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Abstract
Foot-and-mouth disease virus (FMDV) A/ASIA/Sea-97 is a predominant lineage in Southeast Asia and East Asia. However, 
Sea-97 lineage has not been well studied since its first outbreak in Thailand in 1997. Thus, we conducted phylogenetic and 
evolutionary analysis of Sea-97 using 224 VP1 sequences of FMDV A/ASIA during 1960 and 2018. Phylogenetic analysis 
revealed that Sea-97 lineage can be classified into five groups (G1–G5). After the emergence of G2 from G1, the genetic 
diversity of Sea-97 increased sharply, causing divergence into G3, G4 and G5. During this evolutionary process, Sea-97 
lineage, which was initially found only in some countries in Southeast Asia, gradually spread to East Asia. The evolution rate 
of this lineage was estimated to be 1.2 ×  10–2 substitutions/site/year and there were many differences in amino acid residues 
compared to vaccine strain. Substitutions at antigenically important sites may affect the efficacy of the vaccine, suggesting 
the need for appropriate vaccine strains. Our results could provide meaningful information to understand comprehensive 
characteristic of Sea-97 lineage.
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Introduction

Foot-and-mouth disease (FMD), a contagious disease that 
affects cloven-hoofed animals, is caused by FMD virus 
(FMDV), a member of the Aphthovirus genus within the 
Picornaviridae family [1]. There are seven distinct types 
of FMDV serotypes: O, A, C, Asia 1, SAT 1, SAT 2, and 
SAT 3. Among them, serotype A is widely distributed and 
considered to be highly genetically and antigenically diverse, 
making vaccination control difficult [2, 3].

The nucleotide sequence encoding VP1, one of the struc-
tural proteins constituting the capsid, is used for characteri-
zation and phylogenetic analysis of FMDV [2, 4]. Based on 

the analysis of VP1 sequences, serotype A was classified 
into 26 genotypes [5]. 11 out of the 26 genotypes belonged 
to the ASIA topotype, and three of them seem to be the 
major lineages until recently. Several subtypes of A/ASIA/
Iran-05 and G-VII were identified, and many studies were 
conducted on them [3, 6–13]. However, although A/ASIA/
Sea-97 was reported in various countries in East Asia and 
Southeast Asia [14], only a few studies were conducted 
using a small number of sequence data [15, 16].

In this study, we investigated the phylogeny and evolution 
of Sea-97 lineage. All publicly available FMDV A/ASIA 
VP1 sequences were collected and used to reconstruct the 
phylogenetic tree. We subdivided Sea-97 into five groups 
based on the phylogeny and analyzed their phylodynamics.

Materials and methods

We collected VP1 coding region, polyprotein, and full 
genome sequences of FMDV A/ASIA from GenBank (www. 
ncbi. nlm. nih. gov). All nucleotide and protein sequences 
were aligned using MAFFT v7.419 and trimmed manu-
ally using MEGA X [17, 18]. Based on aligned protein 
sequences, multiple codon alignment was performed using 
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PAL2NAL web server [19]. The final dataset contained 224 
VP1 sequences of 633 bp isolated from eighteen countries 
between 1960 and 2018. The GenBank accession numbers 
are provided in Table S1.

Pairwise distances between 224 VP1 sequences were 
calculated and an unweighted pair group mean average 
(UPGMA) tree was constructed using DNADIST and 
NEIGHBOR in PHYLIP package v3.698 [20]. The F84 
model was used to compute the distance matrix, which 
assumed unequal base frequencies and different transition 
and transversion rates. The resulting tree was visualized in 
FigTree v1.4.4 [21]. Then, we distinguished nine lineages 
based on the prototype strains specified in FAO World Refer-
ence Laboratory for FMD (WRLFMD) [22].

Bayesian evolutionary analysis was performed using 
BEAST v2.6.3 [23]. The best-fit nucleotide substitution 
model was determined using ModelTest-NG [24]. We used 
relaxed clock log normal and coalescent Bayesian skyline 
model as a prior. Four independent Markov chain Monte 
Carlo (MCMC) chains were run for 50 million steps, sam-
pled every 5,000 steps, and then combined using LogCom-
biner [23]. The first 10% of chain in each run were discarded 
as burn-in. We analyzed the MCMC output log file using 
Tracer v1.7.1 [25]. We construct the maximum clade cred-
ibility (MCC) tree using TreeAnnotator [23].

Then, we extracted VP1 sequences of Sea-97 and con-
ducted Bayesian analysis (two chains for 50 million MCMC 
iterations, sampled every 5000 steps). We inferred phylo-
geographical history of Sea-97 and constructed the corre-
sponding Bayesian tree. The MCC tree with location traits 
was visualized using SpreadD3 v0.9.6 [26]. Bayesian skyline 
plot (BSP) was reconstructed in Tracer v1.7.1 [25].

We investigated selection pressures on VP1 gene of Sea-
97 using Datamonkey 2.0 webserver [27]. Fixed Effects 
Likelihood (FEL), Fast, Unconstrained Bayesian AppRoxi-
mation (FUBAR), Single-Likelihood Ancestor Counting 
(SLAC) methods, and Mixed Effects Model of Evolution 
(MEME) were used to detect sites under pervasive and epi-
sodic positive selections [28–30].

Results and discussion

In general, when classifying the subtype of FMDV, the 
UPGMA tree is constructed using the VP1 sequences and 
the percent nucleotide divergence (ND) is measured [5, 
31–33]. The threshold for classifying the sub-lineage is not 
clearly established, but it seems that lineages can be divided 
if they show at least 2.7–3.5% ND [34]. Figure 1a shows the 
UPGMA tree for 224 VP1 sequences of ASIA topotype. 
A15, Thai-87, and Sea-97 were isolated in East Asia and 
Southeast Asia countries, and only Sea-97 appears to be 
circulating at present time. As shown in the UPGMA tree, 

Sea-97 was clustered into five major groups denoted G1 to 
G5 (Table 1). G4 was distinguished from the other groups of 
Sea-97 at 4.5% ND. G1 and G5 were separated at the ND of 
4.3% and 4.2%, respectively. The clades of G2 and G3 were 
divided at 2.7% ND. WRLFMD prototype strains of Sea-97 
(A/TAI/2/97 and A/TAI/7/2003) belonged to G1 group. G1, 
G2 and G5 only included isolates from Southeast Asia, but 
G3 and G4 expanded to East Asia.

The MCC tree for VP1 sequences of the ASIA topo-
type is shown in Fig. 1b. The most recent common ances-
tor (MRCA) of Sea-97 was dated to be around 1993 [95% 
HPD = 1990.3525–1996.5827]. Then, G2 emerged from 
G1 in 2001.5275 [95% HPD = 2000.5886–2002.3205], 
and G3, G4, and G5 emerged from G2 in 2005.7843 
[95% HPD = 2004.9717–2006.5114], 2010.395 [95% 
HPD = 2008.8512–2011.5133], and 2012.0403 [95% 
HPD = 2011.2336–2012.7064], respectively.

A set of 124 VP1 sequences of Sea-97 was fur-
ther analyzed to infer evolutionary history. The mean 
evolutionary rate of Sea-97 ( 1.2 × 10

−2 s/s/y [95% 
HPD = 9.29 × 10

−3
− 1.51 × 10

−2 ]) was estimated to be 
much greater than that of global FMDV serotype A sam-
ples ( 4.26 × 10

−3 [35] and 5.77 × 10
−3 [36] s/s/y), and it 

was similar to the rates of other lineages of topotype ASIA 
( 1.25 × 10

−2 for Iran-05 [7] and 1.1 × 10
−2 for G-VII clade 

C [13] s/s/y). The BSP showed that the genetic diversity 
of Sea-97 isolates was constant until 2001, then increased 
sharply around 2002–2003, and then remained constant 
again (Fig. 1c). This pattern of population size is probably 
due to the emergence of G2 around 2001 and subsequent 
emergences of G3, G4, and G5. The reconstructed spatial 
diffusion of Sea-97 showed that this lineage first occurred in 
Thailand and spread to Malaysia and neighboring countries, 
and then from Vietnam to China and later to South Korea 
(Fig. 1d). It seems that this lineage has been actively circu-
lating within Southeast Asian countries.

Amino acid sequences of each group of Sea-97 were 
compared with the sequence of A22 (A22/IRQ/24/64), one 
of the widely used vaccine strains [37]. The sequence logo 
of each group obtained using Jalview v2.11.1.3 [38] was 
used for comparison (Fig. S1). The length of VP1 sequence 
of A22 was 211 amino acids and there was a gap at posi-
tion 140 in Sea-97. Positions 43–45, 83, 96, 141–160 (G-H 
loop), 169–173 and 200–211 (C-terminus) of VP1 were pre-
viously suggested as candidate regions that may affect anti-
genic properties of FMDV serotype A [9, 39–44]. Compared 
to A22, Sea-97 had many substitutions at these residues 
(Q43K, N44P, L45V, D83T/A, T141E/G/V/A/Q, G142T/
N/P/S, P149S, V154I/L, A160T, T171E, H173Q/R, H201Y 
and K204R). Most of sites under positive selection also 
belonged to these candidate regions (Table S2). In particular, 
Q43K, N44P, D81T/A, T141E/G/V/A, G142T/N/S, P149S, 
A160T, T171E, H173Q and H201Y have been substituted 
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Fig. 1  a UPGMA tree derived from 224 VP1 nucleotide sequences 
of FMDV A/ASIA. The x-axis represents the %ND. Branches are 
colored according to the lineage. b MCC tree derived from 224 VP1 
nucleotide sequences of FMDV A/ASIA. The x-axis represents the 
year. Branches are colored according to the lineage and branches 
of G-VII and Iran-05 are collapsed. c BSP of A/ASIA/Sea-97. The 

x-axis and y-axis represent the year and the effective population size, 
respectively. The thick blue line indicates median effective population 
size, and the light blue region means their 95% HPD interval. d Spa-
tial distribution of A/ASIA/Sea-97. The lines show the transmission 
between locations. The size of the red circles is proportional to the 
intensity of the virus presence in that region

Table 1  The summary of 
groups of FMDV A/ASIA/Sea-
97 classified based on UPGMA 
tree

Group Isolates Year Country

G1 13 1997–2005 Thailand, Malaysia
G2 49 2003–2008 Cambodia, Laos, Malaysia, Thailand, Vietnam
G3 51 2008–2010 China, Laos, Malaysia, South Korea, Thailand, Vietnam
G4 7 2013–2018 China, Malaysia, South Korea, Vietnam
G5 4 2013–2014 Laos, Malaysia, Thailand, Vietnam
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with amino acids with different biochemical properties. 
Therefore, it has the potential to have a major impact on 
antigenic properties. There is already a study suggesting that 
P149 rather than S149 matches well with the A22 vaccine 
[43]. It seems necessary to test whether these substitutions 
actually affect the efficacy of the currently used vaccine. If 
the existing vaccine does not match Sea-97 well, an appro-
priate vaccine for this lineage needs to be developed.

This study provides information to understand compre-
hensive characteristic of the Sea-97 lineage. However, the 
number of sequences available in the current public database 
is insufficient. Although the number of recent sequence data 
are small, our findings could provide meaningful basic infor-
mation on strategies to control FMDV in Asia. Based on our 
results, it seems necessary to collect more data and perform 
an extended analysis in future studies.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 1007/ s11262- 021- 01848-7.
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