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Multiple Sclerosis (MS) is an immune-mediated neurological disorder, characterized
by central nervous system (CNS) inflammation, oligodendrocyte loss, demyelination,
and axonal degeneration. Although autoimmunity, inflammatory demyelination and
neurodegeneration underlie MS, the initiating event has yet to be clarified. Effective
disease modifying therapies need to both regulate the immune system and promote
restoration of neuronal function, including remyelination. The challenge in developing
an effective long-lived therapy for MS requires that three disease-associated targets
be addressed: (1) self-tolerance must be re-established to specifically inhibit the
underlying myelin-directed autoimmune pathogenic mechanisms; (2) neurons must
be protected from inflammatory injury and degeneration; (3) myelin repair must be
engendered by stimulating oligodendrocyte progenitors to remyelinate CNS neuronal
axons. The combined use of chronic and relapsing remitting experimental autoimmune
encephalomyelitis (C-EAE, R-EAE) (“outside-in”) as well as progressive diphtheria toxin
A chain (DTA) and cuprizone autoimmune encephalitis (CAE) (“inside-out”) mouse
models allow for the investigation and specific targeting of all three of these MS-
associated disease parameters. The “outside-in” EAE models initiated by myelin-specific
autoreactive CD4+ T cells allow for the evaluation of both myelin-specific tolerance
in the absence or presence of neuroprotective and/or remyelinating agents. The
“inside-out” mouse models of secondary inflammatory demyelination are triggered by
toxin-induced oligodendrocyte loss or subtle myelin damage, which allows evaluation
of novel therapeutics that could promote remyelination and neuroprotection in the
CNS. Overall, utilizing these complementary pre-clinical MS models will open new
avenues for developing therapeutic interventions, tackling MS from the “outside-in”
and/or “inside-out”.
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INTRODUCTION

Multiple Sclerosis presents most often in young adulthood and is
chronic as most patients live with the disease for decades. Recent
studies on prevalence uncovered that nearly a million people live
with MS within the United States (Culpepper et al., 2019; Nelson
et al., 2019; Wallin et al., 2019). Approximately 85% of patients
present with the relapsing-remitting form of MS (RRMS) that
involves episodes of neurological deficits followed by phases of
recovery (Steinman, 2009). The disease often slowly converts to a
secondary-progressive form of MS (SPMS) that shows significant
and irreversible neurological impairment (Stadelmann, 2011).
The primary-progressive form of MS (PPMS) appears in the
remaining patients and results in rapid progressive neurological
decline (Miller and Leary, 2007).

With advances in technology, in addition to the traditional
family history portion of a patient’s medical record, further
characterization of a patient’s predisposition to disease can be
evaluated by genomic sequencing. For example, recent studies
have identified over 200 genomic and proteomic anomalies
prevalent in the MS patient population, all directly or indirectly
linked to the immune system (International Multiple Sclerosis
Genetics Consortium et al., 2013; Manconi et al., 2018;
International Multiple Sclerosis Genetics Consortium, 2019;
Kotelnikova et al., 2019). Clinical presentation of the disease as
well as chronic neuropathology highlight the destructive nature
of the interaction between the immune system and the CNS.

The “outside-in” hypothesis constitutes a primary
pathogenesis of autoimmune inflammation followed by a
secondary pathogenesis of myelin degradation (Table 1).
The “inside-out” hypothesis is a primary pathogenesis of
oligodendrocyte (OL) injury/myelin destabilization and
a secondary pathogenesis due to activation of a reactive
inflammatory response (Table 1). Experimental murine
models can recapitulate patient clinical presentations and
pathological changes including inflammatory demyelination,
axonal pathology, and immune cell infiltration utilizing
both “outside-in” immune mediated demyelination and the
“inside-out” CNS demyelination/neurodegeneration driven
models (Table 2).

Presently, there is no cure for MS and the long-term
treatment of MS patients is based on disease-modifying therapies
that either suppress or modulate the immune system, and
symptomatic management. Ideally, the mechanism(s) of action
for an efficacious therapy would function to specifically target
the root cause of the immune and CNS dysfunction. First,
the underlying autoimmunity must be mitigated through re-
establishing self-tolerance (McCarthy et al., 2014; Luo et al., 2016;

TABLE 1 | “Inside-out” and “Outside-in” hypotheses of MS pathophysiology.

“Inside-Out”
Hypothesis

“Outside-In”
Hypothesis

Primary
Pathogenesis

OL injury / Myelin destabilized Autoimmune
inflammation

Secondary
Pathogenesis

Reactive inflammatory response/
Further myelin degradation

Myelin degradation

Pearson et al., 2017, 2019). Second, neurodegeneration must be
mitigated to protect the remaining function of CNS neurons.
Third, tissue repair within the CNS must restore oligodendrocyte
insulation and myelin sheath formation around damaged axons
(Rodgers et al., 2013). As the etiology of the disease is unknown,
utilizing both “outside-in” and “inside-out” models for single
selective immune regulatory and myelin repair therapy as well
as combination therapy in pre-clinical trials are imperative for
success in developing effective therapeutics in patient clinical
trials. This review will focus on the “outside-in” models, “inside-
out” models of MS, and the multi-directional feedback between
the immune system and the CNS.

“OUTSIDE-IN” MS MODELS

The process of drug discovery, approval, and future patient
use requires initial testing in experimental models that
recapitulate hallmarks of the human disease state. Initial
inflammatory demyelination in Multiple Sclerosis and
subsequent neurodegeneration is a result of multi-directional
feedback involving CNS resident cells (i.e., oligodendrocytes,
neurons, and microglia) and infiltrating immune cells (i.e.,
autoreactive T cells and B cells, inflammatory monocytes,
and macrophages) (McFarland and Martin, 2007; Bhat and
Steinman, 2009; Weiner, 2009). While the primary etiology
of MS remains unknown and is likely multi-determinant, the
disease involves the activation of the peripheral adaptive immune
system against CNS myelin epitopes. However, the triggering
event that initiates this autoimmune response is not understood.
Antigen presenting cells (APCs) (i.e., dendritic cells, monocytes,
macrophages, microglia, and B cells) activate naïve CD4+ T
cells and promote differentiation of CD4+ Th17 and Th1 cells
through inflammatory cytokines (IL-1β, IL-6, and IL-23; and
IL-12, respectively).

Activated microglia are rapidly recruited to sites of CNS
damage (Duan et al., 2009). These APCs upregulate the
expression of MHCII and other costimulatory molecules, such
as CD40, CD80, and CD86 (Windhagen et al., 1995; Gerritse
et al., 1996; Zrzavy et al., 2017). These observations suggest
that activated APCs within the CNS possess the capacity to
present antigens to infiltrating T cells. However, in vitro data
show that microglia have a limited capacity to activate CD4+ T
cells (Mack et al., 2003). In contrast to the in vitro findings, a
dynamic alteration in the presence and phenotype of microglia
within the CNS has been reported with regard to the absence
or presence of lesions within the local microenvironment (Esiri
and Reading, 1987; Ferguson et al., 1997; Prineas et al., 2001;
Zrzavy et al., 2017). For example, microglia activation was more
pronounced and increased with the length of disease even in
the normal-appearing white matter sections from MS patients
as compared to control tissue samples (Zrzavy et al., 2017).
Additionally, active lesions from MS patients contained microglia
and macrophages expressing a pro-inflammatory phenotype
(Zrzavy et al., 2017), suggesting the ability of these cells to activate
CD4+ T cells.

Besides microglia and macrophages, recent evidence suggests
that B cells may serve as an important APC population in
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TABLE 2 | “Inside-out” and “Outside-in” disease model systems highlighted in this review.

“Inside-Out” models “Outside-In” models

Epsilon Toxin
Model

Diphtheria Toxin
A (DTA) Model

Cuprizone
autoimmune
encephalitis
(CAE) Model

Chronic
Experimental
Autoimmune
Encephalomyelitis
(C-EAE) Model

Relapsing
Remitting
Experimental
Autoimmune
Encephalomyelitis
(R-EAE) Model

Theiler’s
Virus-Induced
Demyelinating
Disease

Japanese
Macaque
Encephalomyelitis
(JME) Model

Model species Mouse Mouse Mouse Mouse Mouse Mouse Macaque

Induction of
disease model
(in Adults)

Epsilon toxin,
produced by type B
and D strains of
Clostridium
perfringens, a
spore-forming
gram-positive
bacterium

Timed genetic
expression of
diphtheria toxin
(tamoxifen induced
PLPCreERT for
targeting OL)

Cuprizone diet for
2 weeks, then inject
CFA (SubQ) and
Pertussis Toxin (IP)

MOG35−55 + CFA
(SubQ) and
Pertussis Toxin (IP)

PLP139−151 + CFA
(SubQ)

Theiler’s Murine
Encephalomyelitis
Virus (TMEV)
intracerebral
infection

Japanese Macaque
Rhadinovirus
(JMRV),
spontaneous or
injected

Disease model
trigger

Epsilon Toxin
induced cytotoxicity
(OL)

DTA induced cell
death (OL),
secondary MOG
peptide immune
response

Cuprizone
destabilizes myelin,
Citrullinated MBP
drives immune
response

MOG35−55 peptide
immune response

PLP139−151 peptide
immune response

Response to TMEV
and subsequent
spreading to PLP
and MBP epitopes

JMRV infection,
MBP peptide
immune response

Disease model
pathogenesis

OL cytotoxicity,
triggers
demyelination

OL ablation,
triggers
demyelination/
remyelination,
secondary immune
response (respond
to MOG peptide)

Myelin breakdown,
secondary immune
response (respond
to MBP epitope)

Immune infiltration
(respond to MOG
peptide), secondary
CNS degeneration

Immune infiltration
(initially respond to
PLP peptide, later to
MBP), secondary
CNS degeneration

Immune response
to virus, release of
myelin epitopes
inducing
autoimmune
pathology,
secondary CNS
degeneration

Immune response to
virus and infiltration
(respond to MBP
peptide), secondary
CNS degeneration

RRMS disease pathogenesis. To test this hypothesis, the ability
of memory B cells from RRMS patients to activate CD4+ T
cell in response to MBP and MOG was compared to naïve B
cells from health donors. The data show that the naïve B cells
from healthy donors did not activate the CD4+ T cells in the
presence of MBP and MOG, while the memory B cells from
RRMS patients did activate the CD4+ T cells (Harp et al., 2010).
In the context of anti-CD20 therapy, which deletes peripheral
B cells, the aforementioned findings suggest that the depletion
of B cells following anti-CD20 treatment may be due in-part
to the loss of B cells as an APC population. This possibility is
supported by studies utilizing whole MOG protein-induced EAE
in C57BL/6 mice, in which MOG-specific B cells are activated
(Hausler et al., 2018).

In the “inside-out” model of MS (Figure 1), amplified
inflammation, driven by peripherally derived autoreactive CD4+
Th17 and Th1 cells, directly and indirectly leads to further
myelin destruction (Glass et al., 2010; Prinz and Kalinke,
2010). Based on the presence of T cell-mediated inflammation
within the CNS of MS patients, the field historically utilizes
“outside-in” experimental models of disease (Figure 2). These
experimental models include relapsing-remitting experimental
autoimmune encephalomyelitis (R-EAE) and Theiler’s murine
encephalomyelitis virus (TMEV) infection in SJL/J mice,
chronic experimental autoimmune encephalomyelitis (C-EAE)
in C57BL/6 mice, and more recently a non-human primate
model of virus-induced Japanese macaque encephalomyelitis
(JME) (Table 2).

Experimental Autoimmune
Encephalomyelitis (EAE)
In mice, the MS disease processes, including myelination
defects, axonal pathology, and immune cell infiltration can
be experimentally recapitulated. Classically, the experimental
autoimmune encephalomyelitis (EAE) mouse model has been
used to mimic autoimmune demyelination in response to
a peripheral immune-priming event serving as an “outside-
in” approach. Both relapsing-remitting MS (RR-MS) and
primary-progressive MS (PP-MS) can be arguably modeled by
EAE induced via subcutaneous priming of different mouse
strains with specific myelin peptides in complete Freund’s
adjuvant (CFA). CD4+ Th1/17 cells primed in the peripheral
lymph nodes, traffic to the CNS, and are re-stimulated with
endogenous myelin antigens leading to effector responses and
clinical disease. Priming SJL/J mice with proteolipid protein
(PLP)139−151/CFA results in multiple clinical relapses (R-
EAE) and priming C57BL/6 mice with myelin oligodendrocyte
glycoprotein (MOG)35−55/CFA and pertussis toxin or infection
of SJL/mice with TMEV induces an acute phase of disease
followed by chronic progression (C-EAE) as measured by
clinical scoring (Theiler and Gard, 1940; Veillette et al.,
1989; Ben-Nun et al., 1991; Burns et al., 1991; Sun et al.,
1991; Trotter et al., 1991; Soderstrom et al., 1993; Zhang
et al., 1993; Steinman et al., 2002; Sospedra and Martin,
2005; Robinson et al., 2014; Terry et al., 2016). The use of
the R-EAE and C-EAE mouse models allow assessment of
motor function via clinical scoring, immune cell function,
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FIGURE 1 | “Inside-Out” model of MS pathophysiology. The “inside-out” model of MS pathogenesis begins with the release of myelin antigens from injured or
destabilized myelin to the periphery (1) followed by the presentation of myelin epitopes to (2) and activation of autoreactive T cells (3). Activated autoreactive T cells
then migrate into the CNS, are reactivated by CNS-resident APCs (4), and release cytokines leading to direct as well as indirect damage to myelin (5). Additional
myelin epitopes released by the primary T cell response induce epitope spreading (6) leading to additional myelin destruction (7).

promotion of oligodendrocyte proliferation/maturation, and
formation of new myelin.

Ideally, re-establishing self-tolerance would be induced by
antigen-specific immune therapy (i.e. immune tolerance) in
which the remaining immune system functions remain intact.
The utilization of both R-EAE and C-EAE models of disease
have been used to identify the underlying epitope-spreading
mechanism within autoimmune disease. Epitope spreading in
R-EAE has been clearly defined during the various phases of
disease (Miller et al., 1995). During the immune response to
a foreign or self-protein, the initial CD4+ T cell response
focuses on one or two antigenic peptide epitopes within the
immunogenic protein. These initial immunogenic epitope(s)
are termed the dominant epitope(s). As the immune response
progresses, the process of epitope spreading occurs, which is
defined as the activation of additional antigen-specific CD4+ T
cells that express T cell receptors specific for additional antigens
that are not the dominant epitope(s) (Lehmann et al., 1992,
1993; Vanderlugt and Miller, 2002). For example, in an SJL/J
mouse primed with PLP139−151/CFA, PLP139−151-specific CD4+
T cell reactivity is induced within 3 days of priming in the
draining lymph nodes for the site of PLP139−151/CFA injection,
and this dominant epitope-specific CD4+ T cell response
is maintained throughout the disease course. Immediately
before, and continuing during, the primary relapse phase of

disease, PLP178−191 reactivity (termed intramolecular epitope
spreading, i.e., spreading from one peptide epitope to another
peptide epitope contained within the same protein) is detected
by T cell proliferation and delayed-type hyper-sensitivity
(DTH) assays. During the secondary relapse phase of disease,
MBP84−104 responses (termed intermolecular epitope spreading,
i.e., spreading from one peptide epitope to another peptide
epitope contained within a different protein) are detectible.
Conversely, if SJL/J mice are primed with PLP178−191/CFA, the
acute phase of disease is mediated by CD4+ T cell responses
to the initiating PLP178−191 epitope. Subsequently, PLP139−151
CD4+ T cells are detectible within the spleen and cervical
lymph nodes during the primary disease relapse, and MBP84−104
specific CD4+ T cells during the secondary disease relapse.
Published data show that while the detection of the spread
epitope-specific CD4+ T cells (PLP178−191 or PLP139−151 specific
CD4+ T cells depending on the peptide used to induce disease)
does not occur until the primary disease relapse, these spread
epitope-specific CD4+ T cells are initially activated during the
acute phase of disease via antigen presenting cells presenting
spread epitope peptides within the CNS (McMahon et al.,
2005). Similarly, infection of SJL/J mice with TMEV, results
in the bystander immune-mediated CNS damage leading to
initial epitope spreading to PLP139−151 followed by responses to
additional myelin epitopes. The development of these responses
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FIGURE 2 | “Outside-In” model of MS pathophysiology. The “outside-in” model of MS pathogenesis begins with activation of myelin-specific T cells in response to a
myelin peptide mimic epitope expressed on a pathogenic virus or other microbe exposure (1–2). Activated autoreactive T cells then migrate into the CNS, are
reactivated by CNS-resident APCs (3), and release cytokines leading to direct as well as indirect damage to myelin (4). Additional myelin epitopes released by the
primary T cell response induce epitope spreading (5) leading to additional myelin destruction (6).

correlates with the extent of myelin destruction during the acute
disease phase (McRae et al., 1995). The hierarchy of dominant
epitopes is due to a combination of differential protein processing
and presentation by various APCs, and the precursor frequency
of the antigen-specific CD4+ T cells (Lehmann et al., 1998;
Moon et al., 2007).

The epitope spreading phenomena during autoimmune
disease has been confirmed by the use of antigen-specific
tolerance therapies. For example, immune tolerance is readily
induced by coupling of peptides to donor splenocytes (SP) using
the chemical crosslinker 1-ethyl-3-(3- dimethylaminopropyl)
carbodiimide (ECDI) (Wetzig et al., 1979). Antigen coupled to
splenocytes (Ag-SP) delivers the antigen to APCs that present
the cargo antigen in a tolerogenic manner. The non-specific
crosslinking of antigen to the cell surface while inducing
apoptosis allows the donor cells to be perceived by the host in
a non-inflammatory (non-immunogenic) manner. Ag-SP have
been employed to prevent and treat the relapsing EAE model
of MS (Podojil and Miller, 2009), and type 1 diabetes (T1D)
in the non-obese diabetic (NOD) mouse (Prasad et al., 2012).
A recent publication summarized the results of a phase I trial
in MS patients using apoptotic ECDI-fixed peripheral blood
mononuclear cells (PBMCs) pulsed with a cocktail of myelin

peptides, illustrating the safety and efficacy of this procedure in
human autoimmune disease (Lutterotti et al., 2013). Importantly,
the mechanistic aspects of this study provided an important
proof-of-principle that induced peripheral tolerance can be
successfully employed to induce unresponsiveness in human
autoreactive T cells.

More recently, biodegradable carboxylated nanoparticles
composed of poly(lactic-co-glycolic) acid (PLGA) were
shown to induce antigen-specific tolerance for prevention
and treatment of EAE when encephalitogenic peptides were
EDCI fixed to the surface of the particles or encapsulated
within the particles (Getts et al., 2012; Hunter et al., 2014).
Administration of Ag-bearing PLGA nanoparticles results
in significantly reduced CNS infiltration of encephalitogenic
Th1 (IFN-γ) and Th17 (IL-17a and GM-CSF) cells as well as
inflammatory monocytes/M8s. Tolerance was most effectively
induced by intravenous infusion of Ag-PLG (Getts et al.,
2012), though intraperitoneal delivery was also able to
attenuate disease scores. The intravenous route likely has
greater efficacy due to direct trafficking and uptake of the
nanoparticles by APCs in the liver and spleen via the macrophage
receptor of collagenous structure (MARCO) scavenger receptor
(Getts et al., 2011).
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Theiler’s Murine Encephalomyelitis
Virus-Induced Demyelinating Disease
(TMEV-IDD)
As outlined above, we have previously extensively studied
and reviewed (Croxford et al., 2002; Munz et al., 2009) the
immunopathogenesis of TMEV-induced demyelinating disease
(TMEV-IDD) “outside-in” model of MS. Briefly, TMEV is
a picornavirus which naturally enters the CNS via a fecal-
oral transmission route and enters the CNS via a retrograde
transport mechanism. In experimental TMEV-IDD, disease is
induced by intracerebral injection of TMEV which then induces
a persist infection of microglia which, in susceptible mouse
strains, stimulates inflammatory anti-viral immune responses
(Th1, Th17, and CD8) which cause bystander damage to
oligodendrocytes and myelin in the CNS. Released myelin
antigens then activate myelin epitope-specific autoimmune
responses via the process of epitope spreading (Miller et al.,
1997) leading to a chronic demyelinating and a spastic course
of paralysis. We also showed that a strain of TMEV engineered
to express molecular mimic of the myelin PLP139−151 epitope
sharing only 3 of the 13 amino acid residues (critically including
the primary MHC binding and the primary and secondary
T cell receptor binding residues), could induce demyelinating
disease via the process of molecular mimicry (Olson et al.,
2001). Collectively these studies indicate that myelin-specific
autoimmune pathology can be induced by infection both via
bystander damage induced release of self-antigens (epitope
spreading) and molecular mimicry.

Japanese Macaque Encephalomyelitis
(JME)
Japanese macaque encephalomyelitis (JME) is an inflammatory
demyelinating disease that occurs spontaneously in a colony
of Japanese macaques (JM) at the Oregon National Primate
Research Center (Axthelm et al., 2011; Blair et al., 2016).
The disease only occurs in specific lineages within the colony,
and is triggered by a novel gamma-herpes virus, Japanese
macaque rhadinovirus (JMRV), that occurs spontaneously in
1–3% of the JM colony and with targeted breeding 2–5%
(Axthelm et al., 2011). If needed, based on population and time
constraints, disease can be induced by intracranial injections
of JMRV into animals from affected lineages (Estep et al.,
2013) with the advantage of a known consistent location for
histology and MRI/DTI. Animals with JME display clinical
signs resembling Multiple Sclerosis, such as; ataxia, paresis,
and magnetic resonance imaging reveals multiple T2-weighted
hyperintensities and gadolinium-enhancing lesions in the central
nervous system (i.e., brainstem, cerebellum, and cervical spinal
cord). The prevalent myelin epitope is myelin basic protein
(MBP). Comparable to disease manifestation in MS patients, the
CNS of animals with JME present with active lesions that contain
CD4+ Th1 and Th17 cells, CD8+ T cells, and oligoclonal bands
are present within the CSF (Blair et al., 2016).

In addition to testing immune modulatory therapies,
therapies that potentially promote myelin repair by stimulating
oligodendrocyte progenitor cell expansion, homing and/or

differentiation can be assessed in the EAE and TMEV-IDD
mouse and JME primate models of MS. Researchers can examine
clinical disease progression in the form of sensory and motor
function, CNS immune and inflammatory responses, flow
cytometry-based enumeration of cells of the oligodendrocyte
lineage, and changes in myelin. The use of the MS-like animal
disease models provides a robust platform for assessing
combined immune regulation and myelin repair therapies in
an “outside-in” model of CNS immune-induced demyelinating
disease. These in vivo platforms for testing new myelin repair
drugs will hopefully lead to the translation of a novel drug, either
alone or in combination with immune regulatory drugs, for the
treatment of MS.

“INSIDE-OUT” MS MODELS

The “inside-out” model proposed by Stys et al. (2012) argues
that primary degeneration of oligodendrocytes and myelin is the
initial event of MS, and might occur in the earliest years before the
onset of symptoms. Primary oligodendrocyte death and/or subtle
myelinopathy can precede and subsequently drive a secondary
autoimmune attack, resulting in inflammatory demyelination in
MS (Figure 1). Therefore, there has been a search for agents
that could trigger these CNS events, resulting in the onset of an
immune response to myelin.

Epsilon Toxin Model
In the earliest stage of MS, the histologic description of
formation of nascent lesions without inflammatory infiltration
argues for the possibility of an “inside-out” mechanism (Barnett
and Prineas, 2004; Prineas and Parratt, 2012). Observation
of oligodendrocyte apoptosis along with blood brain barrier
disruption in the nascent lesions indicates that MS might arise
from an environmental insult targeting oligodendrocytes, such as
a toxin or virus. Epsilon toxin is produced by the type B and the
type D strains of Clostridium perfringens, a spore-forming gram-
positive bacterium mostly found in the intestines of ruminant
animals (Blackwell et al., 1983; Uzal et al., 2004; Uzal and Songer,
2008). Epsilon toxin is converted into an active form, crosses
the intestinal mucosa and disseminates via the bloodstream,
massively accumulating in the brain and kidneys (Finnie, 1984,
2003; Tamai et al., 2003). The toxin has the capability to cross
the blood brain barrier and infiltrate the brain parenchyma,
which results in MS-like symptoms (Dorca-Arevalo et al., 2008;
Popoff, 2011). Over three decades ago, Murrell et al. (1986) first
hypothesized that epsilon toxin is the potential toxin that triggers
MS, even though humans are not natural hosts for C. perfringens
types B and D. More recently, C. perfringens type B was isolated
from the stool of a female remitting-relapsing MS patient with
an onset 3 months previously (Rumah et al., 2013). Furthermore,
epsilon toxin specific antibodies were found in serum and/or CSF
of 10% of MS patients and 1% of healthy controls from the banked
samples in the United States (Rumah et al., 2013). Similarly,
immunoreactivity toward epsilon toxin in serum is higher in MS
patients than in controls in the United Kingdom (Wagley et al.,
2019). In light of these observations and clinical evidence, it has
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been proposed that epsilon toxin exposure may play a role in
initiating MS lesion formation by binding to oligodendrocytes,
myelin and white matter (Lonchamp et al., 2010; Wioland et al.,
2015). Although the mechanism underlying the effect of epsilon
toxin on oligodendrocytes and subsequent demyelination is not
yet clear, several lines of evidence in vitro indicate that epsilon
toxin selectively attacks mature oligodendrocytes and triggers
demyelination (Linden et al., 2015; Wioland et al., 2015; Bossu
et al., 2020). It has been shown that myelin and lymphocyte
protein (MAL) could be a candidate epsilon toxin receptor
on oligodendrocytes (Rumah et al., 2015). Once bound to
oligodendrocytes, epsilon toxin could lead to the rise of glutamate
and subsequent activation of mGluR, which activates intracellular
Ca2+signaling and eventually triggers demyelination (Lonchamp
et al., 2010; Kostic et al., 2013; Wioland et al., 2015). In line
with this evidence, it is highly possible that an agent cytotoxic to
oligodendrocytes may trigger MS.

Diphtheria Toxin A Chain (DTA) Model
One of the proposed factors in the alternative “inside-out”
theory for initiating MS is the primary cytotoxic death of
oligodendrocytes. A toxin-induced ablation of oligodendrocytes
is useful for testing whether such oligodendrocyte death could
trigger anti-CNS autoimmunity (Jakel and Dimou, 2017). Plp1-
CreERT; ROSA26-eGFP-DTA (DTA) is a mouse model of
oligodendrocyte ablation accomplished via an oligodendrocyte
specific activation of toxin expression in adult mice. The A
subunit of diphtheria toxin (DT-A) induces cell death by
catalyzing the inactivation of elongation factor 2, thereby
halting global protein synthesis (Collier, 2001). The Plp1-
CreERT mouse line drives expression of the tamoxifen-
regulated Cre recombinase under control of the oligodendrocyte-
specific myelin proteolipid protein (PLP) transcriptional control
region (Doerflinger et al., 2003). The DT-A expression in
oligodendrocytes is the result of tamoxifen-induced Cre-
mediated recombination of ROSA26-eGFP-DTA locus via Plp1-
CreERT (Traka et al., 2010). The expression of the DT-A
subunit specifically in CNS myelinating oligodendrocytes results
in widespread oligodendrocyte ablation, CNS demyelination, and
the subsequent development of severe neurological symptoms.
There is no breakdown of the blood brain barrier or detectible
increase in CD4+ T cell into the CNS despite local inflammation,
and there is no apparent loss of CNS axons during the initial
demyelination event. However, the specific phenotype(s) of the
T cells within the CNS during this initial demyelination phase of
disease have not been fully characterized. The clinical symptoms
of the acute phase of the disease are ameliorated during a
recovery phase that correlates with the repopulation of mature
oligodendrocytes and robust remyelination in the following 6–
7 weeks (Traka et al., 2010). Interestingly, as the recovered mice
age, they develop a secondary lethal progressive demyelinating
disease starting around 40 weeks after tamoxifen injection that is
mediated by MOG35−55-specific CD4+ T cell infiltration into the
CNS during the late stages of disease (Traka et al., 2016). While
the MOG35−55-specific CD4+ T cell responses are detectable
in the peripheral lymphoid organs at 40 weeks post induction
and are not present at 10 weeks, there is a significant increased

number of CD4+ T cells in the CNS at 10 weeks (Traka et al.,
2016). This increase in CNS CD4+ T cells may correlate with
the expansion of myelin-specific T cells, similar to the initial
activation and expansion of spread-epitope-specific CD4+ T cells
within the CNS in EAE (McMahon et al., 2005; Bailey et al., 2007).
The late-stage pathology is due to the induction of CD4+ T cell-
mediated autoimmune responses secondary to oligodendrocyte
ablation via a non-immune-mediated event (i.e. DT-mediated
toxicitiy). This is supported by the major findings that adoptive
transfer of the myelin-specific CD4+ T cells derived from DTA
mice into naïve mice consistently results in the induction of
mild neurological symptoms and inflammatory CNS lesions
in the recipients, and induction of immune tolerance using
the MOG35−55-coupled PLG nanoparticles significantly inhibits
the progression of late-onset disease symptoms in DTA mice
protecting animals from eventual fatal demyelinating disease
(Traka et al., 2016).

In addition to the DTA mouse model, other genetic mouse
models were later developed to achieve a faster oligodendrocyte
ablation via expressing diphtheria-toxin receptor (DTR) under
the MOG-promoter accompanied by direct administration of
diphtheria toxin (Ghosh et al., 2011; Locatelli et al., 2012; Oluich
et al., 2012; Gritsch et al., 2014). However, some studies reported
that a secondary anti-CNS immunity did not develop in these
mice, that is most likely due to premature death of these mice
(Locatelli et al., 2012; Gritsch et al., 2014). The development
of CNS immunity after oligodendrocyte death appears to be a
slow process, taking several months in the DTA mouse model
described above.

The DTA mouse model supports the “inside-out” theory,
recapitulating pathological evidence showing that the loss of
oligodendrocytes and subsequent demyelination may result
in the induction of autoreactivity against myelin antigens as
well as secondarily lead to inflammation and demyelination
in the CNS. The unique DTA mouse model system allows
fundamental unanswered questions concerning the molecular
and cellular mechanisms associated with the induction of the
autoimmune response to contribute to the understanding of
MS disease pathogenesis and to the development and testing of
remyelination therapies.

Cuprizone Autoimmune Encephalitis
(CAE) Model
In addition to diphtheria-toxin, cuprizone is a demyelinating
neurotoxin that has been used in testing “inside-out” hypothesis.
Long-term of cuprizone feeding in mice lead to oligodendrocyte
death, demyelination and gliosis (Matsushima and Morell, 2001;
Sen et al., 2019b). Unlike DTA model, cuprizone feeding
did not evoke a peripheral immune response in the CNS
(Caprariello et al., 2018; Sen et al., 2019a). Some studies
reported that the failure of cuprizone feeding to trigger in
triggering CNS immune response is due to the atrophy of
immune organs like the spleen and thymus (Solti et al., 2015;
Partridge et al., 2016; Sen et al., 2019a). A more recent study
reported that cuprizone induced demyelination can trigger an
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“inside-out” immune response when the BBB is disrupted by
pertussis toxin (Almuslehi et al., 2020).

Accumulating clinical evidence suggests that primary myelin
destabilization by citrullination releases immunogenic myelin
debris and subsequently drives a secondary autoimmune attack
(Moscarello et al., 1994; Cao et al., 1999; Stys et al., 2012).
Excessive citrullination of myelin basic protein (MBP) had been
found in normal appearing white matter from postmortem
MS brain tissues and the extent of modified myelin is related
to the severity of MS (Moscarello et al., 1994; Wood et al.,
1996; Bradford et al., 2014). Citrullination is a post-translational
modification mediated by peptidylarginine deiminase (PAD).
Citrullination occurs when a positively charged arginine residue
is deiminated to a neutrally charged citrulline (Vossenaar et al.,
2003; Moscarello et al., 2007). Due to the changed charge
in the protein, citrullinated MBP is partially unfolded and
cannot stabilize a compact myelin sheath (Beniac et al., 2000;
Bakhti et al., 2013). Studies have shown that deiminated MBP
with citrulline is more susceptible to proteolytic digestion
and that the digestion rate is remarkably correlated with the
amount of citrulline present in MBP peptides (Cao et al.,
1999; D’Souza and Moscarello, 2006; Musse et al., 2006).
Increased breakdown of citrullinated MBP results in generating
immunodominant epitopes (Musse et al., 2006); potentially
triggering autoimmunity and eliciting destructive inflammatory
demyelination (Raijmakers et al., 2005).

A newly developed mouse model of cuprizone autoimmune
encephalitis (CAE) provides direct evidence to support the
causative relationship between primary abnormalities of myelin
and inflammation (Caprariello et al., 2018), whereby biochemical
destabilizing myelin triggers a secondary inflammatory
demyelination comparable to active MS lesions. The CAE
is initiated with a 2-week exposure of neurotoxicant cuprizone
to perturb myelin without causing overt demyelination, followed
by an immune boost of complete Freund’s adjuvant (without
exogenous antigen) and pertussis toxin. After 2 weeks, these
mice develop inflammatory demyelination which resembles
pathology found in MS patients and the EAE mouse model
(Caprariello et al., 2018). The histopathological changes of the
CAE model are characterized by periventricular and white matter
tract gadolinium enhancement of MRI of the brain as well as
overt demyelination and cellular infiltration within the corpus
callosum. Gadolinium enhancement indicates breakdown of
the BBB as a result of active inflammation. However, removal
of the immune boost abrogates these responses, implying the
importance of an immune-permissive environment. Most
importantly, suppression of the destructive immune response by
administration of peptidyl arginine deiminase (PAD) inhibitors
to the CAE mice suggests that citrullinated proteins altered by
abbreviated cuprizone exposure possibly drive the inflammatory
demyelinated lesions in CAE.

Additional “Inside-Out” Models
Although genetic mutations of myelin proteins as well as
traumatic brain injury-associated dysmyelination have been
linked to later development of MS, it is not yet clear what initially
triggers citrullination of myelin proteins or subtle dysmyelination

(Warshawsky et al., 2005; Donovan et al., 2014; Sidaway, 2017;
Cloake et al., 2018).

Adrenoleukodystrophy (ALD) is an X-linked neurometabolic
disorder due to mutations in a proximal transporter, adenosine
triphosphate (ATP)-binding cassette, subfamily, member 1 gene
(ABCD1) (Moser et al., 2007; Kemp et al., 2016). The clinical
presentation of ALD is complex; involving adrenal insufficiency
and myelopathy (de Beer et al., 2014; Kemp et al., 2016).
Approximately 60% of male patients develop rapidly progressive
inflammatory cerebral demyelination (Moser et al., 1992), which
clinically coincides with a progressive neurological decline
similar to MS (Ferrer et al., 2010; Brandao de Paiva et al.,
2018). However, the complex mechanisms on how this metabolic
disease is transitioned to a fatal neuroinflammatory disease
remains elusive. ABCD1 mutation may prevent transport of very
long-chain fatty acids (VLCFAs) into peroxisomes for oxidation
and degradation (Moser et al., 2007; Kemp et al., 2016). Some
studies suggest that the accumulation of VLCFAs in myelin
could mediate myelin instability and initial demyelination, which
are believed to contribute to initiation of the inflammatory
disease (Ho et al., 1995; Ito et al., 2001; Singh et al., 2009).
The findings of CD1 (antigen presenting molecule) -mediated
lipid antigen presentation in cerebral ALD lesions supported the
hypothesis that VLCFA-containing proteolipid protein in myelin
may be a potential lipid antigen for triggering autoimmunity after
myelin breakdown (Ito et al., 2001). The lesions progress rapidly
accompanied by the opening of blood brain barrier and invasions
of inflammatory cells (Powers et al., 1992; Ito et al., 2001). Further
evidence for the involvement of different components of the
immune system in the pathogenesis of demyelinating ALD was
reviewed in Hudspeth and Raymond (2007). Interestingly, the
demyelinating progress arrested in a small percentage of patients
with initial cerebral demyelination, in which the disruption of the
blood brain barrier does not occur (Korenke et al., 1996). The
importance of blood brain barrier in ALD was emphasized by
several pieces of evidence that suggested potential environmental
factors, such as head trauma (Weller et al., 1992; Raymond et al.,
2010), possibly increase permeability of the blood brain barrier,
which either trigger or precipitate the demyelination.

Traumatic brain injury (TBI) is most commonly caused by
an external head impact that injures the brain. Demyelination
and irreversible axon damage, particular in the corpus callosum,
represent major pathological features frequently observed in
TBI patients (Rutgers et al., 2008; Armstrong et al., 2016a;
Chung et al., 2018; O’Phelan et al., 2018). Nevertheless, the
progression of white matter injury is poorly understood
in TBI. Oligodendrocytes are known to be vulnerable to
oxidative stress and excitotoxicity following traumatic injury
(Lotocki et al., 2011; Giacci and Fitzgerald, 2018). The loss of
oligodendrocytes could significantly contribute to underlying
demyelination after injury (Dent et al., 2015; Armstrong
et al., 2016b) and activate neuroinflammation (Mierzwa et al.,
2015). Furthermore, the observation that a persistent adaptive
immune response in the CNS developed in the mice weeks
after TBI (Daglas et al., 2019) fits within the “inside-out”
theory. Interestingly, neuroinflammation, which persists for
years after TBI, has recently been shown to largely contribute
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to neurodegeneration and long-term neurological dysfunction
(Bazarian et al., 2009; Amor et al., 2010; Daglas et al., 2019).
In particular, genetic depletion of CD8+ T cells in TBI mouse
model improves neurological outcomes (Daglas et al., 2019),
which indicates the importance of neuroinflammation in the
progression of TBI. Encouragingly, damping neuroinflammation
with immunomodulatory nanoparticles results in reduced
neuropathology and neurophysiological abnormalities
following TBI, suggesting a potential therapeutic strategy
(Sharma et al., 2020).

Pre-clinical and clinical findings in ALD as well as TBI could
shed light on potential MS therapeutics and vice versa. Current
MS treatments are mainly directed to immune suppression, but
the CAE model provides evidence for a potential “inside-out”
mechanism of initiation of chronic demyelination and could
serve as a compelling preclinical model of MS translational
studies for the development of myelin-protective strategies in
early stages of the disease.

RELEVANCE FOR THE CLINIC

As we have highlighted the “outside-in” (Figure 2) peripheral
immune driven models and “inside-out” (Figure 1)
neurodegenerative models (Table 2), the next section will focus
on the relevance for the clinic. The “outside-in” pathogenesis
(Figure 2) begins with activation of myelin-specific T cells
in response to a myelin peptide mimic epitope expressed
on a pathogenic virus or other microbe exposure. Activated
autoreactive T cells then migrate into the CNS, are reactivated
by CNS-resident APCs, and release cytokines leading to direct as
well as indirect damage to myelin. Additional myelin epitopes
released by the primary T cell response induce epitope spreading,
leading to additional myelin destruction. During repair, a mild
inflammatory reaction can stimulate oligodendrocyte precursor
cells and “protective autoimmunity” utilizing T regulatory cells
(Schwartz and Raposo, 2014). Unfortunately, the eventual failure
of myelin repair during RRMS leads to chronically demyelinated
axons, which degenerate over time and contribute to disease
progression (Franklin and Ffrench-Constant, 2008; Trapp and
Nave, 2008). Neuronal injury occurs, in part, as a result of
inflammation mediated by myelin-specific CD4+ T cells. Direct
and indirect effects of neuroantigen-specific Th1/17 cells can
lead to demyelination and subsequent neuronal dysfunction by
mechanisms that include activation of microglia and infiltrating
inflammatory monocytes/macrophages by pro-inflammatory
cytokines (IFN-γ, IL-17, and GM-CSF), which then produce
proteases and additional pro-inflammatory cytokines, nitric
oxide (NO) and reactive oxygen species (ROS), which induce
myelin and axonal damage (Glass et al., 2010). Neuronal loss
is thought to be a consequence of the demyelination, which
causes dramatic ionic and energy imbalances in axons resulting
from the loss of the structural and trophic support provided
by oligodendrocytes (Trapp and Nave, 2008; Nave, 2010).
This subsequent “inside-out” pathogenesis (Figure 1) can
then spread and lead to further loss of axonal integrity. This
perpetuates the release of myelin antigens to the periphery

followed by the presentation of myelin epitopes to and activation
of autoreactive T cells; ultimately leading to the progressive
diffuse atrophy of the brain.

MS Patient Therapeutics
Disease modifying therapies for MS include immunomodulatory
and immunosuppressive medications that suppress or modulate
the self-reactive immune responses. While most of the
medications exert their effects in the peripheral immune
organs or blood stream, some also have the capacity to modulate
the local immune responses and oligodendrocytes in the CNS.

In patients, Dimethyl fumarate (Tecfidera) decreased B
cell CD40 expression (disrupted B-cell activation), decreased
memory T cells, and decreased T cell proliferation and
activation; resulting in lymphopenia (Linker and Gold, 2013).
The mechanism of action of dimethyl fumarate within the CNS
involves both Nrf-2-dependent as well as independent pathways
for neuroprotection involving diminished neuroinflammation
(Mills et al., 2018; Yadav et al., 2019). The Nrf2-dependent
pathway promotes neuroprotection, oligodendrocyte survival,
and decreases astrocyte activation (Linker et al., 2011; Kalinin
et al., 2013; Wang et al., 2015; Zarrouk et al., 2017). The
Nrf2-independent pathway also increases neuroprotection and
decreases astrocyte activation, specifically reactive oxygen species
production (i.e., Nitric Oxide) (Lin et al., 2011). Additionally,
dimethyl fumarate targets innate immunity, in the form of
microglia, resulting in diminished activation by the Nrf2
independent pathway (Parodi et al., 2015).

In patients, Fingolimod (Gilenya) suppresses migration
of peripheral lymphocytes (Brinkmann et al., 2010; Francis
et al., 2014). The mechanism of action of Fingolimod is the
modulation of S1P receptor expression, most notably S1P1
receptor associated with lymphocytes, diminishing the number
of T cells infiltrating into the CNS by retaining T cells in the
lymph nodes (Brinkmann et al., 2002; Mandala et al., 2002;
Fujino et al., 2003; Pham et al., 2008). Additionally, Fingolimod
is neuroprotective, functioning within the CNS on neurons
(Balatoni et al., 2007; Lee et al., 2010), oligodendrocyte lineage
cells (Zhang et al., 2015), and decreasing the hyperactivity of
reactive astrocytes (Choi et al., 2011). Of note, cumulatively
Fingolimod has been shown to improve white matter integrity
in relapsing remitting MS patients (Gurevich et al., 2018).
Fingolimod can have “off target” effects as it can interact with
multiple S1PR subtypes (S1PR1, S1PR3, S1PR4, and S1PR5) in
a variety of tissues, including the heart (Chaudhry et al., 2017).
The field has shifted to developing new therapies to mitigate these
side effects, that selectively target subtype 1 of S1PR, yet this may
diminish the neuroprotective capacity and immune suppression
as S1PR5 is associated with oligodendrocyte function and natural
killer cells (Chaudhry et al., 2017).

Natalizumab (Tysabri) is a monoclonal antibody against
very late activating antigen (VLA)-α4 integrin and can bind
to a majority of leukocytes, impeding cross over through the
blood brain barrier into the CNS, thereby diminishing the
aberrant heightened immune surveillance and inflammation
(Stuve et al., 2006). However, use of Natalizumab in patients
infected with John Cunningham virus (JCV) can result in
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progressive multifocal leukoencephalopathy (PML) in a subset
of patients (Clerico et al., 2017; Ho et al., 2017; Fragoso et al.,
2019; Ryerson et al., 2019). JCV is an opportunistic virus causing
oligodendrocyte destruction, demyelination, and eventually
a detrimental inflammatory reaction. Natalizumab associated
PML, leading to subsequent CNS inflammation and worsening
of MS, underscores the interplay between the generation of free
antigen (viral and myelin), T cell immune surveillance, and the
rebalancing mechanisms of neuroinflammation. Overall, despite
vast strides in disease modifying therapy (DMT) options for MS
patients over the last few decades, substantial risk for adverse side
effects remain with the existing therapies.

DISCUSSION/CONCLUSION

As Multiple Sclerosis is a syndrome with multiple clinical
presentations and not a single disease entity, it is likely that
both immune (outside-in) and neurodegenerative (inside-out)
driven molecular pathways can initiate the etiopathogenesis
of MS in different patients (Table 1). Additionally, it is
important to consider that these two mechanisms are not
mutually exclusive as, regardless of the initiating event,
both Immune-mediated and neurodegenerative processes are
important components of both types of models with the
difference being the timing of the two processes. Each highlighted
model has benefits yet limitations and not all pre-clinical
models of MS were covered (Lassmann and Bradl, 2017). We
highlighted both conventional as well as new experimental
models for testing novel MS therapeutics, while exploring the
underlying role of the adaptive and innate immune systems
(Table 2). The three therapeutic targets for balancing immune
dysfunction and preventing neurodegeneration necessary for
effective amelioration of MS progression include: re-establishing
self-tolerance, neuroprotection, and promotion of remyelination.

Chronic immunosuppression and immunomodulation
are the most commonly used therapeutic strategies for MS,
outside of symptom management. In addition to traditional
disease-modifying therapies, immune reconstitution therapy
(IRT) has emerged as a novel treatment paradigm (AlSharoqi
et al., 2020; Derfuss et al., 2020). The latter is based on partial
or full ablation of the immune system aiming to destroy
self-reactive clones and restore normal function. Though
attractive in principle, immune reconstitution at present is
an uncontrolled process whose long-term efficacy and side
effects remain to be established. Furthermore, IRT is a costly
therapy that is available only in certain medical centers and
typically reserved for patients with highly active disease.
Immunotherapy based on re-establishing of self tolerance
is likely to be more advantageous to patients in terms of
disease control and avoidance of immunosuppressive side
effects. Such strategy also may set the basis for personalized
therapies of MS, where patient specific autoimmune responses
are targeted by tolerizing agents. The Miller lab has recently
demonstrated an effective means of ameliorating ongoing
disease in EAE mouse models of MS by inducing tolerance in
autoreactive CD4+ T cells using intravenous (i.v.) infusion of

500 nM poly(lactic-co-glycolic acid) nanoparticles coupled
with or encapsulating myelin peptides (Ag-PLG) that
effectively reduces disease burden in relapsing-remitting
(R-EAE) and in chronic-progressive (C-EAE) mouse models
of experimental autoimmune encephalomyelitis (EAE) by
reducing inflammatory cell activation and pro-inflammatory
Th1/17 cytokine production (Getts et al., 2012, 2013; Hunter
et al., 2014; McCarthy et al., 2017). Using myelin peptide-
coupled autologous apoptotic leukocytes, we had previously
demonstrated successful tolerance induction in MS patients
(Lutterotti et al., 2013). Clinical testing of the Ag-PLG tolerance
platform will be initiated in MS patients within the next year.
We have recently shown, in a phase 1/2a trial in human celiac
disease, safety and efficacy of PLG nanoparticles encapsulating
gliadin (Kelly et al., 2019).

Interestingly, a recent single cell transcriptome study of
oligodendrocyte lineage cells from the spinal cord of EAE
mice indicated that oligodendrocytes and OPCs may not be
passive targets of the immune attack, but rather involved in
antigen-processing and presentation during the development
of MS (Falcao et al., 2018). This possibility is supported
by a previous study demonstrating that IFN-γ stimulated
the production of chemokines from oligodendrocytes,
while transgenic mice that suppresses oligodendrocyte
responsiveness to IFN-γ developed an accelerated EAE onset
(Balabanov et al., 2007).

The Popko lab has worked to enhance the protection of
oligodendrocytes and myelin by augmenting the integrated
stress response (ISR), a mechanism that protects endangered
cells from inflammatory insults. Using a variety of mouse
models of inflammatory demyelination, they have shown
that genetic manipulations that compromise the ISR increase
the susceptibility of oligodendrocytes in response to CNS
inflammation (Lin et al., 2005, 2007) and that the genetic
enhancement of the ISR, in contrast, provides increased
protection to oligodendrocytes (Lin et al., 2008, 2013).
Encouragingly, it has been shown that the ISR modulators,
guanabenz and Sephin1, are able to protect oligodendrocytes
against inflammatory stress through enhancing the ISR in MS
mouse models (Way et al., 2015; Chen et al., 2019). Based on
the “inside-out” theory, oligodendrocyte protection diminishes
demyelination and reduces the generation of myelin debris,
which likely decreases the exposure of myelin fragments
and limits the autoimmune response. The success of these
studies attests to the potential of oligodendrocyte protective
therapeutics in MS.

At present, there are not any FDA approved therapies
approved for myelin repair in MS despite successful pre-
clinical trials. Utilizing both “outside-in” and “inside-out”
models allows a comprehensive study of the multi-directional
feedback between the CNS and periphery. As both immune
dysregulation as well as inflammatory demyelination and
neurodegeneration lead to disease progression, the field will
need both “outside-in” and “inside-out” models to test single
and combination therapies. Our collective goal as a field,
of clinicians and scientists, is to improve patient outcomes
and quality of life for those living with Multiple Sclerosis.
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In summary, the availability and utilization of these diverse
models allows the MS field a robust platform for developing novel
therapeutics targeting the autoimmune response, neuronal stress
and promoting myelin repair.
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