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Genome Sequence of CaiB, a DR Cluster Actinobacteriophage

That Infects Gordonia rubripertincta

Bienna Welsh,* Nader M. Abdalla,? Esteban Aldana,? Veronica M. Alvarado Fernandez,® Bruna Arenales Salgado de Oliveira,”
Diane Fakhre,® Amelia J. Haymond,? Katelyn M. Helton,? Aditi Kanchibhatta,® Jahwanza Knight,? Sydney Marshall,?

Maomi Laine N. Martinez,® Arielle Merkher,? Savannah E. Morrow,? Katie P. Nguyen,® Jahanvi J. Patel,? Somesh R. Patel,?
Pravalika Rayala,® Kira M. Ruiz-Houston,? Aarya P. Satardekar,” Shifa M. Shaikh,? Adrian E. Terron Osorio,? Rachel C. Weitz,?

Louis Otero,? (2 Richard S. Pollenz®

2Department of Cell Biology, Microbiology, and Molecular Biology, University of South Florida, Tampa, Florida, USA

ABSTRACT CaiB is a DR cluster actinobacteriophage that was isolated from soil in Florida
using Gordonia rubripertincta NRRL B-16540 as the host. The genome is 61,620 bp, has
a GC content of 68.6%, and contains 85 predicted protein coding genes. CaiB has
several putative operons and has repeated intergenic regions that may be involved in gene
regulation.

here are an estimated 103! phage particles in the world, and 4,000 actinobacteriophage

genomes have been annotated (1). Since approximately 70% of annotated protein
coding genes do not have known function (2), the isolation of evolutionarily diverse actino-
bacteriophages helps advance the understanding of phage genomics and evolutionary
science.

CaiB was isolated from a moist soil sample from Tampa, Florida (28.086388N, 82.384166W),
using Gordonia rubripertincta NRRL B-16540 as the host. Bacterial infections were performed at
30°C utilizing peptone-yeast calcium agar (PYCa). Genomic DNA was isolated after three
rounds of plaque purification using the Wizard DNA cleanup kit (A7280; Promega). Genomic
DNA was used to create sequencing libraries with NEBNext Ultra Il library preparation kit
v3 reagents. Sequencing was performed by the Pittsburgh Bacteriophage Institute, and
the libraries were run on an lllumina MiSeq instrument, yielding 295,653 paired-end 150-base
reads with 625-fold average coverage. Raw reads were assembled with Newbler v2.9 (3), yield-
ing a single phage contig. The results were checked for completeness, accuracy, and genome
termini using Consed (4). Default parameters were used for all software unless otherwise speci-
fied. CaiB is circularly permuted based on a lack of defined genome ends (5) and was bioinfor-
matically linearized such that base 1 is assigned in accord with other Gordonia phages (5).
CaiB was autoannotated using DNA Master v5.23.6 (6), and all of the genes were then man-
ually validated for correct starts and functional calls. GeneMark v2.5 (7) and Glimmer v3.02
(8) were utilized to assess start sites and coding potential, and Starterator v1.2 (2) was used
to summarize the starts across each family of phage genes. To collect evidence for gene
function and the validity of each gene product, HHpred v3.2 (9), NCBI BLAST (10), the
Conserved Domain Database (CDD) (11), TMHMM v2.0 (12), and SOSUI (13) were utilized.
tRNAscan-SE v2.0 (14) and ARAGORN v1.2.41 (15) were utilized to identify putative tRNAs and
transfer-messenger RNAs.

Negative-staining transmission electron microscopy shows that CaiB has a 310-
nm tail and icosahedral capsid of 62 nm (Fig. 1). CaiB has a 61,620-bp genome, has
a GC content of 68.6%, and contains 85 predicted protein coding genes. CaiB is one
of 11 phages in the DR cluster (Table 1). DR phages have similar genome organiza-
tions and morphologies. The CaiB genome shows between 65 and 97% nucleotide
identity to the other DR members (Table 1) (16). Genes 1 to 5 precede the terminase,
have 4-bp overlaps, and encode a series of nucleotide modification enzymes, including
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FIG 1 Transmission electron micrograph of Gordonia phage CaiB (https://phagesdb.org/phages/CaiB).
Phage lysates were negatively stained with 1% uranyl acetate. Scale bar = 120 nm.

ParB-like nuclease, TET/JBP oxidoreductase, pyrophosphorylase, and adenylate ki-
nase, which may be involved in evasion of host restriction systems (17). CaiB con-
tains several repeated intergenic regions upstream of genes 42, 71, 77, 80, 81, and
85. These regions contain 100% identity in positions —4 to —11 (5'-GAGAGGAC-3'), —14
to —21 (5'-ACCCGCTC-3'), —25 to —30 (5'-GCGGGA-3’), and —35 to —40 (5'-TGTTGT-3)
and may serve a function in regulation.

Data availability. This whole-genome shotgun project has been deposited in DDB/
ENA/GenBank under the accession numbers ON108644 and SRX14597705. The version
described in this paper is the first version. Data for CaiB are archived in Phamerator
(18) and the Actinobacteriophage Database at PhagesDB.org (2) (https://phagesdb
.org/phages/CaiB).

TABLE 1 DR cluster phage characteristics and nucleotide identity values
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GenBank GC Nucleotide identity (%) with:

accession Genome content

Phage no. size (bp) (%) NHagos CaiB AnarQue CloverMinnie Mariokart Axumite Ligma Sour BiggityBass AnClar Yago84
NHagos MN369758 59,580 68.2 100

CaiB ON108644 61,620 68.6 75.88 100

AnarQue OK216879 61,822 68.8 76.19 96.96 100

CloverMinnie MN234196 61,098 68.7 76.23 96.94 97.98 100

Mariokart MT657335 60,762 70.5 67.29 66.44 66.72 66.81 100

Axumite ONO081333 61,714 70.2 67.44 65.99 66.31 66.43 81.79 100

Ligma OM105886 61,714 70.2 67.44 65.99 66.31 66.43 81.79 99.99 100

Sour MH153810 61,670 68.0 64.11 64.70 64.86 64.97 71.01 71.62 71.62 100

BiggityBass  ON260813 63,202 69.4 66.16 65.23 65.30 6543 7347 74.76 7476 72.74 100

AnClar MN908693 61,856  69.8 66.03 65.14 65.22 65.29 73.31 74.75 7476 73.04 88.56 100
Yago84 MK801725 61,890 70.0 66.00 65.18 65.30 65.37 73.06 74.55 74.55 73.97 89.30 9849 100
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