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Abstract Within a decade, MERS-CoV emerged with

nearly four times higher case fatality rate than an earlier

outbreak of SARS-CoV and spread out in 27 countries in

short span of time. As an emerging virus, combating it

requires an in-depth understanding of its molecular

machinery. Therefore, conformational characterization

studies of coronavirus proteins are necessary to advance

our knowledge of the matter for the development of

antiviral therapies. In this study, MERS-CoV papain-like

protease (PLpro) was recombinantly expressed and purified.

Thermal folding pathway and thermodynamic properties

were characterized using dynamic multimode spectroscopy

(DMS) and thermal shift assay. DMS study showed that the

PLpro undergoes a single thermal transition and follows a

pathway of two-state folding with Tm and van’t Hoff

enthalpy values of 54.4 ± 0.1 �C and 317.1 ± 3.9 kJ/mol,

respectively. An orthogonal technique based on intrinsic

tryptophan fluorescence also showed that MERS-CoV

PLpro undergoes a single thermal transition and unfolds via

a pathway of two-state folding with a Tm value of 51.4 �C.
Our findings provide significant understandings of the

thermodynamic and structural properties of MERS-CoV

PLpro.

Keywords Differential scanning fluorometry � Dynamic

multimode spectroscopy � MERS � Papain-like protease �
Thermal shift assay

Abbreviations

Amp Ampicillin

DTT Dithiothreitol

EDTA Ethylenediaminetetraacetic acid

FPLC Fast protein liquid chromatography

IPTG Isopropyl b-D-1-thiogalactopyranoside
L Liter

LB Luria–Bertani

MPLpro MERS papain-like protease

Ni-NTA Nickel-nitrilotriacetic acid

OD600 Optical density at 600 nm

PMSF Phenylmethylsulfonyl fluoride

rpm Rotation per minute

Introduction

Frequent fatal coronavirus outbreaks in humans and ani-

mals have caused serious concerns in the healthcare sector,

scientific community, and animal husbandry. First human

outbreak of severe acute respiratory syndrome coronavirus

(SARS-CoV) in 2002 caused life-threatening atypical

pneumonia in more than 8000 people in 26 countries with a

case fatality rate (CFR) of 10% (Pillaiyar et al. 2015; Al-

Tawfiq et al. 2014; WHO 2016b). Another lethal coron-

avirus outbreak emerged in the Arab peninsula countries in

2012 which was caused by what is now known as the

Middle East respiratory syndrome coronavirus (MERS-

CoV). From September 2012 to December 2016, 1864
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laboratory-confirmed MERS-CoV cases of infection in 27

countries with 659 mortalities (nearly four times higher

CFR than SARS-CoV) have been reported (Al-Tawfiq

et al. 2016; WHO 2016a). Coronavirus survivors after

acute infections suffer from many health issues and require

long-term medical assistance (Han et al. 2003; Ong et al.

2005; Chan et al. 2003; Leow et al. 2005; Siu 2016; Cha

et al. 2016). In addition to SARS-CoV and MERS-CoV, at

least four other pathological coronaviruses (HCoV-OC43,

HCoV-229E, HCoV-HKU1, and HCoV-NL63) are con-

tinuously circulating in humans causing relatively mild

respiratory conditions that may in some instances escalate

to severe pathological illnesses (Mackay et al. 2012; Car-

bajo-Lozoya et al. 2012; Simon et al. 2007). Coronaviruses

have also caused deadly diseases in animals, leading to

huge economic losses in the animal husbandry sector

(Vlasova et al. 2014; Lee and Lee 2014; Sun et al. 2016).

Moreover, high mutation and recombination rates in

coronaviruses allow them to cross species barriers and

adapt to new hosts more easily (Denison et al. 2011; Lau

and Chan 2015).

Viral proteases are essential for pathogenesis and viru-

lence. Like all coronaviruses, MERS-CoV contains two

cysteine proteases (main protease and papain-like protease)

which processes viral nonstructural polypeptides (Kilianski

et al. 2013; Hilgenfeld 2014). MERS-CoV main protease

(Mpro, also called the 3C-like protease, 3CLpro) cleaves at

eleven sites, while MERS-CoV papain-like protease

(PLpro) cuts at three sites on the nonstructural polypeptides

and releases mature nonstructural proteins (Hilgenfeld

2014). Thus, MERS-CoV proteases make up a suit-

able target for antiviral therapies.

MERS-CoV open-reading frame 1 (ORF1) encodes two

large polyproteins (pp1a and pp1b). MERS-CoV PLpro

domain is encoded on the pp1a proteins (residue

1484–1800) (Yang et al. 2014; Hilgenfeld 2014; Kilianski

et al. 2013). Like other coronaviruses, MERS-CoV PLpro

contains a catalytic triad and exhibits similar proteolytic,

deubiquitination, and ISG15-linked ISGylation properties

(Lin et al. 2014; Chen et al. 2007; Clementz et al. 2010;

Yang et al. 2014; Zheng et al. 2008).

In this study, we expressed and purified MERS-CoV

PLpro. Thermal stability was studied by thermal shift

assay using intrinsic fluorescence and Dynamic Multi-

mode Spectroscopy (DMS). MERS-CoV PLpro was found

to unfold via a single thermal transition and follows a

pathway of two-state folding. This study will not only

help in the understanding of the folding and stability of

MERS-CoV PLpro but also could help shed some light on

other deubiquitinating enzymes with the similar folding

scaffold.

Materials and methods

Chemicals and instruments

The ORF of MERS-CoV PLpro (1484–1800 polyprotein

residues, GenBank accession number NC_019843.2) was

cloned into pET28a plasmid under T7 promoter as pub-

lished before (Lin et al. 2014). The codon was optimized

(GenScript, USA) and cloned between NcoI and XhoI sites

which was in frame of C-terminal His tag present on the

vector. E. coli BL21 (DE3) pLysS was used for the

expression of recombinant protein. Low-molecular weight

protein markers, prepacked Ni-NTA, and Superdex 75

columns were from Amersham Biosciences (United

Kingdom). Chicken egg lysozyme was from USB Corpo-

ration, USA. Benzonase, ANS, and kanamycin from

Sigma. IPTG was purchased from Bio Basic, Canada. All

other chemicals used in this study were of reagent grade.

Cary 60 spectrometer and Cary Eclipse spectrofluorometer

were from Agilent technologies, USA. AKTA purification

system was from Amersham Biosciences (United King-

dom) and SDS-PAGE assembly from Bio-Rad (USA).

Thermomixer and benchtop cooling centrifuge were from

Eppendorf, Germany. Innova 44R Shaking incubator was

from New Brunswick, Germany. Chirascan-Plus spec-

tropolarimeter was from Applied photophysics, United

Kingdom.

Expression and purification of MERS-CoV PLpro

in E. coli BL21 (DE3) pLysS

E. coli BL21 (DE3) pLysS harboring pET28a-MPLpro was

used for expression of MERS-CoV PLpro. Protein expres-

sion and soluble protein extraction were performed as

described in Lin et al. (2014). Purification of MERS-CoV

PLpro was performed with minor modification of an earlier

published protocol (Lin et al. 2014). Briefly, 1 mM DTT

was used throughout unless described. Cleared crude lysate

was passed through a 1-mL Ni-NTA column pre-equili-

brated with 20 mM Tris, pH 8.5, 500 mM NaCl, 10 mM

imidazole, and 1 mM DTT and washed with 20 CV equi-

libration buffer. Bound protein was eluted with a linear

gradient of 0–50% Buffer B (equilibration buffer contain-

ing 500 mM Imidazole) at 1 mL/min flow rate on AKTA

purification system. The purity of eluted fractions was

analyzed on SDS-PAGE.

The prepacked Superdex 75 equilibrated with 20 mM

Tris, pH 8.5, 100 mM NaCl, and 1 mM DTT was cali-

brated with proteins of known molecular weight. Subse-

quently, Ni-NTA-purified MERS-CoV PLpro was further

purified using Superdex 75 column. The purity of eluted
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fractions was analyzed on SDS-PAGE. Highly pure frac-

tions were pooled, aliquoted, and stored at -80 �C.

Protein quantification

Before analysis, the frozen aliquots were thawed and cen-

trifuged at 13,000 rpm for 15 min at 4 �C. Protein concen-

tration was determined spectrophotometrically at 280 nm

using a molar extinction coefficient of 42,400 M-1 cm-1.

Fluorescence spectroscopy

Tryptophan fluorescence spectra (50 lg/mL) of MERS-CoV

PLpro were recorded using a Cary Eclipse Fluorescence

Spectrophotometer in a 10-mm-path length cuvette. To

measure tryptophan fluorescence, MERS-CoV PLpro sample

was excited at 295 nm and emission spectra were collected

between 305 and 400 nm (5 nmexcitation and 5 nmemission

bandwidth). Temperature melting studies of MERS-CoV

PLpro were performed at 10 �C increments as well as a linear

increase of 1 �C/min. MERS-CoV PLpro incubated at differ-

ent temperatures from 20 to 90 �C in Peltier-controlled Cary

eclipse fluorometer. The temperature of the protein samples

was monitored using an internal temperature probe.When the

desired temperature was reached, the sample was allowed to

equilibrate for 2 min before tryptophan fluorescence spectra

were measured. The maximum fluorescence intensity (Imax)

and maximum fluorescence wavelength (kmax) were plotted

with respect to temperature. In a similar experiment, MERS-

CoV PLpro was gradually heated from 20 to 80 �C at a rate of

1 �C/min during which tryptophan fluorescence was mea-

sured by exciting at 295 nm and collecting at 330 and 350 nm

to obtain the temperature melting curve.

Dynamic multimode spectroscopy

To study the secondary structure of MERS-CoV PLpro in

terms of conformational and thermal stability, dynamic

multimode spectroscopy was applied. The measurement

was performed using Chirascan-Plus spectrophotometer,

calibrated with (1S)-(?)-10-camphorsulfonic acid. In this

study, 0.2 mg/mL of MERS-CoV PLpro was gradually

heated from 20 to 94 �C at 1 �C/mL rate. Internal thermal

probe was inserted in the 0.1-cm-path length cuvette to

precisely monitor the actual temperature of the samples.

Far-UV CD spectra from 200 to 250 nm were recorded at

each temperature. Thermal transition data were processed

using manufacturer’s Global 3 software.

MERS-CoV PLpro activity

The steady-state kinetics of MERS-CoV PLpro was mea-

sured as described in Lin et al. (2014), with slight

modification. Briefly, 50 lM fluorogenic peptidyl sub-

strate, Dabcyl–FRLKGGAPIKGV–Edans (GenScript), was

mixed with different concentrations of MERS-CoV PLpro

(6.8–0.1 lM, in twofold serial dilution) using 50 mM

phosphate at pH 6.5 as a buffer at room temperature. The

fluorescence signal was measured for 30 min at 60-s

intervals in a Hidex Chameleon plate reader using 340 nm

(excitation) and 535 nm (emission filter) with 20% gain.

Results and discussion

Expression and purification of recombinant MERS-

CoV PLpro

In this study, MERS-CoV PLpro was overexpressed in

E. coli BL21 (DE3) pLysS. MERS-CoV PLpro was purified

in two-step chromatography as described in Lin et al.

(2014). Ni-NTA elute contained minor impurities (data not

shown). When Ni-NTA elute passed through gel filtration

column, one major symmetrical sharp peak was obtained

(Fig. 1a). SDS-PAGE analysis of the pooled fractions

showed the yield of highly pure MERS-CoV PLpro

(Fig. 1b). We obtained nearly 10 mg of MERS-CoV PLpro

from a 1-L shake flask culture. In an earlier study, the yield

of soluble MERS-CoV PLpro was strain dependent and the

best yield (*52 mg purified protein from 1 L shake flask

culture) was obtained with E. coli BL21 (DE3) STAR

strain (Lin et al. 2014). The difference in the yield of

MERS-CoV PLpro was due to the different strain’s genetic

background.

Fig. 1 Purification of His-tagged MERS-CoV PLpro. a The Ni-NTA

elute was passed through Superdex 75 equilibrated with 20 mM Tris,

pH 8.5, 100 mM NaCl, and 1 mM DTT. Protein was eluted in one

major symmetrical peak. b Fractions were pooled and analyzed on

4–20% gradient SDS-PAGE. Lane 1 low-molecular weight marker,

lane 2 pooled fractions of MERS-CoV PLpro
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Thermal shift assay

Intrinsic fluorescence spectroscopy is a highly sensitive

tool, which provides information about the microenviron-

ment of Trp and Tyr residues within proteins. Tyrosine

emission maximum is less sensitive to its local environ-

ment compared to tryptophan. Indole ring in the tryptophan

residues undergoes two isoenergetic transitions which

causes polarity sensitivity, while tyrosine undergoes

through a single electronic state (Ghisaidoobe and Chung

2014). During the course of protein unfolding, the polarity

of fluorophore microenvironment changes, which in turn

leads to changes in the maximum fluorescence intensity

(Imax) as well as maximum fluorescence wavelength (kmax).

Therefore, intrinsic tryptophan fluorescence emission is

sensitive to the tertiary structure and detects subtle protein

conformational changes in solution. It has been frequently

used for the characterization of protein’s conformational

changes under different stress conditions (Kumar et al.

2005; Xiao et al. 2015).

A previous study analyzing the quaternary structure of

MERS-CoV PLpro using analytical ultracentrifugation

technique has shown that PLpro is found in the monomeric

state (Lin et al. 2014). MERS-CoV PLpro contains ten

tyrosine and five tryptophan residues (Fig. 2a). MERS-

CoV PLpro consists of two domains: N-terminal ubiquitin-

like (Ubl) domain and a catalytic core domain. The

N-terminal Ubl domain consists of 62 residues and con-

tained one a-helix, one 310-helix and five b-strands. The
substrate-binding region is solvent exposed and comprised

of the right-hand scaffold (Lei et al. 2014). Three trypto-

phan residues (W93, 243 and 303) are buried, while W187

and W190 are surface exposed (Fig. 2b). Figure 3a shows

the decrease in intrinsic fluorescence of MERS-CoV PLpro

with increasing temperature. At low temperature (20 �C),
highest fluorescent intensity (Imax) was observed with

maximum fluorescence wavelength (kmax) at 343 nm,

indicating an overall localization of all five tryptophans in

the partially hydrophobic environment. As the temperature

increases gradually from 20 to 90 �C, Imax decreased with

major transitions occurring between 50 and 60 �C (Fig. 3a,

b). Initially, kmax increased from 343 to 344 nm when the

temperature was increased from 20 to 30 �C. As the tem-

perature was increased further, a blue-shift in kmax with

increasing temperature was observed, indicating confor-

mational rearrangements in different temperature regimes.

The major blue-shift in kmax was found between 50 and

60 �C (Fig. 3c). The 14-nm blue-shift of tryptophan fluo-

rescence spectrum indicated that the microenvironment of

the tryptophan residues is becoming more hydrophobic

during thermal denaturation. MERS-CoVPLpro thermal

unfolding is different from most other proteins. Commonly,

protein unfolding fluorescence spectra are characterized by

a long wavelength shift ‘‘red-shift.’’ But some proteins,

MGTIEVLVTVDGVNFRTVVLNNKNTYRSQLGCVFFNGADISDTIPDEKQNGHSLYLADNLTADETKALKE
LYGPVDPTFLHRFYSLKAAVHKWKMVVCDKVRSLKLSDNNCYLNAVIMTLDLLKDIKFVIPALQHAFMK
HKGGDSTDFIALIMAYGNCTFGAPDDASRLLHTVLAKAELCCSARMVWREWCNVCGIKDVVLQGLKAC
CYVGVQTVEDLRARMTYVCQCGGERHRQIVEHTTPWLLLSGTPNEKLVTTSTAPDFVAFNVFQGIETAVG
HYVHARLKGGLILKFDSGTVSKTSDWKCKVTDVLFPGQKYSSLEHHHHHH

W187W190

W303

W93

W243

a

b

Fig. 2 a Sequence of C-terminal His-tagged MERS-CoV PLpro

showing ten Tyr and five Trp residues, which are highlighted in

green and blue, respectively. Potential internal protease site is

highlighted in red and His-tagged residues are underlined. b Three-

dimensional structure of MERS-CoV PLpro (PDB ID: 4R3D) with the

side chains of the five Trp residues being numbered and colored in

blue
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including MERS-CoV PLpro, exhibit blue-shift upon

denaturation (Slutskaya et al. 2015; Duy and Fitter 2006;

Pattanaik et al. 2003). Pig pancreatic a-amylase showed

red-shifted fluorescence spectra when chemically unfolded

and showed blue-shifted spectra during thermal unfolding

(Duy and Fitter 2006). Equine lysozyme first exhibits a

blue-shift transition at lower temperature and red-shift

above 50 �C (Morozova et al. 1991).

To obtain temperature melting curve, MERS-CoVPLpro

was gradually heated from 20 to 80 �C at 1 �C/min and the

ratio of 330/350 nm tryptophan fluorescence was plotted

with respect to temperature (Fig. 4). Data were fitted

according to the equation f = y0 ? a/(1 ? exp(-(x - x0)/

b)) with an r2 value of 0.9910. Our results showed that

MERS-CoV PLpro was moderately stable and unfolds via a

single transition with a Tm value of 51.4 �C.
Since MERS-CoV PLpro is a protease, it may undergo

autolysis during thermal shift assay. It contains one

potential autolysis site (LKGG) as shown in Fig. 2a. To

evaluate the extent of autolysis as well as the extent of

irreversible thermal unfolding and aggregation, MERS-

CoV PLpro (0.2 mg/mL) was incubated on a

thermomixer from 20 to 70 �C with 10 �C intervals. Six

samples were gradually heated and equilibrated at the

respective temperatures for 3 min. When the desired

temperatures were attained, the samples were removed,

kept on ice, and centrifuged at 13,000 rpm for 15 min to

remove any forming aggregates. Equal volumes of the

supernatant were analyzed (Fig. 5). If MERS-CoV PLpro

would undergo autolysis during the course of thermal

incubation, we would expect to see the appearance of

two or more bands of MERS-CoV PLpro fragments on

SDS-PAGE gels or at least a decrease in the band

intensity of MERS-CoV PLpro. We found that the

intensity of MERS-CoV PLpro band was apparently

unchanged, indicating that autolysis was not occurring

during the thermal shift assays applied in this study. In

another scenario, irreversible unfolding aggregates may

form during thermal shift assay. If this is the case, then

aggregated protein will be pelleted down upon cen-

trifugation and band intensity would have decreased in

the supernatant sample. Our result showed that the band

intensity of the supernatant samples incubated from 20

to 70 �C was apparently unchanged (Fig. 5), indicating
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Fig. 3 Thermally induced

structural changes in MERS-

CoV PLpro as monitored by the

intrinsic tryptophan

fluorescence spectroscopy. a To

monitor tryptophan fluorescence

at different temperatures,

MERS-CoV PLpro was slowly

heated and allowed to

equilibrate for 2 min at the

respective temperatures. The

sample was excited at 295 nm

and the emission spectra were

collected from 305 to 400 nm

(5 nm excitation and 5 nm

emission bandwidth). b Effect

of temperature on the

tryptophan emission intensity

showing the decrease of Imax

with increasing temperature.

Major transition occurred

between 50 and 60 �C. c Effect

of temperature on the

tryptophan maximum emission

wavelength (kmax). Blue-shift

was observed during thermal

unfolding of MERS-CoV PLpro.

Initially, red-shift was observed

when the temperature was

increased from 20 to 30 �C.
Further increase in temperature

leads to blue-shift with major

changes occurring between 50

and 60 �C
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no or insignificant aggregation occurring during thermal

shift assays.

Dynamic multimode spectroscopy (DMS)

Information about thermal stability, unfolding pathway,

and secondary structure of MERS-CoV PLpro was obtained

using an orthogonal method. We employed DMS, a newly

developed information-rich experimental technique, to

obtain spectroscopic and thermodynamic data of melting

temperature (Tm) and van’t Hoff enthalpy (DHVH) (John

and Weeks 2000; Greenfield 2006; Al-Ahmady et al.

2012). Temperature-induced secondary structural changes

in MERS-CoV PLpro in the far-UV region were monitored

to study thermodynamic parameters. Moreover, DMS also

characterized thermal unfolding pathway and identified the

number of folding intermediate species and their relative

concentrations during the unfolding process (Malik et al.

2015, 2016). MERS-CoV PLpro was gradually heated from

20 to 94 �C at 1 �C/min increments and far-UV CD spectra

were recorded from 200 to 250 nm. Far-UV CD spectra at

several wavelengths were plotted as a function of temper-

ature (Fig. 6a). MERS-CoV PLpro underwent a single

thermal transition as a function of temperature, suggesting

two-state folding. Similar transition was also observed in

the thermal shift assay using fluorescence spectroscopy. In

an earlier study, secondary structure content was calculated

and it was found that b-sheet structure (31%) is dominant

in MERS-CoV PLpro (Lin et al. 2014). Similarly, our

results showed that MERS-CoV PLpro presented a single

negative minimum at *218 nm suggesting a predominant

b-sheet structure as well. When MERS-CoV PLpro was

gradually heated, secondary structure was lost and became

irregularly disorder structure (Fig. 6b). The relative con-

centrations of folded and unfolded species as a function of

temperature are shown in Fig. 6c. The thermal melting

point (Tm) and van’t Hoff enthalpy (DHVH) of MERS-CoV

PLpro calculated using Global 3 analysis software were

54.4 ± 0.1 �C and 317.1 ± 3.9 kJ/mol, respectively. The

thermal melting points (Tm) of MERS-CoV PLpro calcu-

lated by thermal shift assay and DMS were found to be in

close proximity, reflecting tertiary–secondary structure

unfolding events, respectively. In a recent study, papain-

like protease of Murine Coronavirus also underwent a

single thermal transition with a Tm value of *46 �C
(Mielech et al. 2015). A three-dimensional model of the

thermal transitions of MERS-CoV PLpro was generated

using Global 3 analysis software (Fig. 6d). A single tran-

sition is clearly evident at lower wavelengths in the far-UV

spectra region.

Conclusions

MERS-CoV PLpro was expressed in soluble state in E. coli

and purified to homogeneity in two-step chromatography.

Two orthogonal techniques were used for studying

unfolding pathway that include the utilization of DMS and

thermal shift assay. The results showed that MERS-CoV

PLpro unfolds via a single thermal transition and follows a

two-state unfolding pathway. Thermal shift assay calcu-

lated a Tm value of 51.4 �C and DMS method calculated a

Tm value of 54.4 ± 0.1 �C, in agreement with sequential

unfolding events of tertiary and secondary structures,

respectively. Similar folding behavior and thermal melting

point were also observed in papain-like protease of Murine

Fig. 4 Thermal shift assay using tryptophan fluorescence. MERS-

CoV PLpro was continuously heated from 20 to 80 �C at 1 �C/min and

the sample was excited at 295 nm at each temperature and emission

spectra at 330 and 350 nm were recorded. The ratio of 330 nm/

350 nm was plotted as a function of temperature. The mid-point of

transition was identified as the thermal melting point (Tm)

1- LMW
2- MpPRO at 20°C
3- MpPRO at 30°C
4- MpPRO at 40°C
5- MpPRO at 50°C
6- MpPRO at 60°C
7- MpPRO at 70°C

94

67

43

30
20
14

1        2          3          4            5            6           7

Fig. 5 Autolysis and solubility of MERS-CoV PLpro at different

temperatures. MERS-CoV PLpro was incubated at different temper-

atures. Subsequently, MERS-CoV PLpro was cooled on ice and

centrifuged to remove aggregated protein. An equal volume of each

sample was analyzed on SDS-PAGE
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Coronavirus, indicating similarity in deubiquitinating

enzyme scaffold. Next, we have planned to evaluate the

effect of different factors such as pH and ionic strength on

the folding, conformational stability, and protease activity

of MERS-CoV PLpro. Such studies will facilitate in

exploring the different stability profiles of the different

conformations as well as in evaluating the environmental

condition affecting higher-order structural states in an

effort to develop antivirals.
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