modification, chromatin modification and focal adhesion assembly

pathways (Figure 3D). It has been reported that the patients with cancer with good survival are associated

with upregulation of cellular differentiation (Uhlen et al., 2017), which supports our result that the patients in

subtype 2 show the best prognostic outcomes. The downregulated genes in subtype 2 are significantly en-

riched in translational initiation and protein localization to ER pathways, suggesting that transcription and

translation are not activated in subtype 2, which also contribute to the good survival of patients in this sub-

type. The upregulated genes in subtype 3 were significantly enriched in the translational initiation and pro-

tein localization to ER pathways, which showed an opposite character to subtype 2 (Figure 3E).

Moreover, we found the viral transcription and viral gene expression pathways were upregulated in sub-

type 3 and downregulated in subtype 2, suggesting that these two subtypes’ molecular characteristics

ccRCC

TCGA/Japanese
ccRCC cohort
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REOs-based
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Caki-1
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Stratification Systems biology Drug repositioning

GEM

GEM

Figure 1. The flowchart for the whole study design including patient stratification, drug target identification, and

drug repositioning
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may be associated with virus infection. It has been reported that the infection of hepatitis C virus, Epstein-

Barr virus and human adenovirus viremia is associated with the development of kidney cancer (Hofmann

et al., 2011; Kryst et al., 2020; Wu et al., 2021). The downregulated genes in subtype 3 were significantly

enriched in fatty acid metabolism-related pathways such as fatty acid catabolic procession and fatty acid

oxidation.

TCGA cohort

Japanese 
cohort

TCGA cohort Japanese cohort

Two clusters Four clustersThree clusters

TCGA cohort Japanese cohort

A

B

C

Figure 2. Molecular classification and distribution of samples of different subtypes

(A) Reordered consensus matrices for ranks 2–4 (number of clusters) based on the overlapped 1264 genes with the highest

MAD for samples from TCGA and Japanese cohorts. Dark blue corresponding to 0 means that the samples are never

assigned to the same cluster. Dard red corresponding to 1 means that the samples are permanently assigned to the same

cluster. The optimal cluster number is three since it shows the highest average of cophenectic coefficients in the two

cohorts. In themiddle plots, including three clusters, the subtype orders are 3, 1, and 2 for the TCGA cohort and 1, 3, and 2

for the Japanese cohort.

(B) The distribution of cophenetic correlation coefficients when the samples were classified into different numbers of

clusters.

(C) PCA plot showing the distribution of samples from the three subtypes.
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Further, we compared our classification with the previously reported TCGA (m1 to m4) (Cancer Genome

Atlas Research, 2013) and ccA/ccB (Brannon et al., 2010) classification system (Figure 3F). In the TCGA

cohort, 79.5% of TCGA m1 tumors were associated with our subtype 2 tumors, and the m1 group was

also reported with the best prognostic outcomes in TCGA classification (Cancer Genome Atlas Research,

2013). Moreover, the m1 group was characterized by gene sets associated with chromatin remodeling pro-

cesses, which showed a consistent result with the GO enrichment results for subtype 2. More than 60% of

TCGA m2 and m3 tumors were associated with our subtype 1 and subtype 3 tumors, respectively, and m2

and m3 groups were also reported with poor prognosis in TCGA classification. Besides, TCGA m4 tumors

comprised our subtype 1, 2 and 3 tumors with similar proportions, which showed amedian survival in TCGA

classification. In the Japanese cohort, 64.5% of ccA and 84.2% of ccB tumors were observed to be associ-

ated with our subtype 2 and 3 tumors, respectively. It has been reported that ccA cases have favorable sur-

vival (Brannon et al., 2010). These results demonstrated that the previous classification systems reinforce

the three subtypes identified by our study.

Development of the REO-based classification biomarker

To identify subtype-specific biomarkers that can be potentially used in clinical, we developed the REO-

based biomarker by training the REOs of genes instead of absolute expression values of genes. Briefly,

REO-based biomarkers used the subtype-specific gene pairs with opposite expression orders between a

specific subtype of samples and the remaining samples as indicators and then optimized a minimum set

of gene pairs as the final indicators for classification (See STAR Methods section). We merged the samples

from TCGA and Japanese cohorts and randomly select 70% of samples as a training data set and the re-

maining 30% of samples as a validation data set. We identified 432, 73,652, and 21,978 subtype-specific

gene pairs in subtypes 1, 2, and 3 in the training data set, respectively. We finally identified a set of

REO-based biomarkers with a forward selection procedure consisting of 1, 21, and 19 gene pairs with an

optimal F-score 0.8308 (precision = 0.8516, recall = 0.811), 0.9096 (precision = 0.9533, recall = 0.8697)

and 0.9042 (precision = 0.9405, recall = 0.8706), respectively, which can precisely identify the patients in

subtype 1, 2, and 3 (Table 1).

For a given sample, if more than half of the gene pairs within a biomarker showed reversed REOs, this sam-

ple would be stratified into the specific subtypes. For example, if the expression of MT-ND5 is higher than

RPS27 in a given sample, then this sample would be classified into subtype 1; otherwise, this sample does

not belong to cluster 1 and should be predicted by the other two biomarkers (Table 1). We tested these

biomarkers’ performance in the validation dataset and found that the F-scores were 0.8537 (precision =

0.8846, recall = 0.8248), 0.815 (precision = 0.8242, recall = 0.8061), and 0.8591(precision = 0.913, recall =

0.8112) for the determination of subtype 1, 2, and 3, respectively. To further validate the prognostic value

of these biomarkers, we applied the biomarkers in an independent European cohort (RECA-EU) with 91

KIRC samples. As a result, 27, 51, and 12 samples were stratified into subtype 1, 2, and 3, respectively.

One sample was not classified into any subtype, which was removed in the following analysis. We observed

that the patients of subtype 2 had significantly better survival outcome than subtype 3 (log rank p = 0.039)

(Figure S2A). The patients in subtype 1 have a similar prognosis as the patients in subtype 2 (Figure S2B),

consistent with what we observed in the Japanese cohort.

Reconstruction of GEMs and drug target identification

We reconstructed the subtype-specific GEM by using the average gene expression values of each subtype

in each cohort. We found 4207, 5414, and 5303 reactions, which comprised 2051, 2248, and 2272 genes and

3119, 4129, and 4047 metabolites in subtype 1, 2, and 3 in the TCGA cohort, respectively. Then we made a

concordance analysis of reactions and metabolites between different clusters. As shown in Figure 4A, we

found the three subtypes shared most of the reactions, genes and metabolites and also each subtype had

its exclusive reactions, genes and metabolites. A similar result was observed in the Japanese cohort

Figure 3. The survival outcomes and molecular characteristics for different subtypes

(A) Kaplan-Meier plots of overall survival of the three subtypes in the TCGA and Japanese cohorts.

(B) Venn diagrams showing the consistency of subtype-specific DEGs between TCGA and Japanese cohorts.

(C) Top 10 most significantly GO pathways enriched with the overlapped subtypes-specific DEGs of subtype 1 between two cohorts.

(D) Top 10 most significantly GO pathways enriched with the overlapped subtypes-specific DEGs of subtype 2 between two cohorts.

(E) Top 10 most significantly GO pathways enriched with the overlapped subtypes-specific DEGs of subtype 3 between two cohorts.

(F) Pie charts showing the intersection of the different classification systems for ccRCC. ‘m1’, ‘m2’, ‘m3’ and ‘m4’ indicate the molecular subtypes proposed

by TCGA, and ‘ccA’ and ‘ccB’ are molecular subtypes reported by another previous study.
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(Figure S3). The result provides the opportunity to identify common drug targets or subtype-specific drug

targets by using GEM analysis.

Then we performed essentiality analysis in which GEMs are applied to identify essential genes and reac-

tions whose knockout or blocking impacts critical biological functions of cell growth (Zhang et al., 2015).

We set the objective function of the metabolic model to biomass maximization to identify the essential

genes for tumor growth (Zhang et al., 2018). As a result, we found 42, 32, and 36 essential genes in subtype

1, 2, and 3 in the TCGA cohort and 52, 28, and 33 essential genes for these three clusters in the Japanese

cohort. There were 37, 28, and 30 overlapped essential genes for each subtype between TCGA and Jap-

anese cohorts, kept for further analysis (Table 2). Moreover, we performed an in slico toxicity test for

each essential gene to test whether it is toxic in 32 major normal tissue cells after these gene knockouts

(Agren et al., 2014; Uhlen et al., 2017) (See the STAR Methods section). We hypothesized that if a gene

is an essential gene in ccRCC cell and its knockout is not toxic for normal tissue cells, it could be treated

as a potential drug target. Finally, after removing the genes whose knockout was toxic in major human

normal tissue cells, we filtered out four genes, SOAT1, CRLS1, and ACACB, which are essential for all three

subtypes of ccRCC, showing the potential to be used as drug targets for themajority of patients with ccRCC

regardless of specific molecular subtype, as well as GPD2 which is essential for subtype 1 specifically.

Next, we would like to experimentally test the predicted drug targets for each subtype using in vitromodel.

As we could not classify cell line into a specific subtype, we decided to evaluate one of the common drugs

we predicted as a proof of concept. In this case, we selected SOAT1, an enzyme catalyzing the formation of

fatty acid-cholesterol esters, which was indicated as a possible drug target in adrenocortical carcinoma

(Sbiera et al., 2015) and glioblastoma (Geng et al., 2016) for our validation. Mitotane, an inhibitor of

Table 1. The composition of classification biomarkers and voting rule

Subtype 1a Subtype 2a Subtype 3a

Higher

expression

Lower

expression

Higher

expression

Lower

expression

Higher

expression

Lower

expression

MT-ND5 RPS27 LRP2 BOLA3 BCL2L12 OPA3

EHHADH NDUFA4 RCC1 ACOX1

RANBP2 TPST2 TARBP2 CLCN5

LRP2 CCDC58 RCC1 MARK2

MAP7 MMAB ZNF581 SLC22A11

FRYL OSBPL3 NOB1 PCCA

ITGA6 NDUFA4 ZNF581 CRY2

GAREM1 MGME1 SEMA4B RAPGEF2

KIAA1671 GGCT NLE1 CLCN5

LRP2 TSR3 HSCB GAREM1

MAP7 C12orf45 IFT20 HIBCH

LRP2 ATXN2L S100A3 CDADC1

ILK MRPS24 FBXW9 C1orf210

TOPORS C12orf73 C19orf48 ANKIB1

TLN2 MECR STEAP3 SLC17A1

EHHADH BUD31 RPL39L CLCN5

DDAH1 TIMM13 PYM1 HIBCH

LRP2 IFT22 USE1 PCCA

EPHA4 NEURL2 SAT2 SLC22A11

BPNT1 GGCT

EPHA4 PRELID3A

aFor a given sample, if most of the gene pairs within a biomarker showed a higher expression for the former genes than the

latter genes, this sample would be stratified into the specific subtypes.
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SOAT1 (Sbiera et al., 2015), is an FDA-approved small molecule drug commonly used to treat adrenocor-

tical carcinoma (Paragliola et al., 2018). To explore the drug effect of mitotane on ccRCC, we treated Caki-1,

a ccRCC cell line, with mitotane. As shown in Figure 4B, we observed that the protein level of SOAT1 was

significantly decreased by mitotane treatment compared to the negative control, which suggested that the

drug successfully targets SOAT1 as expected. Cell viability was significantly reduced with increasing con-

centrations of mitotane (Figure 4C). Further, we observed the drug inhibited cell growth through G2/M cell

cycle arrest in Caki-1 (Figure 4D). These results suggested that mitotane is a promising drug for the treat-

ment of ccRCC in clinical practice.

DISCUSSION

In this study, we used a systems biology approach to identify three different molecular subtypes with

distinct molecular characteristics and different survival outcomes in ccRCC. Two of these subtypes, subtype

2 and 3 correspondingly associated with the best and worst prognostic outcomes, respectively. These sub-

types have potentially opposite characteristics since pathways related to translational initiation, protein

targeting and localization, viral transcription and viral gene expression pathways were downregulated in

subtype 2 but upregulated in subtype 3. This classification provided a new insight that these two subtypes

may be associated with virus infection. Moreover, the high grade of tumor cell differentiation potentially

explained the good survival outcomes of patients in subtype 2. The tumors of subtype 1 were characterized

by an active energy metabolism, which was a middle subtype between subtype 2 and 3 in terms of survival

outcomes. We observed that the survival outcome of subtype 1 among the three cohorts (TCGA, Japanese

and European cohorts) performed slightly different, since survival outcome is a complex phenotype not

only decided by molecular profiles but also decided by races, geography, eating habits, and treatment

strategies (Stafford et al., 2008; Zeng et al., 2015).

Next, we developed a set of subtype-specific biomarkers based on the merged training data set to include

biological and cultural background differences in the REOs-based biomarker during training since the pa-

tients from TCGA, and Japanese cohorts had quite different races. The result showed that the REOs of our

biomarkers could robustly stratify the patients into different subtypes in the validation data set and also an

independent European ccRCC cohort. Although we used RNA-seq data for biomarker application in this

study, a more convenient and cheaper technology, RT-PCR, could be a good alternative since we only

need to measure the REOs of gene pairs involved in the biomarker. In previous studies, most classification

biomarkers are based on the risk score summarized from absolute expression values of signature genes.

Their application compares the risk score calculated from the gene expression of a given sample with pre-

set risk score thresholds. There are two most famous signatures which are already used in commercial. Al-

loMap, consisting of 20 genes, predicts the risk of acute cellular rejection in heart transplant recipients

(Starling et al., 2006). Oncotype DX, consisting of 21 genes, is used to estimate the risk of distant recurrence

in tamoxifen-treated patients with node-negative, estrogen-receptor-positive breast (Paik et al., 2004).

Both signatures employ RT-PCR to detect the expression levels of the signature genes and then calculate

the risk score. Because of batch effect and platform differences, the generated risk score cannot be directly

compared with the preset thresholds (Qi et al., 2016). Considering this, the collected samples must be

measured in specified laboratories with strict quality control and uniform normalization, which significantly

limits the wide application of these biomarkers. In contrast, REOs-based biomarkers are relatively insensi-

tive to experimental batch effect and invariant to monotone data transformation (Guan et al., 2018) and

they are very promising in clinical practice. Moreover, the REO of two genes in a gene pair is easy to mea-

sure by RT-PCR with a proper operation. These advantages facilitate the use of REO-based biomarker in

personalized medicine.

Based on metabolic modeling analysis, we identified four target genes, namely SOAT1, CRLS1, ACACB,

and GPD2, whose inhibition can block the growth of ccRCC tumor cells with relatively low toxicity to

normal tissue cells. It has been reported that SOAT1 is a potential drug target in adrenocortical carcinoma

Figure 4. Metabolic model analysis and drug effect on ccRCC

(A) Venn diagrams showing the overlaps of reactions, metabolites or genes between subtypes in the TCGA cohort. The reactions, metabolites, and genes

are generated from reconstructed subtype-specific GEMs.

(B) Western blot showing the protein level of SOAT1 was decreased by the treatment of mitotane in Caki-1.

(C) Bar chart showing the cell viability was decreased by mitotane in Caki-1. *represents t test p < 0.05. Data are represented as mean G SEM.

(D) Flow cytometric analysis showing the cell cycle G2/M was arrested by mitotane in Caki-1.
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(Sbiera et al., 2015) and glioblastoma (Geng et al., 2016). CRLS1 encodes an enzyme that catalyzes the syn-

thesis of cardiolipin, which is a phospholipid component of mitochondrial membranes and critical for mito-

chondrial function. As a potential therapeutic target, silencing ofCRLS1 inhibited cell growth in liver cancer

(Bidkhori et al., 2018). ACACB encodes a rate-limiting enzyme of fatty acid synthesis. Fatty acids are

Table 2. Candidate essential gene list for each subtype.

Gene symbol Essential in subtype 1 Essential in subtype 2 Essential in subtype 3

SOAT1 1a 1 1

CRLS1 1 1 1

ACACB 1 1 1

CYP51A1 1 1 1

IDI1 1 1 1

FDFT1 1 1 1

PGS1 1 1 1

CRAT 1 1 1

TECR 1 1 1

CDIPT 1 1 1

SQLE 1 1 1

SC5D 1 1 1

MVK 1 1 1

HMGCR 1 1 1

DHCR24 1 1 1

HSD17B7 1 1 1

CMPK2 1 1 1

GUK1 1 1 1

EBP 1 1 1

NSDHL 1 1 1

HSD17B12 1 1 1

LSS 1 1 1

PMVK 1 1 1

MVD 1 1 1

DTYMK 1 1 1

DHCR7 1 1 1

SLC22A5 1 1 1

GPD2 1 0b 0

PISD 1 0 1

ACAA1 1 0 0

ABCD1 1 0 0

EHHADH 1 0 0

ACAT2 1 0 0

CAT 1 0 0

DEGS1 1 0 0

PCYT2 1 0 0

ACADSB 1 0 0

SGPL1 0 1 0

PTDSS1 0 0 1

PCYT1A 0 0 1

a1 means this gene is essential in this subtype.
b0 means this gene is not essential in this subtype.
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necessary for tumor cells to synthesize membranes and signaling molecules. It has been reported that

aberrant expression of ACACB increases the risk in different cancer types (Currie et al., 2013). GPD2 en-

codes an enzyme localized in the inner mitochondrial membrane, which catalyzes the conversion of glyc-

erol-3-phosphate to dihydroxyacetone phosphate. The upregulation of this gene increased the glycolysis

in different cancer types (Lu et al., 2020; Mikeli et al., 2020; Wu et al., 2020).

We observed that three of the four targets, including SOAT1,CRLS1,ACACB, are the common drug targets

that are effective for all subtypes. This was a surprising finding in this study since it is challenging to find a

shared drug target, effective for all subtypes, due to the high inter-tumor or intra-tumor heterogeneity (Bur-

rell et al., 2013). Hence, we validated the inhibitory effect of the common targets in a general ccRCC cell line

model without specific subtype determination. Since there is a known inhibitor of SOAT1, mitotane, we

finally selected and validated the anti-cancer effect of SOAT1 in a widely used ccRCC cell line Caki-1.

This could serve as a proof of concept validation to show that the target genes we identified are promising

and could be potentially used for ccRCC treatment.

In conclusion, we identified three molecular subtypes in ccRCC and proposed a set of clinically promising

REOs-based classification biomarkers for subtype diagnosis at individual level. We also successfully vali-

dated our findings in three different independent cohorts. In addition, we identified specific gene targets

for the treatment of the subtype(s), and validated one of the common targets, SOAT1, using an in vitro

model. Therefore, this study provides new insight into ccRCC molecular subtypes and proposes practical

strategies for personalized diagnosis and precision medicine on subtype level treatment.

Limitations of the study

Although we proposed subtype-specific drug target such as GPD2 in this study, it was not possible to vali-

date its inhibition effects in a general cell line model because there is no way to determine the subtype

category using cell lines. An ideal validation study should be performed using subtype-specific patient-

derived cell lines or their xenograft models. Besides GPD2, we also reported some other promising sub-

type-specific gene targets such as ACAA1, ABCD1, and EHHADH, and so on, for subtype 1, SGPL1 for sub-

type 2 and PTDSS1 and PCYT1A for subtype 3 as presented in Table 2. Some of these targets may be toxic

to some other tissues based on in silico simulations. However, it is still worthwhile to evaluate their drug-

ability using in vitro and in vivomodels. Thus, it will be interesting to evaluate these targets in future studies

by including additional patients with ccRCC and generating subtype-specific patient-derived cell lines or

xenograft models.
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Materials availability
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Deposited data

TCGA ccRCCC samples Tatlow, P.J., and Piccolo, S.R. (2016). A cloud-based

workflow to quantify transcript-expression levels

in public cancer compendia. Sci Rep 6, 39259.
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https://osf.io/gqrz9 (TCGA_KIRC_tpm.tsv.gz;

TCGA_KIRC_counts.tsv.gz)

Japanese ccRCC samples European Genome-phenome Archive EGAS00001000509 (https://ega-archive.org/

studies/EGAS00001000509?order=samples&

sort=asc)
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current/Projects/RECA-EU)

Experimental models: cell lines

Caki-1 CLS Cell Lines Service GmbH, Eppelheim,
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Software and algorithms
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Matlab language version R2017b Mathwork https://ch.mathworks.com/products/
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human ccRCC cell line Caki-1 was purchased in CLS (RRID: CVCL_0234, CLS Cell Lines Service GmbH,

Eppelheim, Germany), which was derived from amale ccRCC patient. Cells were cultured with proliferation

media, McCoy’s 5AMedium (M9309, Sigma-Aldrich, Saint Louis, MO, USA) with 10% FBS and 1% Penicillin/

Streptomycin supplemented media, 37�C.

METHOD DETAILS

MTT assay

Mitotane (SML1885, Sigma-Aldrich, Saint Louis, MO, USA) was dissolved in DMSO. Cell viability was

measured with anMTT assay. Caki-1 cells were seeded into a 96-well plate at 5,000 cells per well triplicated.

Day after seeding, mitotane was treated with media change at the proper concentration. 10x MTT solution

(5mg/ml) was dissolved into proliferation media to 1x concentration. Media was changed into 1x MTT

solution and incubated for 2 hours. Formazan stained cells were dissolved with 80ml of DMSO and

measured with a microplate reader (Hidex Sense Beta Plus) at O.D 570nm.

Western blots

The whole cell lysate was prepared with CelLytic M (C2978, Sigma-Aldrich, Saint Louis, MO, USA) buffer.

SDS PAGE was performed with 30mg of lysate into Mini-PROTEAN� TGX� Precast Gels (Bio-Rad, CA,

USA) and transferred using Trans-Blot� Turbo� Transfer System (Bio-Rad, CA, USA). Anti-SOAT1/

ACAT1 antibody (ab39327, Abcam), GAPDH antibody (sc47724, Santa Cruz Biotechnology, Inc.) were

blotted overnight. Secondary antibody, goat Anti-Rabbit HRP (ab205718), and goat anti-mouse IgG-HRP

(sc2005, Santa Cruz Biotechnology, Inc.) were blotted for one hour. Protein band was detected with Image-

QuantTMLAS 500 (29-0050-63, GE). All antibodies were diluted at a 1:10000 concentration.

Flow cytometric analysis (FACs)

Propidium Iodide (P3566, Sigma-Aldrich) staining was performed for cell cycle analysis. Two days mitotane-

treated Caki-1 cells were trypsinized. Centrifuged cells were re-suspended in 1ml PBS. Cells were fixed by

adding 2.5 ml ethanol and incubated for 15 minutes on ice. After centrifugation, cells were re-suspended

with 500ml of PI staining solution consist of 10 mg/ml propidium iodide, 20 mg/ml RNase A (12091021, Ther-

moFisher), 0.05% triton X-100 in PBS for 20 minutes at dark and room temperature. 3 mL PBS was added to

PI stained cells and centrifuged again. 1 ml PBS re-suspended cells analyzed by FACs (BECKMAN

COULTER NAVIOSTM). PI stained cells were gated at 10,000 cells and 3,000 cells that less than 300 FS

INT were used for cell cycle analysis. Data was produced with Kazula Analysis Version 2.1.

QUANTIFICATION AND STATISTICAL ANALYSIS

Data and preprocessing

Global transcript-expression profiles (TPM and count values) of 530 TCGA ccRCC samples were down-

loaded from https://osf.io/gqrz9 (Tatlow and Piccolo, 2016). We extracted the tumor samples with sample

and vial identifiers of BRC patient barcode ‘01A0, which represented primary solid tumor tissue from the first

vial. The mRNA expression was quantified using Kallisto (Bray et al., 2016) based on the GENCODE refer-

ence transcriptome (version 24) (Ensembl 83 (GRCh38.P5)). We downloaded the clinical information of

TCGA samples by using the R package TCGAbiolinks (Colaprico et al., 2016). The whole-exome sequences

data of 100 KIRC samples of patients from the Japanese cohort (Sato et al., 2013) were downloaded from

European Genome-phenome Archive (accession number: EGAS00001000509). We used BEDTools (Quin-

lan and Hall, 2010) to convert BAM to FASTQ file. Kallisto was used for estimating the count and TPM values

of transcripts based on the same reference transcriptome of TCGAdata. The sum value of themultiple tran-

scripts of a gene was used as the expression value of this gene. The gene-level expression profiles (RPKM

values) of 91 European ccRCC samples were downloaded from https://dcc.icgc.org/releases/current/

Projects/RECA-EU. The genes with average TPM/RPKM values >1 were analyzed.

Clustering analysis

We extracted the top 1500 genes with the highest mean absolute deviation (MAD) of gene expression in

TCGA and Japanese cohorts, respectively. Then 1264 overlapped genes between the two cohorts were

further used for clustering. The Standard NMF algorithm proposed by Brunet (Brunet et al., 2004) was

used for sample clustering based on the expression values of the 1264 genes by R package NFM which
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is based on non-negative matrix factorization (NMF) algorithm. To find stable clusters, 200 iterations of

NMF were run for each possible number of clusters between two to eight. The optimal number of clusters

was determined based on the cophenetic correlation coefficient, which is a measurement of clusters’

stability (Brunet et al., 2004; Gaujoux and Seoighe, 2010). Principal component analysis (PCA) was used

to visualize the distribution of samples based on R function prcomp.

Differential expression analysis

The function ‘removeBatchEffect’ from the limma package was used to remove batch effect for merged

TPM expression profiles (Ritchie et al., 2015). DESeq2 (Love et al., 2014) was used to identify differentially

expressed genes (DEGs) between two groups. The lowly expressed genes with average TPM%1 were

removed, and the raw count values of the remaining genes were used as the input of DESeq2. Gene

ontology (GO) enrichment was performed based on the R package ClusterProfiler (Yu et al., 2012). This

tool uses the hypergeometric distribution to estimate whether a list of DEGs is significantly enriched in

each GO pathway. False discovery rate (FDR) was adjusted by the Benjamini-Hochberg (BH) method.

FDR<0.01 was used to identify significant DEGs and enriched pathways.

Concordance analysis of DEGs

If two lists of DEGs, list 1 with L1 genes and list 2 with L2 genes, have k overlapping genes, among which s

genes shows the same dysregulated directions (up or down-regulation) in the two DEGs lists, the proba-

bility of observing at least s consistent genes by chance can be estimated based on the following cumula-

tive hypergeometric distribution model:

P = 1�
Xs�1

i = 0

�
L2
i

��
L� L2
L1 � i

�
�
L
L1

�

Where, L represents the number of the background genes commonly measured in the datasets from which

the DEGs are extracted. The two DEG lists were considered to be significantly overlapped if p < 0.05. The

concordance score s/k is used to represent the consistency of DEGs between the two lists. The score ranges

from 0 to 1, and the higher concordance score indicates the better consistency of two lists of DEGs.

Development of the REOs-based biomarker

In a given sample, the relative expression ordering (REO) of every two genes (i and j) is denoted as either

Gi > Gj or Gi < Gj exclusively, where Gi and Gj represent the expression values (TPM) of gene i and j,

respectively. For a given gene pair (Gi and Gj), we used a binomial test to evaluate whether the frequency

of a specific REO pattern (Gi > Gj or Gi < Gj) was significantly stable in a cluster of samples as follows:

P = 1�
Xk�1

i = 0

�
n
i

�
pi
0

�
1� p0

�n�i

Where n denotes the total number of samples in the cluster, k denotes the number of samples with a certain

REO pattern (Gi > Gj or Gi < Gj) andp0(p0=0.5) is the probability of observing a certain REO pattern in a

sample by chance. The p values are adjusted based on the BHmethod. FDR < 1.3 10�7 was used to detect

the significantly stable gene pairs.

The subtype-specific gene pair shows a significantly stable REO in one subtype (e.g., subtype 1). However,

its REO is changed to a reversed pattern and still keeps stable in the remaining samples (e.g. cluster 2 plus

cluster 3), which was used to train the subtype-specific biomarker. In total, we found 432, 73652 and 21978

subtype-specific gene pairs for cluster 1, 2 and 3 in the training dataset. We predicted whether a given sam-

ple belongs to the specific subtype based on the REO of each subtype-specific gene pair. Here, precision is

defined as the ratio of correctly identified subtype-specific samples to all subtype-specific samples. The

recall is defined as the ratio of correctly determined non-subtype-specific samples to all non-subtype-spe-

cific samples. Then, from these subtype-specific gene pairs, we performed a forward selection procedure in

the training dataset to search a subset of gene pairs that achieved the highest F-score value, a harmonic

mean of precision and recall, which is calculated as follows:
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F � score= 2,
Precision,Recall

Precision+Recall

Using the subtype-specific biomarker of subtype 1 as an example, among the 432 subtype-specific gene

pairs, we selected the gene pair with the highest F-score as a seed. Next, we added another gene pair

to the biomarker until the F-score did not increase. The gene pair whose join cannot improve F-score is

not added during selection. The classification rule is that a sample is classified into a specific subtype if

most of the REOs within the biomarker vote for this subtype.

GEMs analysis

We reconstructed the subtype-specific GEMs based on the average expression values of the genes in each

cluster in the TCGA and Japanese cohorts, respectively. The expression of genes was divided into four

levels, no expression with TPM < 1, low expression with 1%TPM<10, median expression with 10%

TPM<50 and high expression with TPMR50. The iCancerCore model (Uhlen et al., 2017) was used as a tem-

plate model for GEM reconstruction through Integrative Network Inference for Tissues algorithm (tINIT)

(Agren et al., 2014) and the Mosek solver (version 7) in the RAVEN Toolbox (Agren et al., 2013). We used

the ESS tool to extract essential genes that are necessary for tumor cell growth (Zhang et al., 2018). The

threshold of cell growth rate was set to 0.05. After we generated the essential gene list, an in silico toxicity

test was performed in 32 available normal tissue models (Uhlen et al., 2017), reconstructed with the tINIT

algorithm, to assess if the knockout of these genes is toxic for normal cells. Our previous study defined 56

mandatory metabolic tasks categorized as energy and redox, internal conversions, substrate utilization and

biosynthesis of products (Agren et al., 2014), whose balance is necessary for normal cells to execute their

basic metabolic function. During the toxicity test, each of the putative gene targets is computationally

knocked out in the 32 normal tissue models to test if their silence interrupts the mandatory metabolic tasks.

The gene targets which do not interrupt any of the mandatory metabolic task in any of the normal tissue

model are considered to be less toxic (Agren et al., 2014). These genes will be kept in the candidate

drug target list.
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