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Introduction

Breast cancer (BC) is a highly heterogeneous disease that 
includes ERα+, HER2+, and triple-negative forms (TNBC; ERα-, 
progesterone receptor [PR]-, and HER2-).1 TNBC can be further 
divided into several different subtypes, including basal-like and 
claudin-low/mesenchymal-like BC.2 Cell lines established from 
these tumors are referred to as Basal-A and Basal-B, respectively. 
These cell lines resemble the BCs from which they were derived 
and can be used as surrogates for primary tumors.3

Patients affected by TNBC are currently treated with single 
agent or combination therapies of doxorubicin, paclitaxel, 5-fluo-
rouracil, epirubicin, methotrexate, cyclophosphamide, cisplatin, 

and gemcitabine.4-12 Although effective, most combinations 
have adverse side effects, including neutropenia, neuropathy, 
and cardiotoxicity, and many tumors still progress to metasta-
sis.4,9 Regimes with a more tolerable toxicity tend to yield a much 
lower overall response rate.10,11 There is, therefore, a great need 
to improve efficacy of existing combination therapies by miti-
gating toxic side effects and improving complete response rates. 
One way of achieving this is through discovery of new drugs, 
either as single-agent treatments or in combination with exist-
ing regimes. Here we performed a high-throughput drug screen 
against human TNBC cells to identify novel therapeutics and 
identified disulfiram, an FDA-approved drug used to treat alco-
holism, as the most potent growth inhibitor.
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Triple-negative breast cancer (TNBC) represents an aggressive subtype, for which radiation and chemotherapy are 
the only options. Here we describe the identification of disulfiram, an FDA-approved drug used to treat alcoholism, as 
well as the related compound thiram, as the most potent growth inhibitors following high-throughput screens of 3185 
compounds against multiple TNBC cell lines. The average IC50 for disulfiram was ~300 nM. Drug affinity responsive target 
stability (DARTS) analysis identified IQ motif-containing factors IQGAP1 and MYH9 as direct binding targets of disulfiram. 
Indeed, knockdown of these factors reduced, though did not completely abolish, cell growth. Combination treatment 
with 4 different drugs commonly used to treat TNBC revealed that disulfiram synergizes most effectively with doxoru-
bicin to inhibit cell growth of TNBC cells. Disulfiram and doxorubicin cooperated to induce cell death as well as cellular 
senescence, and targeted the ESA+/CD24-/low/CD44+ cancer stem cell population. Our results suggest that disulfiram may 
be repurposed to treat TNBC in combination with doxorubicin.
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Results

High-throughput drug screening identifies disulfiram as an 
effective growth inhibitor of TNBC cells

To discover novel therapeutics for TNBC, we performed a 
robotic-assisted high-throughput screen of 4 different TNBC cell 
lines with 3185 small molecules, including 2000 and 1185 com-
pounds from the Spectrum and Prestwick libraries, respectively. 
These partially overlapping libraries consist of FDA-approved 
drugs and additional agents with known biological activity. 
The 4 cell lines used in our screens (HCC70, MDA-MB-231, 
MDA-MB-436, and Bt549) represent a wide range of TNBCs 
with respect to pRb and p53 tumor suppressors status as well 
as subtype (basal-like and claudin-low). Each screen and valida-
tion of hits was performed in 384-well format, using alamar blue 
viability assay readout. Figure 1A–D depicts the average response 
of TNBC lines against both libraries and the top 5 most potent 
drugs in each (top 50 most potent drugs listed in Tables S1 and 
S2). Among the most potent compounds were known antineo-
plastic agents such as doxorubicin. In addition, a small number of 
compounds not previously known to target TNBC were identi-
fied, including disulfiram (DSF) and its structurally related ana-
log thiram (Fig. 1C and D).

Dose-response curves for DSF and a number of top hits were 
performed on all 4 TNBC lines. DSF was more effective against 
each cell line than doxorubicin, daunorubicin, mitoxantrone, col-
chicine, or paclitaxel (Fig. 1E–J). Notably, MDA-MB-436 cells 
were resistant to the mitotic inhibitors colchicine and paclitaxel 
but highly susceptible to DSF. To further test for efficacy of DSF 
against TNBC, we performed MTT viability assays on a panel 
of 13 human-derived TNBC lines (Fig. 2A and B). Both DSF 
and thiram effectively suppressed growth of TNBC cells, with 
an average IC

50
 across all lines of 300 nM and 360 nM, respec-

tively. The effect of these drugs was similar for both Basal-A and 
Basal-B TNBC cell lines (Fig. 2C and D).

Identification of IQGAP1 scaffold protein and myosin 
heavy chain 9 as binding targets for disulfiram

Thiram, a sulfur fungicide applied directly to the skin for 
treatment of scabies, is moderately toxic by ingestion and highly 
toxic when inhaled.13 Disulfiram (DSF) is used to treat alcohol-
ism based on its inhibitory effect on acetaldehyde dehydrogenases, 
which are encoded by 3 of the 19 different aldehyde dehydro-
genase (ALDH) genes, ALDH1A1, ALDH2, and ALDH1B1/
ALDH5. It has mild side effects in humans that include head-
ache, metallic taste, and drowsiness due to increased production 
of tryptophol in the liver.14,15 Beyond treatment of alcoholism, 
disulfiram was found in non-biased drug screens to show anti-
neoplastic activity against prostate cancer and glioblastoma16-18 
and is the subject of ongoing clinical trials for lung and liver 
cancer.19,20 DSF has been implicated in multi-drug resistance, 
NFkB-mediated apoptosis, phosphoinositide 3-kinase signaling, 
and induction of p53.21-24 ALDH1A3 is commonly elevated in 
cancer stem cells (CSC).25 However, this isoform is not expressed 
in MDA-MB-231 cells,26 in which we showed DSF to have a 
potent inhibitory effect (Figs. 1 and 2). Thus, it is unlikely that 
DSF exerts its effects through ALDH1A3.

To identify targets of DSF, we performed Drug Affinity 
Responsive Target Stability (DARTS) analysis27-29 using 
MDA-MB-231 cells treated with 100 nM DSF. Cell lysates were 
incubated with varying concentrations of DSF before diges-
tion with pronase followed by SDS-PAGE and silver staining 
(Fig. 3A). DSF-protected bands were identified, extracted, and 
subject to mass spectrometry. Remarkably, this analysis identi-
fied 2 IQ motif-containing factors as candidate targets for DSF: 
IQ motif containing GTPase activating protein 1 (IQGAP1) and 
myosin heavy chain 9 (MYH9) (Fig. 3B–C).

IQGAP1 is a ubiquitously expressed scaffold protein involved 
in cytoskeletal organization, cellular adhesion, and cell cycle 
regulation.30-34 MYH9 is a subunit of myosin IIA that plays a 
role in cell motility, cell shape, and cytokinesis.35-37 Both proteins 
contain IQ calmodulin-binding motifs, a highly basic α-helical 
sequence of ~20–25 amino acids.38 To investigate these targets, we 
used Dharmacon RNA interference (RNAi, Thermo Scientific 
Dharmacon) in MDA-MB-231 cells. Western blot analysis con-
firmed near-complete or efficient knockdown of IQGAP1 and 
MYH9, respectively (Fig. 3D and E). Knockdown of each fac-
tor resulted in a 25–30% inhibition of cell growth 72 h post-
transfection (Fig. 3F). In contrast, DSF inhibited cell growth by 
75% at 250 nM, 72 h post-treatment. Combined knockdown 
of both proteins did not consistently enhance growth inhibition 
(Fig. S1). Thus, while IQGAP1 and MYH9 interact with DSF, 
additional factors, possibly other IQ-motif containing proteins, 
likely interact with and contribute to the global effect of DSF. 
Notably, the partial effect seen here with IQGAP1 knockdown 
in MDA-MB-231 tumor cells is in stark contrast to a recent 
paper showing that IQGAP1 inhibition suppresses tumor initia-
tion/hyperproliferation driven by RAS signaling activation39 (see 
“Discussion”).

Pathway analysis reveals divergent effects of disulfiram on 
cellular signaling

To identify the global effects of disulfiram on cellular signal-
ing, MDA-MB-231 cells were treated with vehicle alone, 100 nM 
or 250 nM DSF. After 72 h, RNA was extracted and subjected 
to transcriptional profiling, followed by analysis via Database for 
Annotation, Visualization and Integrated Discovery (DAVID), 
and the results were finally visualized by “functional enrichment 
maps”.40 This analysis revealed that DSF affected multiple sig-
naling pathways (Fig. 4). Upregulated pathways included anti-
survival genes such as PTEN and caspases.41,42 Also upregulated 
were sphingolipids and their receptor EDG1/S1P1 pathways, 
which promote apoptosis as well as autophagy and cellular 
senescence.43-48

Disulfiram synergizes with doxorubicin to inhibit growth 
of TNBC cells

We next asked whether DSF could cooperate with other 
drugs commonly used to treat TNBC. Specifically, we tested 
the combined effect of DSF plus doxorubicin, gemcitabine, 
paclitaxel, or the CDK4/6 inhibitor PD-0332991 (Fig.  5; 
Fig. S2). The most effective combination in MDA-MB-231 
cells was DSF plus doxorubicin, and a synergistic response of 
these 2 drugs was observed across a range of concentrations 
(Fig. 5A). Additional analysis revealed that the effect of DSF 
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plus doxorubicin on MDA-MB-468, Hs578t, and HCC38 
cells was additive, while the effect on HCC70 cells was syn-
ergistic (Fig.  5B) (See “Materials and Methods” for criteria). 

As doxorubicin is highly toxic, the additive/synergistic effect 
observed here with DSF may allow for lower doses and better 
clinical outcome.

Figure  1. High-throughput screen of 3185 compounds with known biological activities against 4 human-derived TNBC cell lines (MDA-MB-231, 
MDA-MB-436, HCC70, Bt549). Shown are the average responses by the 4 lines to (A) Spectrum library (1 μM, 2000 drugs), (B) Prestwick library (0.8 μM, 
1185 drugs). (C and D) Top 5 hits from the Spectrum and Prestwick libraries; disulfiram and thiram are highlighted in red. Values represent the average 
cell viability of all 4 lines expressed as a percentage of vehicle treated control. (E–J) Validation and dose-response curves for select hits using alamar 
blue viability assay, performed in triplicate.
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Disulfiram cooperates with doxorubicin to induce apopto-
sis and senescence in MDA-MB-231 cells and target the CSC 
fraction

Next, we sought to determine the mechanism by which DSF 
inhibits growth of TNBC cells. The pathway analysis revealed 
activation of pathways associated with cell death and senes-
cence. Following doxorubicin and/or DSF treatment, many 
MDA-MB-231 cells died and lifted off the plate. The remain-
ing population, including supernatant, was collected and sub-
ject to flow cytometry with Annexin-V and 7-AAD for early 
apoptotic (7-AAD-/Annexin-V+), late apoptotic/dead (7-AAD+/
Annexin-V+), or necrotic (Annexin-V-/7-AAD+) cells. These 
results demonstrated cooperation between DSF and doxorubi-
cin in inducing cell death (38% 72 h post-treatment, Fig. 6A). 
However, interestingly, the level of cell death and relative ratio of 
these populations was not altered dramatically, suggesting that 
while some cells undergo apoptosis, others are growth inhibited 
through additional mechanisms. This is consistent with the fact 
that MDA-MB-231 cells express a high level of mutant p53, 
which is stabilized by and contributes to survival signals gener-
ated by elevated phospholipase D in these cells.49

Indeed, we noticed that treatment with both drugs induces 
enlarged cell morphology in MDA-MB-231 cells. This prompted 
us to test for cellular senescence through senescence-associated 
β-galactosidase staining. Interestingly, we found that doxorubicin 
or DSF treatment cultures showed X-gal-positive cells (29.9% and 
23.0%, respectively), and that doxorubicin plus DSF treatment 
resulted in an additive effect (42.4%) (Fig. 6B–F). We note that 

doxorubicin did not induce robust senescence in MDA-MB-231 
as it did in MCF7 cells (Fig.  6G), the latter of which express 
wild-type p53 that drives cellular senescence.50,51 However, doxo-
rubicin clearly induced large, X-gal-positive MDA-MB-231 cells 
compared with untreated cells (Fig. 6C and D), and combina-
tion of doxorubicin plus DSF further increased the percentage of 
these cells (Fig. 6F). Thus, DSF potentiates the effects of doxo-
rubicin on both viability and proliferation.

Cancer stem cells (CSCs) sustain tumorigenesis and exhibit 
distinct gene expression profiles and sensitivity to drug treat-
ment compared with non-CSCs.52-55 CSCs in TNBC cell lines 
were identified by flow cytometry as ESA+/CD24-/low/CD44+.56,57 
To determine the effect of DSF and doxorubicin on CSCs, 
MDA-MB-231 cells were treated with each drug alone or in com-
bination. After 72 h, remaining live cells were analyzed by flow 
cytometry for CD24, ESA, and CD44 cell surface markers. We 
found that DSF and doxorubicin effectively abrogated the CSC 
population when used in combination (65% inhibition), as com-
pared with treatment with DSF (5% inhibition) or doxorubicin 
(57% inhibition) alone (Fig. 7). Taken together, these results sug-
gest that DSF cooperates with doxorubicin to target TNBC cells 
and diminish the CSC population.

Discussion

Here, we describe identification of disulfiram (DSF) through 
a high-throughput screen of 3185 drugs as a potent growth 
inhibitor of TNBC. DSF compared favorably with several other 

Figure 2. Dose-response curves for a panel of 13 human-derived TNBC cell lines treated with disulfiram or thiram. (A) Response to disulfiram for each 
individual line by MTT viability assay. Average IC50 = 300 nM. n = 3–5, each performed in triplicate. (B) Response to thiram for each individual line. 
Average IC50 = 360 nM. n = 3–5, each performed in triplicate. (C) Average response to disulfiram based on TNBC subtype. (D) Average response to 
thiram based on TNBC subtype. Basal-like (BaA): HCC1954, HCC1569, HCC3153, HCC70, HCC1937, and MDA-MB-468. Claudin-low (BaB): MDA-MB-436, 
MDA-MB-231, MDA-MB-157, Bt549, SUM149, Hs578t, and HCC38.
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drugs with anti-neoplastic activity, such as colchicine, pacli-
taxel, daunorubicin, and doxorubicin, and cooperated with the 
latter, which is used as mono-therapy for TNBCs, to suppress 
cell growth and reduce the CSC fraction. In addition, we used a 
non-biased target identification approach to discover IQ motif-
containing proteins as novel DSF targets.

DARTS assay identified proteins containing IQ-motifs as 
targets of DSF

Using the DARTS method,27-29 we identified and confirmed 
IQGAP1 and myosin heavy-chain 9 (MYH9) as direct binding 

targets of DSF. IQGAP1 is a ubiquitously expressed scaffold pro-
tein involved in regulation of the actin cytoskeleton, transcrip-
tion, cellular adhesion, and the cell cycle.30-34 Recent studies 
suggest a role for IQGAP1 in several human cancers, such as thy-
roid, colorectal, gastric, and breast cancer, where it acts to modu-
late oncogenic pathways.58-64 IQGAP1 interacts with at least 90 
proteins and behaves as a control hub for mTOR, ERK-MAPK, 
and Wnt/b-catenin pathways.30,64-66 The IQGAP family includes 
IQGAP1–3, of which IQGAP2 has also been implicated in can-
cer.67-69 However, neither homolog is expressed ubiquitously. 

Figure 3. Disulfiram binds IQGAP1 and MYH9 to partially inhibit cell growth. (A) DARTS was performed on MDA-MB-231 cell lysates incubated with 
either vehicle (DMSO) or varying concentrations of disulfiram and visualized via silver staining. Mass spectrometry analysis of disulfiram-protected 
bands identified IQGAP1 (red arrowhead) and MYH9 (black arrowheads). (B) DARTS–western blot analysis was performed to validate IQGAP1 and MYH9 
as binding targets of disulfiram. β-actin was used as a negative control. IQGAP1 and MYH9 over β-actin ratios, calculated from ImageJ analysis,91 are 
shown. Arrow indicates band used to calculate enrichment ratio over control. (C) DARTS–western blot analysis using BT-549 (Basal B) cell lysates. GAPDH 
was used as a negative control. (D and E) western blot analysis demonstrating efficient knockdown of IQGAP1 and MYH9 after treatment with RNAi 
relative to disulfiram (DSF), DharmaFECT 4 transfection reagent, or no treatment. (F) MTT viability assay after treatment with MYH9 or IQGAP1 siRNA, or 
disulfiram (DSF). Values represent % of vehicle control. n = 3, each performed in triplicate.
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IQGAP2 is expressed at highest levels in liver, kidney, and plate-
lets,70,71 while IQGAP3 is predominately expressed in brain tis-
sue, where it promotes neurite growth.72 MYH9 is a myosin IIA 
heavy chain that also contains an IQ motif. MYH9 plays a role 
in cytokinesis, cell motility, and maintenance of cell shape.35-37 
Furthermore, myosin heavy chain 9 has been implicated in can-
cer metastasis73-75 and regulation of EGFR-cytoskeletal interac-
tion.76,77 Binding of DSF with these proteins is consistent with 
our pathway analysis, which identified divergent signaling path-
ways affected by DSF treatment.

Although RAS is not commonly mutated in TNBC, proto-
oncogene tyrosine kinases are generally activated in TNBC, 
perhaps due to loss of the PTPN12 phosphatase.78 Moreover, 
MDA-MB-231 cells have oncogenic (G13D) mutation in 
K-RAS.79 Interestingly, it was recently suggested that IQGAP1 
might offer a new approach to inhibit RAS-RAF-MEK-ERK 
signaling. Specifically, IQGAP1 knockout or knockdown inhib-
ited initiation of tumors or hyperproliferation driven by onco-
genic RAS pathway activation.80 In contrast, we found that 
RNAi-mediated knockdown of IQGAP1 in MDA-MB-231 
cells only accounted for partial inhibition when compared with 
DSF-treated cells. The discrepancy between the 2 studies may 
be reconciled by the fact that Jameson et al.80 tested the effect 
of IQGAP1 on tumor initiation, whereas we tested the effect of 
knocking down IQGAP1 on pre-existing tumor cells.

We found that combined knockdown of IQGAP1 plus MYH9 
did not lead to additive growth inhibition. Incomplete knock-
down of MYH9 alone may account for the fractional decrease in 

cell viability observed. Nonetheless, this suggests that DSF exerts 
its effect through additional targets, possibly other IQGAP and 
MYH9 family members or other IQ motif-containing factors. 
Importantly, our results demonstrate that DSF has a stronger 
inhibitory effect than IQGAP1 (+/− MYH9) knockdown.

DSF cooperates with doxorubicin to decrease cell viability, 
increase cell death and cellular senescence, and target CSCs in 
TNBC

We found DSF to cooperate with doxorubicin, paclitaxel, 
gemcitabine, and PD-0332991 to suppress TNBC cell growth; 
the most potent combination was with doxorubicin. The latter is 
used in the treatment of TNBC.81-83 While highly toxic to tumor 
cells, doxorubicin also has strong side effects against normal cells, 
in particular high cardiotoxicity.84,85 Therefore, combinatorial 
drug treatments with doxorubicin that can further increase its 
efficacy or reduce the concentration of drug required for achiev-
ing complete response would be highly beneficial in the clinic. 
This is particularly compelling for elderly patients with pre-exist-
ing cardiac complications. We showed that a DSF/doxorubicin 
combination increased apoptotic cell death and cellular senes-
cence and diminished the CSC fraction more so than each drug 
alone. Specifically, flow cytometry analysis on MDA-MB-231 
cells treated with DSF and doxorubicin demonstrated a coop-
erative decrease in the CD44+/CD24-/low/ESA+ CSC population 
to 0.35 of the untreated fraction, compared with 0.95 and 0.43 
by DSF or doxorubicin alone, respectively. CSCs contribute to 
tumor growth and disease relapse. Thus, DSF plus doxorubicin 
treatment holds promise for effective treatment of TNBC.

Figure  4. Pathway analysis of MDA-MB-231 cells 72 h post-treatment with 100 nM or 250 nM disulfiram (DSF), compared with untreated control. 
Expression data were analyzed by Database for Annotation, Visualization and Integrated Discovery (DAVID) and visualized by “functional enrichment 
maps”.40 Pathways of interest are marked with red boxes.
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Figure  5. Effect of combination treatment with disulfiram (DSF) and 
doxorubicin (Dox). (A) MDA-MB-231 cells treated with DSF and Dox in 
combination or alone and analyzed by MTT assay. (B) MDA-MB-468, 
HCC38, HCC70, and Hs578t treated with their respective IC50 doses of DSF 
and Dox in combination or alone. All values represent % of untreated 
control. † denotes additive effect; ‡ denotes synergistic effect. (See 
“Materials and Methods”)

Materials and Methods

Cell lines and cultures
MDA-MB-231, MDA-MB-468, MDA-MB-157, Hs578T, 

and MCF7 were maintained in DMEM containing 10% FBS 
and 1% PEST. MDA-MB-436 was maintained in DMEM con-
taining 10% FBS, 1% PEST, and 10 μg/ml insulin. HCC70, 
HCC1937, HCC38, HCC1954, HCC1569, HCC3153, and 
Bt549 were maintained in RPMI containing 10% FBS and 1% 
PEST. SUM149PT was maintained in Ham F-12 containing 5% 
FBS, 1% PEST, 5 μg/ml insulin, and 1 μg/ml hydrocortisone. 
All cell culture was grown at 37 °C with 5% CO

2
 in attach-

ment plates. Cell lines Bt549, MDA-MB-436, MDA-MB-468, 
MDA-MB-231, and HCC1569 were kind gifts from Dr Mona 
Gauthier. HCC3153 was a gift from Dr Tak Mak lab. SUM149PT 
was a gift from Dr Benjamin Neel Lab (Asterand). The remain-
ing breast cancer cell lines were purchased from the America 
Type Culture Collection (ATCC).

Western blotting
MDA-MB-231 cells were cultured in 6-well dishes with 

DMEM containing 10% FBS and 1% PEST and were treated 
24 h after seeding at optimal density. Cells were treated with 
0.25% trypsin (Sigma), washed with PBS, pelleted, and lysed 
with lysis buffer (0.15 M NaCl, 1% Triton X-100, 5 mM EDTA, 
5 mM NaF, 0.5 mM Na

3
VO

4
, and 1:100 protease inhibitor 

cocktail [1 mg/mL leupeptin, 2 μg/mL aprotinin, and 100 mM 
PMSF]). Protein concentration was determined by a Nanodrop 
1000 Spectrophotometer (Thermo Scientific). Proteins in total 
cell lysates were fractionated by SDS-PAGE and transferred 
onto nitrocellulose membranes using electrophoresis for sub-
sequent immunoblotting. Membranes were blocked with 5% 
nonfat dried milk in phosphate-buffered saline containing 
0.05% Tween 20 (PBST) at R.T. for 1 h. After washing the 
membranes 3 × 5 min with PBST, they were incubated at 4 °C 
overnight with rabbit anti-human IQGAP1 primary antibody 
(Cell Signaling), rabbit anti-human MYH9 primary antibody 
(Proteintech Group), or rabbit anti-tubulin primary antibody 
(Cell Signaling). Membranes were washed with PBST buffer 3 
× 5 min each and incubated with HRP-conjugated anti-rabbit 
IgG secondary antibody (Cell Signaling) for 1 h. After fur-
ther washing, the membranes were allowed to react with ECL 
(enhanced chemiluminescence substrate, Thermo Scientific); the 
signal was detected using autoradiography film and developed 
using a Konica SRX-101A developer. Primary antibodies were 
diluted 1:1000 in PBS (tubulin was diluted 1:2000) with 5% 
BSA; secondary antibody was diluted 1:2000 in PBS with 5% 
nonfat dried milk.

Drug screening
Screens were performed in the S.M.A.R.T. Facility of the 

Samuel Lunenfeld Research Institute. All libraries were prepared 
in 100% DMSO to facilitate drug delivery via pinning. The final 
concentration of DMSO in each screen was 0.4%. The breast 
cancer lines MDA-MB-231, MDA-MB-436, Bt549, and HCC70 
were seeded with their corresponding medias in 384-well plates 
at a density of 900 cells/well in a total volume of 50 μL/well. 
The following day, plates were pinned with drug libraries to reach 

a final concentration of 1 μM (Spectrum library, MicroSource 
Discovery Systems) or 0.8 μM (Prestwick library, Prestwick 
Chemical). Alamar blue (Invitrogen) was added 3 d post-drug 
pinning at 10% of the volume (5 μL/well), and cell viability was 
read 4–6 h later using a Pherastar plate reader. Screen data were 
normalized using the B-score approach to select statistically rel-
evant hits after correction for positional effects and general sys-
temic errors during 72 h of incubation.86

MTT viability assays
Cells were seeded in 96-well plates at their optimal density 

(2–5 × 103 cells/well) and treated the following day, leaving 100 
μL final volume of media. Three days (72 h) post-treatment, 30 
μL of 2 mg/mL MTT (3-[4,5-dimethylthiazol-2-yl]-2, 5-diphe-
nyl tetrazolium bromide, Sigma) was added to each well and 
incubated for 2–4 h, depending on cell type. MTT/media solu-
tion was aspirated and replaced with 100 μL DMSO and left at 
R.T. for 15–20 min to dissolve the formazan dye. After gently 
agitation to ensure even mixture of the dye, a 96-well microplate 
reader (Molecular Devices) was used to determine the opti-
cal density (OD) of each well at 570 nm. Percent cell viability 
(CV) was determined by (treatment group OD/untreated control 
group OD) × 100%, using DMSO as a blank. Each assay was 
performed in triplicate, and repeated at least 3 times.

Drug affinity responsive target stability
DARTS was performed as reported27-29 with minor modifi-

cations. Briefly, for target identification, MDA-MB-231 cells 
maintained in RPMI containing 10% FBS and 1% penicillin/
streptomycin were lysed with M-PER (Pierce) with phosphatase 
inhibitors (50 mM NaF, 10 mM β-glycerophosphate, 5 mM 
sodium pyrophosphate, 2 mM Na

3
VO

4
) and protease inhibitors 
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(Roche). After lysis, cold TNC buffer (50 mM TRIS-HCl pH 
8.0, 50 mM NaCl, 10 mM CaCl

2
) was added to the lysate, and 

protein concentration was measured via the BCA protein assay. 
Lysate was incubated with either vehicle (DMSO) or varying con-
centrations of disulfiram for 1 h at R.T. with shaking at 600 rpm 
in an Eppendorf Thermomixer. The samples were then digested 
with different concentrations of Pronase (Roche), which is a 
cocktail of proteases, for 20 min at R.T. Digestion was stopped 

with the addition of SDS buffer, and samples were immediately 
heated for 10 min at 70 °C. Proteins in each sample were sepa-
rated by SDS-PAGE and visualized using the ProteoSilver stain-
ing kit (Sigma). Protected bands were excised and subjected to 
mass spectrometry identification (Alphalyse).

For target validation, DARTS was performed as described 
above. Samples were separated on a 4–12% Bis-Tris gradient gel 
(Invitrogen), and western blotting was performed with antibodies 

Figure 6. Apoptosis and senescence analysis of MDA-MB-231 cells treated with disulfiram and/or doxorubicin. Cells were treated with disulfiram and/
or doxorubicin at 250 nM and 125 nM, respectively. (A) Flow cytometry profiles of 7-AAD and Annexin-V for each experimental condition at 24 h and 
72 h post-treatment. 7-AAD-/Annexin-V+ marks early stage apoptosis, 7-AAD+/Annexin-V+ late stage apoptosis, and 7-AAD+/Annexin-V- necrotic cells. 
(B) Percent senescence in untreated and treated MDA-MB-231 cells, and MCF7-positive control (doxorubicin 125 nM), as determined by senescence-
associated β-galactosidase (X-gal/BCIG) staining.90 (C–G) Light microscope view of MDA-MB-231 cells treated with (C) vehicle control, (D) doxorubicin, 
(E) disulfiram, or (F) doxorubicin plus disulfiram, and (G) MCF7 positive control (doxorubicin 125 nM). Scale bars represent 200 μm.
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against IQGAP1 (Cell Signaling), MYH9 (Protein Tech Group), 
β-actin (Cell Signaling), and GAPDH (Ambion).

Definitions of drug interaction
We used Kaspers et al.87 model to calculate the borderlines 

of synergistic and additive interactions, which was developed 
by combining the Multiplicative88 and Maximum89 models for 
independently acting and mutually exclusive drugs, respectively. 
Combining these 2 models to define the type of drug–drug inter-
action, we get:
Synergistic: the observed cell viability (CV) for a drug combina-

tion is less than the product of each single agent: observed 
CV(A+B) < CV(A) × CV(B)

Additive: the observed CV for a drug combination is less than 
the max reduction in CV by either drug alone, CV(A/Bmax), 
but is greater than the product of each single agent: CV(A) × 
CV(B) < observed CV(A+B) < CV(A/Bmax)

Antagonistic: the observed CV for a drug combination is greater 
than CV(A/Bmax): observed CV(A+B) > CV(A/Bmax).

Flow cytometry
MDA-MB-231 cells were plated at optimal densities and 

treated the following day with disulfiram, doxorubicin, or a com-
bination of both. For cancer stem cell analysis: after 72 h, super-
natants from each treatment group were collected before cells 
were trypsinized to single cell suspension. Trypsinized cells were 
added to their respective supernatants, washed with PBS, pelleted, 

resuspended in serum-free PBS, and counted. In a volume of 100 
μL serum-free PBS, 0.5–1.0 × 106 cells were incubated with 5 
μL mouse anti-human ESA/Ep-CAM/CD326-PE (BioLegend), 
5 μL mouse anti-human CD24-FITC (BD Biosciences) and 5 
μL mouse anti-human CD44-APC (BD Biosciences) antibody 
on ice, in the dark, for 30–40 min with occasional pulse vor-
texing. Cells were then washed and strained to single cells into 
5 mL polystyrene round-bottom FACS tubes (BD Falcon) to a 
total volume of 500 μL (1 × 106 cells/mL). Finally, 5 μL 7-AAD 
(BD Biosciences) was added to each tube as a viability marker, 
and cells were processed on a FACSCaliber (Becton Dickinson) 
no longer than 1 h post-staining. For apoptosis analysis: after 
24 or 72 h, samples were processed as above, except resuspen-
sion occurred in 1× Annexin-V binding buffer, without subse-
quent washing. Positive controls were achieved with a heat-shock 
sample (cell suspension subjected to 55 °C for 10 min prior to 
processing). In a volume of 100 μL 1× Annexin-V binding buf-
fer, 0.5–1.0 × 106 cells were incubated with 5 μL Annexin-V-PE 
(BD Biosciences) in the dark, at R.T. for 15–20 min with occa-
sional pulse vortexing. Then, 5 μL 7-AAD (BD Biosciences) and 
an additional 400 μL 1× Annexin V binding buffer was added 
to each sample. Finally, cells were strained to single cells into 5 
mL polysterene round-bottom FACS tubes (BD Falcon), placed 
on ice, and processed on a FACSCaliber (Becton Dickinson) no 
longer than 1 h post-staining.

Figure 7. Effect of disulfiram and doxorubicin on the CSC fraction in MDA-MB-231 cells. (A and B) Gating conditions for live (7-AAD negative) and ESA+ 
cells. (C–E) Effect of disulfiram (250 nM) and doxorubicin (125 nM) on the CD44+/CD24-/low/ESA+ cancer stem cell (CSC) fraction (red box). (F) Average 
absolute values and normalized ratios of CSC fraction.
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Senescence-associated β-galactosidase staining
MDA-MB-231 and MCF7 cells were seeded onto 6-well plates 

at optimal density and treated the next day with 250 nM disulfi-
ram, 125 nM doxorubicin, or a combination of both. After 72 h, 
cells were washed twice with PBS, fixed with 3% formaldehyde 
(Sigma), and stained with X-gal/BCIG staining solution (BD 
Pharminogen Senescence kit) overnight at 37 °C.90 The senescent 
cells (β-galactosidase-positive cells) were counted using a phase 
contrast light microscope and were expressed as a percentage of 
the total number of cells counted (minimum 500 cells counted 
from 4–5 plate areas).
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