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Abstract

The human cancer secretome database (HCSD) is a comprehensive database for human

cancer secretome data. The cancer secretome describes proteins secreted by cancer cells

and structuring information about the cancer secretome will enable further analysis of

how this is related with tumor biology. The secreted proteins from cancer cells are

believed to play a deterministic role in cancer progression and therefore may be the key

to find novel therapeutic targets and biomarkers for many cancers. Consequently, huge

data on cancer secretome have been generated in recent years and the lack of a coherent

database is limiting the ability to query the increasing community knowledge. We there-

fore developed the Human Cancer Secretome Database (HCSD) to fulfil this gap. HCSD

contains >80 000 measurements for about 7000 nonredundant human proteins collected

from up to 35 high-throughput studies on 17 cancer types. It has a simple and user

friendly query system for basic and advanced search based on gene name, cancer type

and data type as the three main query options. The results are visualized in an explicit

and interactive manner. An example of a result page includes annotations, cross refer-

ences, cancer secretome data and secretory features for each identified protein.

Database URL: www.cancersecretome.org.

Introduction

Cancer is currently seen as a cluster of complicated diseases

with increasing prevalence globally (1). Understanding and

curing cancer have entered a new phase with the advent of

next generation sequencing and advanced proteomics (2).

In particular, recent advances in both accuracy and scale of

the measurements in proteomics using label-based methods

(such as SILAC and iTRAQ) have revolutionized

oncoproteomics (3). The cancer secretome, as a newly es-

tablished subdiscipline of oncoproteomics, involves the de-

tection, quantification and characterization of the secreted

proteins (such as cytokines, growth factors etc.), shedome

(shed receptors and proteases) and extracellular matrix

components of a given type of cancer cell at a specific time

point (4, 5). Many secreted proteins are linked to the hall-

marks of cancer which are reliant on cell–cell adhesion and
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signaling (6, 7). Much analysis supports how these proteins

in the tumor microenvironment control and regulate the

cancer cell invasion and metastasis (8–11). Along with this,

soluble factors in cancer secretome are promising for novel

biomarkers and therapeutic targets for different types of

cancers (6, 12–16). Accordingly, there has been increasing

number of studies to analyze the cancer secretome resulting

in rapid growth in data generation. For example, Wu and

coworkers identified candidate serological biomarkers for

various cancer types based on secretome analysis of 23

cancer cell lines (17). From 4584 nonredundant proteins

identified in these cancer cell lines, they suggested between

6 and 137 marker candidates selective for each tumor type

and 94 potential pan-cancer markers (proteins secreted by

most cancer cell lines) and they verified several of the iden-

tified protein biomarkers (17). There are many other ex-

amples of the same kind of studies that have provided large

amounts of data to be publically available (18–20).

However, the lack of a specific database for cancer secre-

tome data challenges researchers in the field to query com-

munity knowledge in terms of the time and efficiency.

Therefore, designing a systematic and organized database

to manage large volumes of unstructured cancer secretome

data is in demand. To fulfil this important gap, we de-

signed the Human Cancer Secretome Database (HCSD), a

dynamic database with interactive web interface that pro-

vides the researchers with the opportunity to explore their

protein of interest against the publicly available data on

the human cancer secretome. HCSD has a simple and user-

friendly query system for basic and advanced searches

based on gene name, data type, and cancer type as the

three main query options. The result pages are explicit and

intractable. An example result page includes annotations,

cross references, cancer secretome data and secretory fea-

tures for each protein. Developing HCSD is an important

bioinformatics solution to boost research in cancer secre-

tome and tumor microenvironment.

Materials and methods

Data collection and preprocessing

To collect all relevant data from high-quality publications,

a comprehensive literature survey was done searching the

Scopus and PubMed database starting with the general

keyword ‘cancer secretome’. To avoid accumulation of the

false identifications that is frequent in proteomics data, we

applied stringent selection criteria to filter out publications

including: (i) to have standard workflow of one of the shot-

gun proteomics techniques (with biological and/or tech-

nical replications). (ii) Detailed description for each steps

of the experimental design. (iii) Providing of all the

parameters used in database searching and corresponding

bioinformatics analysis. (iv) Having error estimation strat-

egy (such as FDR). (v) Performing molecular/clinical valid-

ation experiment for the identified biomarkers. (vi)

Providing supplementary detail information tables for

identified portions in peptide and protein level. Applying

these criteria total 35 high-throughput publications were

selected as data source to collect the relevant data (see

DATA SET menu in the web page).

A major concern of any proteomic study is the FDR

(Flase discovery rate) control to prevent from inflation of

false identifications. To obtain reliable results, 1% FDR

should be applied on peptide and protein levels. When

merging distinct datasets, which were analyzed separately,

one has to take special care to avoid inflation of the FDR.

This has been previously done by Schaab et al. (21).

However, to apply such techniques in merging proteomics

datasets, corresponding P values for the reported fold

changes are necessary. Unfortunately, most of the available

data sets have not included the raw data or the P values in

their released data sets. This was a big challenge in design-

ing HCSD, and to overcome to that, we therefore carefully

collected the data based on the cut-off FDR reported in

each paper and we did exclude all the proteins above used

the cut-off. Also, the query results designed to be based on

each study so the user can compare the results from differ-

ent studies on a particular protein of interest and decide

based on major votes. In line with this, we also provided

more technical information on identification such as PSMs

(peptide-spectrum matches) and the number of the unique

peptides match in the results pages for each query. Doing

this while it is not yet possible to fully resolve the inflation

of false identification resulting from combining independ-

ent studies, the results will be reported study wise so the

user can assess the reliability of the results by checking

other supportive information from each study.

Next, the publications were categorized as label-free

and label-based studies based on the proteomics techniques

have been used to quantify the proteome. In label-free

proteomics, the secretome of a specific cancer type is quan-

tified without using a stable isotope containing compound

and the peptide abundance is quantified by spectral count-

ing. On the other hand, in label-based proteomics, stable

isotope(s) is used for labeling and quantification of the

peptides in the comparable samples. The label-based meth-

ods are less sensitive to the experimental biased than label-

free methods (22, 23). Therefore, this categorization helps

user to compare the results from two type of technology.

Because of the difference in publishing the data from one

paper to another, retrieving and processing data tables

from various studies and merging them into a single data-

base structure was time consuming. Missing information
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and the format of released data (PDF format) were also

problematic in data collecting step. As most of the studies

only report their data based on gene symbol or protein ID,

for ID mapping, we used bioDBnet (24) to make data be

searchable using different IDs in gene and protein levels. For

each protein in the database the annotation data extracted

from UniProt (25), ensemble (26) and Entrez (27) (Figure 1).

An exclusive link for each record is provided to direct the

user to its HPA cancer atlas (28) page. The HPA page pro-

vides the user with antibody-based protein profiling infor-

mation for the protein of interest in 20 most common

cancers. This allows user to compare the expression status of

the collected proteins in HCSD based on quantitative meth-

ods against antibody-based staining data in HPA.

Databasing and interface design

We used a MYSQL relational database (version 5.5.8) to

design and query HCSD database. The web interface im-

plemented by webpy (www.webpy.org), a python based

web framework. The web.py is in the public domain and it

has been used by Google App Engine. To our knowledge;

this is the first implementation of it in designing a bioinfor-

matics database.It is as powerful as Django (https://www.

Figure 1. The workflow of HCSD design. (a) Appling the selection criteria, first all the cancer secretome data were collected and processed from litera-

tures. (b) Then, I all the complementary annotation and cross references were obtainedfrom UniProt, Ensembl, bioDBnet and Entrez using thethe re-

ported protein or gene IDs in the data tables. (c) Next, the secretory pathway features including signal peptide, transmembrane domains and

nonclassic secretory proteins were predicted using CBS prediction servers (32–34). The secondary structures and PTMs information were retrieved

from UniProt (35). (d) Based on the proteomics strategy used, the secretome data were divided into label-free and label-based studies. (e) The struc-

tured data tables used as input to MySQL to generate searchable data tables by end user (http://www.mysql.com/). (f) For the web server lighttpd is

used to query the database (http://www.lighttpd.net/) and the web application and the interface were implemented using web.py (www.webpy.org),

Javascript (http://en.wikipedia.org/wiki/JavaScript), jQuery (http://jquery.com/) and D3 (http://d3js.org/).
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djangoproject.com/) while it is much simpler to implement.

The lighttpd (http://www.lighttpd.net/) were used as a fast

and open source web server which security, speed, compli-

ance and flexibility are all its characteristics comparing to

other competitors. In the query page, two dynamic and

searchable tables for label-free and label-based data were

designed using DataTables plug-in of jQuary (https://

www.datatables.net/). The result pages benefit from high

quality visualization techniques to present the cancer secre-

tome data and secretory features. For visualization,

Javascripts and D3 (www.d3.org) were used upon web.py.

HCSD is available at www.cancersecretome.org.

Querying HCSD

In order to query HCSD data, the user can start with quick

search in the two interactive tables for the label-free and

label-based data based on the gene of interest or informa-

tion in other columns. Also, these tables are sortable for any

columns of interest. We also designed an advanced query

option for the user in order to query the protein/gene of

interest to get more detail information. To do the advanced

query, the user first needs to specify a gene symbol, UniProt

or Ensemble gene ID in the query box. For example, if the

target gene name is EGFR, the user can enter the EGFR in

the query box (the first query field). The integrated auto-

complete feature will let the user to choose the gene name or

IDs in case of uncertainty. Next, the user has to select the

cancer type of interest (or all the cancer types). The last op-

tion is to choose the data type which has three choices- the

label-free, label-based and both options. Then, the user can

submit the query to the server. The advanced query provides

the user the possibility to combine various queries between

the cancer types and quantification techniques. The result

pages of label-free and label-based are similar in annotations

and secretory features section (Figures 3 and 4), but they dif-

fer in secretome data results (Figure 2). For details explan-

ation of the results pages see to the Figures 2–4.

Results

The structure of the HCSD

The HCSD structure was designed to fulfil four main goals

(i) to provide a straightforward searchable depository for

published data on different types of human cancer secre-

tome, (ii) the ability to compare information across differ-

ent secretome measurements (iii) to provide annotation;

cross-references in both gene and protein level for each

data points and (iv) prediction and visualization of the

secretory features for each protein. Therefore, HCSD

contains all the proteins (peptides) that are quantified so

far to be (differentially) expressed in various cancer types

secretome and at the same time provides annotation and

predictions about their secretory type.

In eukaryotic cells, protein secretion is carried out either

by the classic secretion pathway (having N-terminal signal

peptide) or the non-classical pathway(s) (29, 30). It is

valuable to know which processes the detected proteins

potentially use for secretion in to the tumor microenviron-

ment. Beside this, secretome analysis always is contami-

nated with proteins from cell debris or culture media that

results in false identifications. To assist with these chal-

lenges, bioinformatics algorithms have been developed that

can predict the secretory type of proteins from primary se-

quence based on signal peptide pattern, transmembrane

domain or other motifs. These tools are extensively re-

viewed elsewhere (31). However, checking the reliability

of the detection in secretome analysis is tightly depending

on these tools, and therefore a secretory feature section is

included in the results page for each protein query in order

to give a summary of the predictions on signal peptide,

transmembrane domain and nonclassical secretion signals

using the most frequently used bioinformatics tools (Figure

1). Moreover, specific post-translational modifications

(PTMs) are another characteristic of secretory proteins

among which disulphide bonds and glycosylation sites

(N-linked and O-linked) are the most specific. These infor-

mation also can be visualized on protein sequence by the

user in the result page (Figure 5).

An exclusive menu called ‘DATA SETS’ were designed

which allows the user to get access and query the basic in-

formation about the publication used as data source.

Each publication also has its own page which provides

more details on the workflow and experimental design.

The data set table provides hyperlinks to each publication

PubMed page. The study column in the result page also

Figure 2. The Venn diagram of the proteins measured in label-free and

label-based studies (35 publications).
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directs the user to PubMed page of the corresponding

publication.

The statistics of the HCSD

From 87 496 total measurements stored in HCSD, �85%

are derived from label-free on 14 cancer types. So far, the

label-based cancer secretome analysis has been mainly per-

formed on 5 cancer types (Supplementary Tables S1 and

S2). The Lung cancer secretome is the most studied cancer

and includes �11% of the total data (Supplementary

Tables S1 and S2). From 7001 unique proteins in HCSD,

6326 are measured in label-free (with 1148 being trans-

membrane proteins) and 4230 being measured in label-

Figure 3. Example of the query page showing the search options.
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based (with 534 transmembrane proteins).These two data-

sets share 3555 proteins (Figure 2). In general, most of the

proteins detected in different cancer types secretome are

secreted by nonclassical secretion pathways (Figure S1). In

total, 1413 nonredundant proteins are detected to be se-

creted by classic secretion pathway in 14 cancer types from

21 label-free, while this number for nonclassical secreted

proteins is 4,945. These numbers in label-based studies are

840 (classic) and 3409 (non-classic) proteins (Supplementary

Tables S1 and S2). Most of the cancer secretome data was

generated on cancer cell lines. In 35 publications used to de-

sign HCSD, 70 cancer cell lines were used to study the cancer

secretome (Supplementary Table S3). In case that the authors

did not include the cancer type of the cell lines they used, we

included the corresponding cancer type.

Discussion

How secreted proteins or peptides from cancer cells re-

model the tumor microenvironment in favor of the metas-

tasis is a pivotal research interest in the tumor biology.

Cancer cell secretome profiling is a promising approach to

find potential body fluid-accessible cancer biomarkers and

therapeutic targets, however mining the increasing data

from different labs is a big challenge which affects the effi-

ciency of selecting useful candidates and results in the accu-

mulation of redundant and false identified proteins. HCSD

(www.cancersecretome.org) was developed as a database to

store and query publically available human cancer secre-

tome data to bypass these challenges. It provides the re-

searchers to have access to all the high-throughput data

from studies in this field together with the needed detail

Figure 4. Example from the result pages for label-free and label-based studies. In the result page, the first section (a) provides the annotations such

as gene name, description, chromosomal location and cross references ID to the Ensembl (http://www.ensembl.org/), Entrez (http://www.ncbi.nlm.-

nih.gov/), and UniProt (www.uniprot.org/). In case of label-free search, exploring all type of cancers will be visualized as a table with the cancer type

icons in the header. The first column contains hyperlinked PubMed IDs. For each cancer type column, the protein of interest is detected (green spot),

not detected (red spot) or not studied (grey spot). The last column specify the proteomics method used in the study. (b) In the case of label-based

data, the result table header includes cancer types and the follow up information including the cancer stages, quantified fold change, number of the

PSMs, number of the unique peptides, sequence coverage and body fluid presence will come as additional rows.
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information in terms of the functional annotation and secre-

tory type for each protein. It also allows exploring previ-

ously used workflows, cell lines, validated biomarkers and

clinical surveys. HCSD can be used extensively by tumor

biologist to find their target secreted factor in specific or

various cancer types with all the annotations and sequence

bioinformatics analysis of the primary sequence and sec-

ondary structure information of the target proteins. All this

will facilitate the oncoproteomics studies in future.

Supplementary Data

Supplementary data are available at Database Online.
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